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Abstract. Somerecent work on spaces of algebraic cyclesissurveyed. Themainfocus
is on spaces of real and quaternionic cycles and their relation to equivariant Eilenberg-
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Roughly fifteen yearsago arather surprizing rel ationship wasdiscovered between
projective algebraic cycles and certain fundamental constructions in algebraic
topology. The ideas involved were extensively developed in severa directions.
One led to a new homol ogy/cohomology theory for algebraic varieties. Another
led to the solution of an old conjecture of Graeme Segal. (See [31] for an
account.) Recently these ideas have been revisited from the point of view of
real and quaternionic algebraic geometry, and again the results were surprizing.
One finds a rich structure which has no a priori reason to exist. This body of
work, dueto Pedro dos Santos, Paulo Lima-filho, Marie-L ouise Michel sohn and
myself, isthe focus of this paper. | hope to introduce the fundamental ideas and
survey the main resullts.
The principal theme hereisthat:

Algebraic cycles constitute natural models for classitying spaces in topology.

This in turn tells us much about spaces of cycles. The principle holds in the
ordinary and also the G-equivariant categories where G isafinite group. It also
holds when considering real structures. To illustrate the principle we will begin
with an elementary but archetypal example.
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2 H. BLAINE LAWSON

1 PointsontheProjectiveLine

Recall that d-fold symmetric product of a topological space X is defined to be
the quotient
SPYX) = X x---xX/Sy

where the symmetric group S,; acts on the d-fold cartesian product by permuta-
tions of the factors. This construction is functorial and preserves the categories
of analytic spaces and algebraic varieties. Recall also that complex projective
n-space, the set of 1-dimensional subspaces of C"*1, can be expressed as the
quotient

P" = P(C'h = (C'"** —{0}) /C~

Proposition 1.1.  There is a homeomorphism, in fact an isomorphism of alge-
braic varieties:
SPYPYH =P

Proof. Let p = {p1,..., pa} € SPY(PY) be d unordered points in P* with
homogeneous coordinates p; = [—b; : a;]. To p we associate the homogeneous
polynomial of degree d

d d
P(x,y) = [J@x+biy) = ) cx*y'™*
i=1 k=0

where

andthesumittaken over all multi-indices/ = {0 < i; < --- < iy < d}oflength
|I| = k and I’ is the complementary multi-index with |I'| = d — k. The point
[co:---: cq] € P isindependent of the choices of homogeneous coordinates
representing p1, ..., ps. Theresulting map S P?(P!) — P¢ hasan inverse given
by associating to any homogeneous polynomial P(x, y) of degree d its roots
(counted to multiplicity) as pointsin P, O

Alternativly, one could argue as follows. For any complex vector space V
there is an embedding SP4(P(V*)) — P(Sym?(V*)) sending {[ f1l, ..., [ fa1}
to[f1... fa]. By counting dimensions one sees that for dim(V) = 2 thisisan
isomorphism.

There are two features of the general symmetric product that deserve notice.
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CYCLES AND SPECTRA 3

Algebraic structure. One can write

SPd(X) = lZnix,- : nieZJr,xieXand an:d]

1

where the x; are distict. Hence the disjoint union

sPr(x) = [ [sPix) = {Znix,- :n eZ+}
d>0

hasthestructure of anabelian topological monoidtisthefreemonoid generated
by the points of X. It has anatural group completion

Z.X = {Znixi .y ez} — SP*(X) x SP*(X)/ ~

where ~ isthe obvious equivalencerelation. Thisisan abelian topological group
which, algebraically, is ssimply the free abelian group generated by the points of
X.

This group can be considered asa“limit” of the S P¢(X) asfollows. Suppose
X is compact and connected. Fix abase point xg € X and consider the family
of trandations S P*(X) — SP*(X) generated by o +— o + xo. Thistrandlation
embeds SP4(X) c SPYT(X)andwedefine SP*(X) = lim; SP(X) withthe
compactly generated topology (cf. [53]). Then Ii_r)nSP*(X) =7 x SP¥(X),
and sending (n, Y n;x;) — (n — Y _n;)xo + >_ n;x; yields a continuous map
Zx SP®(X)—> Z- X.

Theorem 1.2. (Dold-Thom 1954 [6]). For any connected finite complék,
the mapping

limSP*(X) = Z x SP®(X) —> Z-X
is a homotopy equivalence.
In particular this shows that there is a homotopy equivalence
ZxP® = 7.pt
The second feature it the following.
Real structures. A real structure on a topological space X is a continuous

map ¢ : X — X with ¢? = Idy. Any such map induces real structures i, :
SP*(X) - SP*(X)and ¢, : Z - X — Z - X which are additive isomorphisms.
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4 H. BLAINE LAWSON

A real structure on a complex algebraic variety X IS an algebraic variety Xgr
defined over R whose extension over C hasagivenisomorphismto X. Inthiscase
the Galois group Gal(C/R) = Z, acts on X by an antiholomorphic involution
Y : X — X whichisareal struture in the topological sense. Now the variety
P! has two algebraic real structures reflecting the fact that the Brauer Group of
RisZ, (cf. [25]).

I. The standard real structure. This comes from the standard definition of
projective space over afield. Theinvolution is given by complex conjugation of
homogenous coordinates. Its fixed-point set isthe real projective line IP’]%R c PL
One can see from the proof of Proposition 1.1 that the induced real structure on
SP4(PY) = P? isthe standard one.

I1. TheBrauer-Severi curve. Let H denotethe quaternionsand consider P* =
Pc (H) to bethespaceof complex linesthrough OinH. Then scalar multiplication
j : H — H by the quaternion j is a C-antilinear map with j> = —1. It
induces an antiholomorphic involution j : Pc(H) — Pc(H) without fixed
points. Topologically this map is simply the antipodal mapping on S2. To see
that thiscomesfrom an algebraic real structure consider the Veronese embedding
P! c P?2givenby [z : w] — [22 4+ w? : i(z2 — w?) : 2izw] which realizes P as
the quadriccurve Q = {[X : Y : Z] € P?: X2+ Y? 4+ Z2 = 0}. Theinvolution
is given by complex conjuation (X, Y, Z) — (X, Y, Z).

In this case the induced real structures on S P¢(P¢(H)) depend on the degree.
One can see from the proof of 1.1 that

P? (standard) if d iseven

SPY(Pc(H)) =
) = \psaserny it 4 isodd

Therefore asreal varietiesthe symmetric products have two distinct seriesgiving
two distinct stabilizations. Note that there is no j-fixed point to form the stabi-
lization; thereisonly afixed pair {xo, jxo} which has degree 2. This dichotomy
will reappear in our discussion of quaternionic cycles.

2 Algebraic Cycles

We have seen above that for a compact topological space X, we have
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CYCLES AND SPECTRA 5

SP*(X) = [Znixi : n; € ZT and x; distinct points of X}
N
7 -X = {Znix,- : n; € Zand x; distinct pointsofX}

and by Dold-Thom there is a homotopy equivalence
limSP*(X) =7Z- X.
—

Now when X isaprojective algebraic variety Grothendeick’s theory of schemes
defines the “points” of X to be all the irreducible algebraic subvarieties of X
—not just those of dimension 0. So in this context it is natural to consider the
symmetric productsof the p-dimensional points, that is, theset C, (X) of all finite
forma sums > n;V; wheren; € Z* and V; areirreducible algebraic subvarieties
of dimension p in X. A fundamental theorem of Chow and van der Waerden [3]
assertsthat if X isprojective, C,(X) can bewritten as acountable disjoint union

C,(X) = [[Cra(X)

where each C), ,(X) hasthe structure of aprojective algebraic variety. In partic-
ular, for varieties over C, each C, ,(X) is naturally a compact Hausdorff space,
and C,(X) isan abelian topological monoid. It is natural to consider its group
completion:

C,(X) = iZniVi cn;eZtandV;

isanirreducible p-dimensional subvariety of X }

Z,(X) = {Znix,- s n; € ZandV;

irreducible p-dimensional subvariety of X }

Thisgroup Z,(X), called the group of algebraic p-cycleson X carries anatural
topology as the quotient of C,(X) x C,(X). Thereisan analogue of the Dold-
Thom result.
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6 H. BLAINE LAWSON

Theorem 2.1. (P. Lima-Filho [41]). There is a homotopy equivalence

limC,(X) = Z,(X)

o

Thislimit istaken over translations by the monoid of connected components of
C,(X). The statement is equivalent to the assertion that QBC,(X) = Z,(X)
where BM denotesthe classifying space of themonoid M. A proof of thisresult
was also given in [18].
This theorem is important since it relates homotopy invariants of the Chow
varietiesto invariants of the limit. For example, one has that
limm.Cpqo(X) = m.Z,(X)

—
o

3 Algebraic Suspension Theorems

A key to unlocking the structure of the groups Z ,(X) isthe algebraic suspension
theorem. It is based on the following construction. Let X C P" be an algebraic
variety. Choose an embedding P* c P"+! and a digjoint base point P ¢ P"+1.
Then the algebraic suspension XX of X is defined to be the union of all lines
in PV*1 joining X to P°. X X is an algebraic subvariety of P"*1. To see this
choose homogeneous coordinates [zg : --- : z,41] SO that P" corresponds to
points [zo : --- : z, : 0] and Py correspondsto [0 : --- : 0 : 1]. Then XX is
defined by the same polynomials(in zo, . . ., z,,) that define X. Thisconstruction
extends to a continuous homomorphism of cycle groups.

Theorem 3.1. (Lawson 1989). The algebraic suspension homomorphism

Y :Z,(X) — Z,1(¥X)
is a homotopy equivalence.

Since ¥P" = P"*! thisimmediately implies the following.

Corollary 3.2. There are homotopy equivalences

Zo(P") = Zy (P = 2P = ..
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CYCLES AND SPECTRA 7

Idea of the Proof. We consider the case X = P”; the general case follows the
samelinesof argument. The proof fallsinto two parts. We consider the subgroup
Zpr1(X )™ of those (p + 1)-cyclesin P+ for which every component meets P
in proper dimension. Consider the flow ¢, : P**! — P"+1 which fixes P* and
IP° and is given in the above homogeneous coordinates by ¢, ([zo : -+« @ 2z, :
Zag1]) = [20: -+ 2a © tZpga]. Then ¢, actson Z,,1(X) preserving Zp+1(X)m
andfixing ¥ Z,(X). Ast — oo, eachcyclec e ZPH(X)rh ispulled like “taffy”
to aunique limit
lim ¢rc = E(coP")

where e denotes the intersection product. Thisshowsthat ¥ Z,(X)is adeforma-
tion retract of Z,,1(X)™.

Thesecond part of the proof consistsinshowing that theinclusion Z,, 1 (X )y e
Z,+1(X) isahomotopy equivalence. To do thiswe show that given any compact
component C,114(X) C C,41(X) there exists an integer d and a continuous
family of mappings ¥, : Cp11.4(X) — Cp41(X),0 <t < 1, suchthat

W, (Cpr1a(X)) C Cpya(X)" foral t >0

and
Vg =d- (multiplication by d).

Itthenfollowsfromrelatively standard argumentsthat theinclusion Z, .1 (X il
Z p+1(X) induces an isomorphism on homotopy groups and is therefore ahomo-
topy equivalence.

The construction of ¥, entailsanew “moving lemma’” for cycles. For thisone
embedsP" ! ¢ P"+2 and choosestwo distinct base points xg, x1 inP"+2 — P+,
Let ¥,, denotetheal gebraic suspension of cyclestox; andlet 7y : P"*2—{x;} —
P*+1 bethelinear projection. Then for each positivedivisor D onP"+2 — {xg, x1}
we define atransformation of cycles

Uy Zp+1(Pn+1) — Zp-',—l(PnJrl)
by
Wp(c) = () {(gc) e D} .

LettD, 0 <t < 1 bethe family of divisors obtained by applying the “scalar
multiplication” flow ¢, for the xo-suspension. Assumethat x and x; do not meet
tD for any such 7. Thenweset ¥, = W, . Careful estimates then show that for
d sufficiently large, ageneric choice of D hasal the desired properties. O
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8 H. BLAINE LAWSON

The argumentsinvolved in the second part of this proof play an important role
inthe proof of Chow’sMoving Lemmafor Familieswhich wasestablished by the
author and Eric Friedlander [20]. This Lemma has many applications including
aproof of Poincaré Duality in certain cycle-homology theories [21].

Subsequent developments of this subject have required enhanced versions
of the Algebraic Suspension Theorem. For example there is an Equivariant
Suspension Theorem [33] for varieties with a finite group of automorphisms.
This result is far more delicate than the non-equivariant one. There are aso
versions of the Suspension Theorem for real and quaternionic cycles which are
relevant to our discussion here.

4 Classifying Spaces

One of the fundamental and powerful ideas in algebraic topology is that of a
classifying space. Suppose @ is a contravariant functor from the category of
compact topological spaces to the category of abelian groups. This assigns to
each continuous map between topological spaces a homomorphism of groups

x Ly > o) 29 o)

withthe property that ®(go ) = ®(f)o®(g)forg : Y — Z. Weshall assume
that @ (f) depends only on the homotopy class of f.

Definition 4.1. A topological space Z® is a classitying space for @ if there
exists an equivalence of functors

O(X) = [X, Zo] 4.1

where[X, Y] denotesthe space of homotopy classes of continuous mapping from
XtoY.

Notice in particular that ®(Ze) = [Ze, Z4] and so there is a distinguished
element

y € O(Zo) corresponding to Id e [Ze, Zs]

called the fundamental class. Given F : X — Zg, one has F*(ldz,) = F and
so under 4.1

F'y € &(X) correspondsto F e [X,Zy]

Bull Braz Math Soc, Vol. 34, N. 1, 2003



CYCLES AND SPECTRA 9

Example 4.2. If ®(X) = HYX; Z), then Z¢ = S*. That is, there is an
equivalence of functors
HY(X: Z) = [X, 5]

which assignsto F € [X, S] theclass F*y € HY(X; 7Z) where y isachosen
generator of H1(S%; Z) = Z. When X and F are smooth, this class can be
represented by F*(%d@) where d6 isthe standard arc-length form on S2.
Example 4.3. If ®(X) = H*(X; Z), then Z¢ = P® = lim,_,o P". This
limit istaken over the family of linear inclusionsP* ¢ P2 ¢ P C ... and given
the compactly generated topology defined by declaring C C P> to be closed
iff C N P" isclosed for al n. In thistopology aclosed subset C is compact iff
C c P" for somen. Now there is an equivalence of functors

H2(X; 7) = [X,P™]

which assignsto F € [X, P*] theclass F*y € H?(X; Z) where y isachosen
generator of H?(P>°; Z) = Z. When X and F are smooth, this class can be
represented mod torsion by F*(w) where w is the standard Kahler form (or
“complex arc-length form”) on P".

Example 44. Let ®(X) = Vect’.(X) be the set of isomorphism classes of
g-dimensional complex vector bundles over X with ®(f) = f* given by the
induced-bundle construction. Then Z = G7(C*®) = lim G4(C"), where
G7(C") is the Grassmannian of codimension-g linear subspaces of C*. Over
G4(C") there is a g-dimensional vector bundle y, whose fibre at P is C"/P.
This stabilizes to a universal bundle y, — G7(C*), and the equivalence of
functors
Vectl.(X) = [X, G1(C™)]

associatesto F : X — G7(C*) thebundle F*y,. (See[?] or [28] for details.)

Example 4.5. Let ®(X) = K(X) be the reduced K-theory of X defined
as follows. Let K(X) denote the group completion of the additive @onoid
(10 Vectt (X), @) of vector bundles under Whitney sum @. Then K (X) is

the kernel of the dimension homomorphism K (X) — Z. One can show that
Zp = G®(C®) =lim,_, o, G1(C™), i.e, thereis an equivalence of functors

K(X) = [X, G®(C™)]
(Againsee[?] or [28] for details.)
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10 H. BLAINE LAWSON

Example4.6. Let ®(X) betheisomorphism classesof p-fold covering spaces
of X where p isaprime. Then Z¢ = S*/(Z/p).

Group structure. Let Z be atopological space and ®(X) = [X, Z] the set-
valued functor classified by Z. If Z isin fact atopological abelian group, then
@ isnaturally agroup-valued functor. Similarly, if Z ishomotopy equivalent to
the space of loops Z = QZ; on a pointed topological space Z;, then the loop
product

ZIXZ =2 QL xQZ, — Q71 = Z

also makes @ agroup-valued functor.

This second construction generalizes thefirst, since for any topological group
Z there exists a classifying space Z1 = BZ and aweak homotopy equivalence
Z ~ QBZ (See[44], [46] for example).
5 Spectra

Suppose{Z,}> , isasequence of pointed spaces provided with homotopy equiv-
alences
Zn = QZn-i—l

for al n, so we have equivalences
7 =202 Q71 = Q%Z, = Q%23 = ...

Then {Z,}°, is caled an Q-spectrum and Z is called an infinite loop space.

Under these conditions the graded group-valued functor
DN(X) = [X, Z,]

satisfies all the axioms for a cohomology theory except the dimension axiom
(cf. [17], and s0 ®*(e) is a generalized cohomology theory.
6 Eilenberg-Maclane Spaces

The defining “universal” property of a classifying space Z4 usualy implies
directly that it is unique up to homotopy equivalence. Moreover, there often
exists anice homotopy characterization of Z4. A basic exampleisthefollowing.

Bull Braz Math Soc, Vol. 34, N. 1, 2003



CYCLES AND SPECTRA 11

Example6.l. Let®(X) = H"(X; A) where A isafinitely generated abelian
group. The corresponding classifying space Zo = K(A,n), cdled the
Eilenberg-Maclane space of type (A, n), is uniquely characterized up to homo-
topy equivalence, in the category of countable CW complexes, by the property
that

A ifk=n

m K(A,n) = 0 itk %n (6.1)

Thus for example we have homotopy equivalences.
K(Z,1) = s, K(Z,2) = P>, KZ/p,1) = §%/(Z/p)
Of course the classifying property means that there is an equivalence of func-
tors
H'(X: A) = [X, K(A,n)] (6.2)

Since ;X = m 1 X for any pointed space X, the characterization (6.1)
shows that
K(A,n) = QK(A,n+1)

for all n. Hence, {K(A,n)};2, forms an Q-spectrum called the Eilenberg-
MacL ane spectrum, classifying the cohomology theory H*(X; A).

7 Thelmportance of Classifying Spaces and Spectra, |

Having an explicit classifying space Z4 for a functor @ can be quite useful.
Many of basic properties of @, as well as natural transformations ® — W to
other functors, can be determined geometrically at the universal level from the
structure of Z.

Example7.1. (Characteristic classes). A characteristic class for vector bun-
dles of rank n is a natural transformation which assigns to each vector bundle
E — X, acohomology classu(E) € H*(X; A) for somefixed k and A. By
definition of anatural tranformation, u(f*E) = f*u(E) for any continuous map
f:Y — X.Inlight of 4.4 we seethat u istherefore completely determined by
the cohomology classu(y,) € H*(G1(C™®); A). Thus:

Characteristic classes of C vector bundles
cohomology of G?(C*)
[G1(C™), K(k, N)]

e 1R

for various choices of k and A.
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12 H. BLAINE LAWSON

Example7.2. (Cohomology operations). A cohomology operationisasim-
ply anatural transformation of functors H*(e; A) — H* (e; A’). Just as above
we find that:

Cohomology operations
cohomology of K (k, A)
[K(k, A), K(K', A)]

e 11

for various choices of k, kK’ and A, A’.

8 Thelmportance of Classifying Spacesand Spectra, |1

Although classifying spaces are often characterized by simple homotopy condi-
tions, it can be quite useful to find good modelsfor them. One obtainsatwo-way
flow of information:

MODELS <~ THEORY

Explicit constructions of modelscan lead to nicerepresentations of such things
as characteristic classes and cohomology operations. For example, the natural
harmonic forms on Grassmann manifolds give rise to Chern-Weil Theory which
represents characteristic classes of smooth vector bundlesasexplicit polynomials
in the curvature of a given connection.

Intheother direction, if onedeterminesthat aparticular space Z isaclassifying
space for some functor @, then our knowledge of Z4 tells us much about the
topological structure of Z.

The flow of information in both directions will play arole in our subsequent
discussion.

9 Cyclesand Eilenberg-MacL ane Spaces

In 1954 A. Dold and R. Thom gave the following beautiful models for the
Eilenberg-MacL ane spaces.

Theorem 9.1. [6] For all » > Othere is a homotopy equivalence
SP>(S") = K(Z,n).
More generally, for any finite complékthere are homotopy equivalences

Z-Y = 7 x SPP(Y) = HK((H,,(Y; 7), n).

n>0
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CYCLES AND SPECTRA 13

In particular this shows that for any finite complex Y one has an isomorphism
of graded groups
.(Z-Y) =& H(Y; 7).

Thefunctor Y — Z-Y hastheeffect of converting homology groupsto homotopy
groups.

Notethat if Y isan algebraic variety, thenZ - Y isjust the group of O-cycleson
Y. Inlight of the discussion in 82 one might ask whether anal ogues of Theorem
9.1 hold for algebraic cycles of higher dimension. Indeed this is the case. We
adopt the notation

Z9P") = Zyg(P)

for the group of algebraic cycles of codimension-g on P". Then The Algebraic
Suspension Theorem 3.1 together with 9.1 above leads to the following.

Theorem 9.2. [30]. For each integerg, 0 < g < n, there is a canonical
homotopy equivalence

q
z1P = [ k(@ 2) (9.1)
k=0

In fact one hasthat for each n > ¢ thereis ahomotopy equivalence
ZUCH = Z1PY/ZTN P = K(Z,29). (9:2)

where the quotient 27(C") can be identified with the group of algebraic cycles
on C". Thus the affine algebraic cycles, suitably topologized, give models for
the Eilenberg-MacL ane spaces and thus represent integral cohomology in even
degrees.

Stabilizing the equivalence (9.1) to the limit

z® = Z%P®) = lim 24(P") (9.3)
n,q— oo

classifies the functor H?*(X; Z). We shall see that this space Z* carries addi-
tional beautiful properties related to the cup product in the ring H%*(X; 7).

More generally one can replace projective space with an arbitrary algebraic
variety X, and consider the topological group Z,(X) of algebraic p-cycles on
X . Taking homotopy groupsyields abigraded homology theory L, Ho, 1+ (X) =
.Z+(X) which Theorem 3.1 shows to have particularly nice properties. A
general survey of this theory can be found in [31] and [43].
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14 H. BLAINE LAWSON

10 Cyclesand Chern Classes

The simplest of al algebraic subvarieties in P" are the linear subspaces, and
this observation gives a natural embedding G7(P") — Z7(P") of the Grass-
mannian of codimension-g linear subspaces into cycles of degree one. Now
with respect to the canonical homotopy equivalence (9.1) this map represents a
cohomology classin H?*(G?(P"); Z) (cf. (6.2)).

Theorem 10.1. [36]. With respect to (9.1) the map
GI(P") — Z9(P")degt (10.1)

classifies the total Chern class of the “universagFplane bundle,, — G7(C").

Taking the limit asn — oo in (10.1) yields amap of classifying spaces
GI(P*) — Z9(P*)deg- (10.2)

which represents a natural transformation of the corresponding functors. As
seen in 4.4 the first space classifies vector bundles, and via (9.1) the second
space classifies integral cohomology. The import of Theorem 10.1 is that this
map represents the total Chern class. In other words, for every finite complex
X, (10.2) induces a mapping

[X, G1(P")] —— [X, Z9(P")]deg

Vect?(X) —— {1} x H*(X; Z) x --- x H¥(X; 7)

which sends
E — c(E)=1+ci(E)+ -+ c4(E)

Taking the limit asg — oo givesamap of classifying spaces
G=P®) — Z¥(P™)geq- (10.3)
which represents the natural transformation of functors
K(X) — H*(X; 7)

corresponding to the total Chern class.
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CYCLES AND SPECTRA 15

11 Cyclesand the Cup Product
On cyclesin projective space thereis an elementary biadditive pairing
#:29(P") x 29 (P") — Z0H (prtrl

called the algebraic join which is constructed asfollows. Embed P* and P* into
P+ asdisjoint linear subspaces. Then for irreducible subvarieties V ¢ P and
V' c P", the subvariety V#V’' c P is defined to be the union of all lines
joining V to V',

Theorem 11.1. [36]. With respect to the canonical homotopy equivalences
(9.1), the join pairing# : 27 x 29 —> z4%4 classifies the cup product.

One checks directly that if V and V'’ are linear subspaces, so is V#V’, and
under the embeddings (10.1) the join restricts to a mapping

®:G! x GI — GIte

which represents the Whitney sum of vector bundles. From the discussion of
810 we obtain the classical result:

Corollary 11.2. For vector bundles and F over a finite complexgne has

c(E®F) = c(E)c(F).

12 Cyclesand Spectra

The join pairing extends to the stabilized spaces Z*°, defined in (9.3), to give
amap# : Z%° x Z*®° — Z*°. Now the space Z*° breaks into connected
components

2= 1] z*@
d=—00
where Z*°(d) corresponds to the cycles of degree d, and one finds that
ZX(d)#Z>(d') c Z2®(dd).

Adopting the standard notation BU = G*°(IP*°) we have the following.
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16 H. BLAINE LAWSON

Theorem 12.1. [2]. There is an infinite loop structure off°(1) extending the
cup product mapping

Z®1) x Z2°(1) — Z*@Q)
and making the total Chern class
c:BU — Z*(Q)
an infinite loop map.
Consequently there is atransformation of generalized cohomology theories
K* — h*

(where h* isclassified by Z°°(1) with itsinfinite loop structure) which at level O
isjust the transformation

K(X) — H¥"(X,7)

given by thetotal Chern class. This fact has useful consequences. For example
it impliesthat this classical map commutes with the transfer homomorphismsin
the respective theories.

13 Real Algebraic Cycles

We now turn to the topic of real and quaternionic cycles which we alluded to in
81. LetP" = P(C"*') asbefore. Then complex conjugation of thehomogeneous
coordinates C"+1 gives an antiholomorphic map

c: P — P with ¢ =1d

and with fixed-point set P, = P(R™+1). Thisinvolution ¢ extendsto aZ,-action
on Z4 (P") whose fixed-point set

74P C Z9(P")

consists of the real algebraic cycles of codimension-g. These are simply the
complex algebraic cycles on P" which can be defined over R. Note that areal
subvariety may have no rea points. Consider for example the hyperquadric
{{Z1eP": Y 72 =0}.
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Now the spaces Z{, (P") represent families of basic objects, and in light of the
results above, it is natural to ask about their topological structure. This structure
has now been completely determined and the results are rather interesting.

Thefirst step in the analysiswasto establish an Equivariant Algebrai c Suspen-
sion Theorem which extended Theorem 3.1 to the case where there was afinite
group acting on the space X. This result, which appeared in [33], is much more
delicate than its non-equivariant cousin. In general the homotopy equivalences
appear only in a certain stable range. However, for involutions coming from a
real structure on avariety X, the theorem holds exactly asin the non-equivariant
case. In particular we have the following.

Theorem 13.1. [33]. The algebraic suspension m@p: 24 (P") — Z9(P"*+1Y)
is aZ,-equivariant homotopy equivalence.

This shows that the homotopy type of Z{, (P") isindependent of n > ¢, and it
reduces its computation to the case of 0-cycles.

Before discussing the full computation, let’s examine an interesting “ reduced”
problem. Consider the quotient topological group

Zi = Z8/2Z4,
where Zie = {z + ¢(z) : z € Z%} isthe subgroup of averaged cycles

Theorem 13.2. [29]. For eachg there is a canonical homotopy equivalence
- q
Zi = [[K@2 b
k=0

Analogues of al the results discussed above carry over to this case:

1. Thedegree-1inclusion of thereal Grassmannian G (P") — Z% classifies
the total Stiefel-Whitney class of the universal real ¢-plane bundlie over
GLM®").

2. Thealgebraicjoinpairing# : 2% x 24 — Z4™ classifiesthe cup product
in Z,-cohomol ogy.

3. The space 2%9(1) carries an infinite |oop space structure making the the
total Stiefel-Whitney map BO — Zg'(1) (arising in part 1) an infinite
loop map.
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Thefirst two results are due to Lam [29] and the last appearsin [2].
It turnsout that thefull homotopy typeof 2%, issubstantially more complicated.

Theorem 13.3. [34]. There is a canonical homotopy equivalence

qg n
zZl =TI K Union + 50

n=0k=0

where
0 ,if kisoddork > n;
L,y=17Z ,if k=n andk iseven,
Zo , if k<n and k is even

Here are the groups 7, , located on the (n, k)-coordinate grid.

k1
Z
0O O
7 Zo 7o
0O 0 O O
L Lo Lo Zo Zo
0O 0 0 0 O O
7 Zp Zp Zo Zo Zo Zo
0O 0 0o 0 0 0 0 O
L Zp Zo Zop Zo Zp Zo Zo Zp
o 0o o 0 0 0 0O 0O 0 0 ...
Z Zz Zz Zz Zz Zg Zz Zz Zg Zz Zz —

Just asabovethe 2%, yield natural classifying spaceswhich have multiplicative
and infiniteloop structures and giveinteresting new characteristic classesfor real
vector bundles. (See[34].)

This homotopy picture of the space of real cyclesis, in a certain sense, com-
plete. However, recently we have reached a deeper understanding of the situa-
tion. These new insights are due to Paulo Lima-Filho and Pedro dos Santos who
considered Z7 as aZ,-space and determined its complete equivariant homotopy
type. Their results are beautiful and unexpected. Stating them properly will
require an excursion through equivariant homotopy theory.
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14 Equivariant Homotopy Theory

We now fix a finite group G and leave ordinary topology for its more exotic
G-equivariant analogue. We plunge into the world of G-spaces, G-maps, G-
homotopies, G-homotopy types, etc. and search for theorems which reduce
(whenG = {1}) toour cherished classical results. Many suchtheoremshavebeen
proved and the general theory has been carried to ahigh degree of sophistication
(see[39], [48] for example).

An interesting facet of thistheory is that the analogues of classical invariants
indexed by the integers are now indexed by real representations of G.

Aninstructive exampleis provided by homotopy groups. For ordinary spaces
we have the groups

T (X) = [S", X]

defined for non-negative integers n. When X is a G-space we can define more
general groups
my(X) = 8V, Xlo

where V isafinite-dimensional real representation spacefor G, SV = VU{co}is
the one-point compactification of V, and [Y, X]; denotes G-homotopy classes
of G-equivariant maps from Y to X. One retrieves the first set of groups on
atrivia G-space X by taking V. = R” to be the trivial real representation of
dimension n.

The homology and cohomology functors in this theory are similarly indexed
by such representations V (in fact by all virtual representationsin RO (G)). In
general these are complicated objects. One reason is that the coefficientsin the
theory are themselves quite complicated. We can see moativation for this by re-
calling that anatural approach to homology starts by taking acell decomposition
of the space and defining chain groups. In an equivariant cell decomposition the
cells are acted upon by G and are thereby organized into orbits of the form

n ~ n
G- = ]_[ e,

aeG/H

where H = {g € G : g(¢") = ¢"}. The boundary (or “attaching”) mapsin this
complex are G-maps. Hence the natural coefficients to consider for the theory
are functors which map the category of finite G-sets into abelian groups and
have certain additional desirable properties. The good objects of this type are
called Mackey functors whose full definition we will not give. (It can be found
in[?].) However, for every Mackey functor M and every real representation V
there are well-defined ordinary homology and cohomology groups Hy (X; M)
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and HY(X; M) which enjoy the properties of their non-equivariant analogues
and form basic invariants in the theory [38].

One of the deeper resultsin equivariant homotopy theory isthe existence and
homotopy characterization of Eilenberg-MacL ane spaces K (M, V) classify-
ing the corresponding cohomology groups. That is, one has an equivalence of
functors

Hy(X; M) = [X, KM, V)]c.

One of the ssimplest Mackey functors is the one which assigns the group Z
to every finite G-set and behaves in a simple way on G-maps consistent with
requirements. It is called the Mackey functor constant at 7. and is denoted Z.

One of the beautiful resultsin thistheory isthe following Equivariant Dold-
Thom Theorem pioneered by Paulo Lima-Filho.

Theorem 14.1. [42] and [8]. LetV be afinite-dimensional real representation
of G and denote b{Z. - SV the free abelian group on thié-sphere. LetZ - S")o
denote the connected component of 0. Then there is an equivariant homotopy
equivalence

(Z-S")o = K(Z, V)

15 Real Cyclesfrom the Equivariant Point of View
With this understood, Pedro dos Santos gave the following beautiful result.
Theorem 15.1. [7], [12]. Letz? = Z4(P") denote the group of algebraic

cycles of codimensiog under the involution induced by complex conjugation
onP". Then there is &,-homotopy equivalence

q
21 = [[K@ R (15.1)
k=0

whereR¥* = R*F @ iRF = CF is the representation dZ, given by complex
conjugation.

Note the analogy with (9.1).

The results of section 13 can be deduced from this theorem by determining
the homtopy-type of the fixed-point sets K (Z, R**)%2, or equivalently by cal-
culating the homotopy groups 77, K (Z, R**) = m,{K (Z, R¥¥)%2} for thetrivial
representations.

Bull Braz Math Soc, Vol. 34, N. 1, 2003



CYCLES AND SPECTRA 21

This sets the stage for investigating analogues of the results in 8810 and 11.
Dos Santos aso carried this out in his thesis[7, 12], and we shall present part
of that here. To begin, note that any real representation of Z, is of the form
RKE = RF @ iR = k times the trivial representation plus ¢ times the non-
trivial one. This means, in light of our discussion above, that Z,-equivariant
cohomology is indexed by pairs of integers (k, £). The “coefficients’ in Z,-
equivariant cohomology theory are the bigraded ring

R = H**(pt, Z).
Both dos Santos and Dan Dugger showed the following.

Proposition 15.2. [12], [14]. TheZ,-equivariant cohomology of the Grass-
mannian is a polynomial ring

H**(G1(P*); Z) = Rlcy,...,¢4]
for canonical classeg, € H**(G4(P®); Z).

Now the space G?(P*>) = BU, classifies Real rank ¢ vector bundles in the
sense of Atiyah [?7], [34]. These are complex g-plane bundles E — X over a
Z,-space X with a complex antilinear involution covering the one given on X.
The classis defined to be the k™ equivariant Chern class for such bundles.

Theorem 15.3. [12]. With respect to (15.1), the equivariant inclusion
GiP"Y — Z1(P")

given by considering;? (P") to consist of cycles of degree one, represents the
total equivariant Chern class = 1+ ¢; + - - - + ¢, of the universal-plane
bundle overG4 (P"). In particular, its stabilization

BU, = G*(P™) — Z!(P™)
asn — oo represents the total equivariant Chern class of Real rabkindles.
Therefore as ¢ — oo, the cycle inclusion becomes an equivariant map

BU = G®([P®) — Z®[P®) = l_[K(Z, RH)
k=0
classifying the total equivariant Chern class map in Atiyah's K R-theory:

KR(X) - [[H**x: D).
k>0
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16 Quaternionic Cyclesfrom the Equivariant Point of View

Recall that the other real structure on projective space is the antiholomorphic
involution
j :PcH") —> Pc(H")

given by quaternion scalar multiplication by the quaternion j in homogeneous
coordinates H" = C" @ j - C". Notethat | is fixed-point free. In fact thereis
a smooth fibration Pc(H") — Py (H") whose fibres are complex projective
lines, and j is equivalent to the antipodal map on these fibres, considered as
2-spheres.

Now j induces aZ,-action on 24 (P?*~1) where P>~ = P (H") whose fixed-
point set

Z%I(IPZn—l) c zi (IP)Zn—l)

isthe group of quaternionic algebraic cycles of codimension-q.
The obvious natural questions now are:

(1) What isthe homotopy type of ZZ (P2'~1)?

(2) What isthe Z,-equivariant homotopy type of Z¢(P?"~1) under the involu-
tion induced by j?

(3) Arethererelations of these spaces to some form of K-theory?

Thereis acomplete answer to the first question.

Theorem 16.1. [33]. Quaternionic algebraic suspension
Zu 1 27 (Pc(") — Z7(Pc(H"™Y),

given in homogeneous coordinates by product with a quaternion lineZis a
homotopy equivalence.

Note that quaternionic suspension increases the complex dimension of the
underlying complex projective space by 2. Thus Theorem 16.1 allows one to
reduce the determination of Z4(P¢(H")) to the case of 0-cycles when ¢ is odd,
but only to 1-cycles when ¢ is even. When ¢ is odd, the determination of the
fixed-point set, that is, the group of quaternionic algebraic cycles z% (P**~1) is
straightforwardly computed in [33]. The corresponding determination of ¢ even
is substantially harder and is given in [35].
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In [35] the concept of quaternionic subvarieties and cycles, relations among
the real and quaterionic cycle spaces, and their relations with various K-theories
are discussed in detail.

Recently P. Lima-Filho and P. dos Santos have determined the compl ete equiv-
ariant homotopy type of cycles under the quaternion involution. | shall state the
results in completely stabilized form. However, as above there are theorems for
cycles of finite codimension which are simply truncations of the “stable” case.

Recall from above that we must be careful to distinguish cycles of even and
odd codimension under quaternionic suspension. Set

Z0 = |im z2+tY(Pe(H®) and 2% = lim 2% (Pc(H™)).
q—> 0 q—>00

Theorem 16.2. [10]. There areZ,-equivariant homotopy equivalences:

2% = [[MapPc(H)., K (Z, C* )
k>1

2% = [[MapPc )+, K(Z, C*)
k>1

Note. By X, we mean the space X with adigoint base point added.

Note 16.3. Considering theorem 16.2 as giving an equivalence of classifying
spaces, we obtain an equivalence of functors

[X, 2% = [TH* 27 Pc@) x X; 2)
k>1

(X, 28 = [TH* % Pc) x X: 2).
k>1

Let us now consider the (effective) cycles of degree one in P (H") and stabi-
lize. Thisyieldsapair of stabilized Grassmannians G&*"(H>), G¥*"(H*) with
involution. AsaZ,-spacetheir digjoint union classifies the Dupont K H-groups,
which are constructed as follows (cf. [13]). Let X be a Z,-space with action
given by an involution j : X — X. Then by a quaternionic bundle on X we
mean a complex vector bundle E — X with a C-antilinear bundle mapping
7 : E — E suchthat

E

L

x . x
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commutes and
j? = —ld.

Isomorphism classes of these form an abelian monoid whose associated
Grothendieck group is denoted K H(X). Thisis a natural functor on the cat-
egory of Z,-spaces which for spaces with trivial involution becomes simply the
Grothendeick group of quaternionic vector bundlesin the usual sense.

Note however that the (complex) tensor product of two quaternionic bundles
is not quaternionic, but is instead a Real bundle in the sense of Atiyah (i.e.,
the involution 7 now satisfies j2 = Id). One finds in fact that the direct sum
KR(X) ® KH(X) is aZ,-graded ring. The interesting fact (see [15]) is that
there isanatural isomorphism

KRPc(H) x X) = KR(X)® KH(X).

(A striking analogy of this formula also appears in Quillen’s computation [51]
of the algebraic K-theory of the Brauer-Severi curve over a scheme X). Com-
paring with 16.3 we see that once again the spaces of agebraic cycles, quite
unreasonably, represent some of the most basic objects in algebraic topology.

17 Chern Classesin Quaternionic K-Theory

Now the functor K H(X) is classified by equivariant maps of X into certain
infinite Grassmannians. However one must be careful; parity of dimension plays
arole. Let G (H") denotethe Grassmann manifold of complex linear subspaces
of H" under the quaternionic involution. There are equivariant embeddings
GLMH") — GLP(HY) and GL(H") — GL(H"™Y) given by inclusion and
suspension respectively. Taking thelimit asg, n — oo, we obtain two spaces:
G¥N(H>®) and  GXUH™).

Thereis an equivalence of functors

KH(X) = [X, Ge(H™)]z, (17.1)

where GL.(H™) = [[;2_, G&(H*) where by definition

—00

G (H>) if kiseven

GEH™) =
c(H™) GO (H) if k isodd.

Considering linear subspaces as cycles gives Z,-equivariant embeddings

GY¥NH®) — 2%  and  GMMH®) — 2z
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and therefore an embedding
c>) — 2Z° (17.2)

where Z°* is defined in analogy with G*. By 16.3 this map classifies certain
equivariant cohomology classes of P¢ (H) x G*. Thefirst problemisto compute
the equivariant cohomology of these spaces. Set

Ry = H™"(Pc(H); 2).

Theorem 17.1. (dos Santos and Lima-Filho [10]). There is aZ,-homotopy
equivalencéc (H) x GZ*VH>) = Pc(H) x G?Cdd(H"o), and theZ,-equivariant
cohomology of this space is a polynomial ring

H**(Pc(H) x GE®(H™); Z) = Ruldy, dz, ds, ... ]

for canonical classed; € H*.

Theorem 17.2. (dos Santos and Lima-Filho [10]). The map (17.2) given by
cycle inclusion represents the class

1+do+ds+dg+... on Ggen(Hoo) and

di+d3+ds+... on GX4(MH™)

Inlight of (17.1) this gives adefinition of equivariant char acteristic classes for
quaternionic bundles and settles a problem posed by Dupont.

In the same paper dos Santos and Lima-Filho show that the algebraic join
pairing on Z* classifies a certain enhanced cup product. Hence, with repect to
this product the characteristic classes d, satisfy the usual formulasfor the direct
sum of bundles.

In [10] it isfurthermore shown that thereis are equivariant infinite loop space
structures on G* and Z* making the map (17.2) an infinite loop map. Hence
(17.2) enhancesto a map of equivariant spectra.

18 Algebraicor “Motivic’ Directions

It has probably occured to the reader that much of the discussion here might use-
fully be carried over from projective space to more general varieties. Indeed this
is true, and quite interesting results have been established. In the classification
processone can replace spacesof continuous mapswith spaces of algebraic maps.
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This leads to interesting cohomology theories for varieties which are Poincaré
dual to the homology theories defined by cycles[19], [21]. These theories have
been extended to real varieties[12] and arerelated to Grothendieck-Gal oi s coho-
mology [26], [27]. Analogousconstructionslead to interesting formsof K-theory
onvarieties[19], [4, 5], [22, 23, 24], [11]. Inthe quaternionic casethisisrelated
to Quillen’s computation [51] of the algebraic K-theory of the Brauer-Severi
curve over ascheme X [11].
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