Restriction and Removable Singularities for Fully Nonlinear Partial Differential Equations
Restriction and Removable Singularities for Fully Nonlinear Partial Differential Equations

Reese Harvey
Our Outlook

To systematically take a potential theoretic approach to the study of nonlinear differential equations.
To systematically take a potential theoretic approach to the study of nonlinear differential equations

In complex analysis and geometry, plurisubharmonic functions have been very effective.
Our Outlook

To systematically take a potential theoretic approach to the study of nonlinear differential equations

In complex analysis and geometry plurisubharmonic functions have been very effective

Analogies can be developed in a surprisingly general context
Our Outlook

To systematically take a potential theoretic approach to the study of nonlinear differential equations

In complex analysis and geometry, plurisubharmonic functions have been very effective.

Analogies can be developed in a surprisingly general context.

They apply, for example, to calibrated and symplectic geometry.
Consider $X^{\text{open}} \subset \mathbb{R}^n$.

Classically, a fully nonlinear second-order equation is written

$$f(x, u(x), D_x u, D^2_x u) = 0,$$

where $f: X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \rightarrow \mathbb{R}$.

Subsolutions:

$$f(x, u(x), D_x u, D^2_x u) \geq 0$$

Supersolutions:

$$f(x, u(x), D_x u, D^2_x u) \leq 0$$
Consider $X^{\text{open}} \subset \mathbb{R}^n$.

Classically, a fully nonlinear second-order equation is written

$$f(x, u(x), D_x u, D_x^2 u) = 0.$$
Consider $X^{\text{open}} \subset \mathbb{R}^n$.

Classically, a fully nonlinear second-order equation is written

$$f(x, u(x), D_x u, D^2_x u) = 0.$$

where

$$f : X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \rightarrow \mathbb{R}$$
Consider $X^{\text{open}} \subset \mathbb{R}^n$.

Classically, a fully nonlinear second-order equation is written

$$f(x, u(x), D_x u, D_x^2 u) = 0.$$

where

$$f : X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \rightarrow \mathbb{R}$$

Subsolutions:

$$f(x, u(x), D_x u, D_x^2 u) \geq 0$$
Consider $X^{\text{open}} \subset \mathbb{R}^n$.

Classically, a fully nonlinear second-order equation is written

$$f(x, u(x), D_x u, D_x^2 u) = 0.$$

where

$$f : X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \rightarrow \mathbb{R}$$

Subsolutions:

$$f(x, u(x), D_x u, D_x^2 u) \geq 0$$

Supersolutions:

$$f(x, u(x), D_x u, D_x^2 u) \leq 0$$
Consider $X^{\text{open}} \subset \mathbb{R}^n$.

Classically, a fully nonlinear second-order equation is written

$$f(x, u(x), D_x u, D_x^2 u) = 0.$$

where

$$f : X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \rightarrow \mathbb{R}$$

Subsolutions:

$$f(x, u(x), D_x u, D_x^2 u) \geq 0$$

Supersolutions:

$$f(x, u(x), D_x u, D_x^2 u) \leq 0$$
A Geometric Approach (cf. Krylov)

We fix a closed subset $F \subset J_2(\mathbb{X}) \equiv X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}_2(\mathbb{R}^n)$ with certain mild properties:

- $F \times \{0,0\} \subset F$ for all $P \geq 0$
- $F \times \{r,0\} \subset F$ for all $r \leq 0$

F is called a subequation.

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013 5 / 45
A Geometric Approach (cf. Krylov)

We fix a closed subset

\[F \subset J^2(X) \equiv X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]
A Geometric Approach (cf. Krylov)

We fix a closed subset

\[F \subset J^2(X) \equiv X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

with certain mild properties:
A Geometric Approach (cf. Krylov)

We fix a closed subset

\[F \subset J^2(X) \equiv X \times R \times R^n \times \text{Sym}^2(R^n) \]

with certain mild properties:

\[(P) \quad F_x + (0, 0, P) \subset F_x \quad \text{for all } P \geq 0\]
A Geometric Approach (cf. Krylov)

We fix a closed subset

\[F \subset J^2(X) \equiv X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

with certain mild properties:

\[(P)\] \[F_x + (0, 0, P) \subset F_x \quad \text{for all } P \geq 0 \]

\[(N)\] \[F_x + (r, 0, 0) \subset F_x \quad \text{for all } r \leq 0 \]
A Geometric Approach (cf. Krylov)

We fix a closed subset

\[F \subset J^2(X) \equiv X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

with certain mild properties:

\[(P)\quad F_x + (0,0,P) \subset F_x \quad \text{for all } P \geq 0\]

\[(N)\quad F_x + (r,0,0) \subset F_x \quad \text{for all } r \leq 0\]

\[(T)\quad F = \overline{\text{Int}F}, \quad F_x = \overline{\text{Int}_xF_x}, \quad \text{Int}_xF_x = \text{Int}F \cap F_x\]
A Geometric Approach (cf. Krylov)

We fix a closed subset

\[F \subset J^2(X) \equiv X \times \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

with certain mild properties:

\[(P) \quad F_x + (0, 0, P) \subset F_x \quad \text{for all } P \geq 0\]

\[(N) \quad F_x + (r, 0, 0) \subset F_x \quad \text{for all } r \leq 0\]

\[(T) \quad F = \text{Int}F, \quad F_x = \text{Int}_xF_x, \quad \text{Int}_xF_x = \text{Int}F \cap F_x\]

\(F\) is call a subequation.
Definition. A function $u \in C^2(X)$ is F-subharmonic (a subsolution) if

$$J_x^2 u \equiv (x, u(x), D_x u, D_x^2 u) \in F \quad \forall x \in X.$$
Definition. A function \(u \in C^2(X) \) is \(F\)-subharmonic (a subsolution) if

\[
J_x^2 u \equiv (x, u(x), D_x u, D_x^2 u) \in F \quad \forall x \in X.
\]

It is \(F\)-harmonic (a solution) if

\[
J_x^2 u \in \partial F \quad \forall x \in X.
\]
Definition. A function $u \in C^2(X)$ is F-subharmonic (a subsolution) if

$$J^2_x u \equiv (x, u(x), D_x u, D^2_x u) \in F \quad \forall x \in X.$$

It is F-harmonic (a solution) if

$$J^2_x u \in \partial F \quad \forall x \in X.$$

We want to extend the notion of F-subharmonicity to upper semi-continuous functions.
Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

\[
\text{USC}(X) \equiv \{ u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous} \}
\]
Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

\[\text{USC}(X) \equiv \{ u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous} \} \]

Definition. Fix \(u \in \text{USC}(X) \). A test function for \(u \) at a point \(x \in X \) is a function \(\varphi \), \(C^2 \) near \(x \), such that

\[
\begin{align*}
 u & \leq \varphi \quad \text{near } x \\
 u & = \varphi \quad \text{at } x
\end{align*}
\]
Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

\[\text{USC}(X) \equiv \{ u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous} \} \]

Definition. Fix \(u \in \text{USC}(X) \). A test function for \(u \) at a point \(x \in X \) is a function \(\varphi, C^2 \) near \(x \), such that

\[
\begin{align*}
 u &\leq \varphi \quad \text{near } x \\
 u &= \varphi \quad \text{at } x
\end{align*}
\]

Definition. A function \(u \in \text{USC}(X) \) is **F-subharmonic** if for every \(x \in X \) and every test function \(\varphi \) for \(u \) at \(x \)

\[
J^2_x \varphi \in F.
\]
Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

\[\text{USC}(X) \equiv \{ u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous} \} \]

Definition. Fix \(u \in \text{USC}(X) \). A test function for \(u \) at a point \(x \in X \) is a function \(\varphi \), \(C^2 \) near \(x \), such that

\[
\begin{align*}
 u &\leq \varphi \quad \text{near } x \\
 u &= \varphi \quad \text{at } x
\end{align*}
\]

Definition. A function \(u \in \text{USC}(X) \) is **F-subharmonic** if for every \(x \in X \) and every test function \(\varphi \) for \(u \) at \(x \)

\[
J^2_x \varphi \in F.
\]

\(F(X) \equiv \) the set of these.
Remarkable Properties

\[u, v \in \mathcal{F}(X) \implies \max\{u, v\} \in \mathcal{F}(X) \]

\[\mathcal{F}(X) \text{ is closed under decreasing limits.} \]

\[\mathcal{F}(X) \text{ is closed under uniform limits.} \]

If \(\mathcal{F} \subset \mathcal{F}(X) \) is locally uniformly bounded above, then \(u^* \in \mathcal{F}(X) \) where

\[u(x) \equiv \sup_{v \in \mathcal{F}} v(x) \]

If \(u \in C^2(X) \), then

\[u \in \mathcal{F}(X) \iff J^2_x u \in \mathcal{F} \forall x \in X. \]
Remarkable Properties

- \(u, v \in F(X) \implies \max\{u, v\} \in F(X) \)
- \(F(X) \) is closed under decreasing limits.
- \(F(X) \) is closed under uniform limits.
- If \(F \subset F(X) \) is locally uniformly bounded above, then \(u^* \in F(X) \) where \(u(x) \equiv \sup_{v \in F} v(x) \)
- If \(u \in C^2(X) \), then \(u \in F(X) \iff J^2_x u \in F \forall x \in X \).
Remarkable Properties

- \(u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X) \)
- \(F(X) \) is closed under decreasing limits.
Remarkable Properties

- $u, v \in F(X) \implies \max\{u, v\} \in F(X)$
- $F(X)$ is closed under decreasing limits.
- $F(X)$ is closed under uniform limits.
Remarkable Properties

- $u, v \in F(X) \implies \max\{u, v\} \in F(X)$

- $F(X)$ is closed under decreasing limits.

- $F(X)$ is closed under uniform limits.

- If $\mathcal{F} \subset F(X)$ is locally uniformly bounded above, then $u^* \in F(X)$ where

 $$u(x) \equiv \sup_{v \in \mathcal{F}} v(x)$$
Remarkable Properties

- $u, v \in F(X) \implies \max\{u, v\} \in F(X)$
- $F(X)$ is closed under decreasing limits.
- $F(X)$ is closed under uniform limits.
- If $\mathcal{F} \subset F(X)$ is locally uniformly bounded above, then $u^* \in F(X)$ where
 \[u(x) \equiv \sup_{v \in \mathcal{F}} v(x) \]
- If $u \in C^2(X)$, then
 \[u \in F(X) \iff J^2_x u \in F \quad \forall \ x \in X. \]
Subequations on Manifolds

The bundle of 2-jets on a manifold X is the vector bundle $J^2(X) \rightarrow X$ whose fibre at $x \in X$ is $J^2_x(X) \equiv C^\infty_x / C^\infty_x$, where C^∞_x is the germs of smooth functions at x, and C^∞_x,3 are those germs which vanish to order 3 at x.

There is a short exact sequence

$$0 \rightarrow \text{Sym}^2(T^*X) \rightarrow J^2(X) \rightarrow J^1(X) \rightarrow 0$$

and $J^1(X) = \mathbb{R} \oplus T^*X$.

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013 9 / 45
The bundle of 2-jets on a manifold X is the vector bundle

$$J^2(X) \rightarrow X$$
Subequations on Manifolds

The **bundle of 2-jets** on a manifold X is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J_x^2(X) \equiv C_x^\infty / C_{x,3}^\infty$$

where
Subequations on Manifolds

The **bundle of 2-jets** on a manifold X is the vector bundle

$$J^2(X) \rightarrow X$$

whose fibre at $x \in X$ is

$$J^2_x(X) \equiv C_x^\infty / C_{x,3}^\infty$$

where

- C_x^∞ is the germs of smooth functions at x, and
- $C_{x,3}^\infty$ are those germs which vanish to order 3 at x.

Subequations on Manifolds

The **bundle of 2-jets** on a manifold X is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J^2_x(X) \equiv C_x^\infty / C_{x,3}$$

where

- C_x^∞ is the germs of smooth functions at x, and
- $C_{x,3}$ are those germs which vanish to order 3 at x.

There is a short exact sequence

$$0 \rightarrow \operatorname{Sym}^2(T^*X) \rightarrow J^2(X) \rightarrow J^1(X) \rightarrow 0$$
Subequations on Manifolds

The **bundle of 2-jets** on a manifold X is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J_x^2(X) \equiv C_x^\infty / C_x^{\infty, 3}$$

where

- C_x^∞ is the germs of smooth functions at x, and
- $C_x^{\infty, 3}$ are those germs which vanish to order 3 at x.

There is a short exact sequence

$$0 \rightarrow \text{Sym}^2(T^*X) \rightarrow J^2(X) \rightarrow J^1(X) \rightarrow 0$$

and $J^1(X) = \mathbb{R} \oplus T^*X$.
Definition. A subequation on X is a closed subset

$$F \subset J^2(X)$$

which satisfies the three conditions (P), (N), and (T) above.
Definition. A subequation on X is a closed subset

$$F \subset J^2(X)$$

which satisfies the three conditions (P), (N), and (T) above.

The F-subharmonic functions $F(X)$ are defined as before. They have the same remarkable properties.
Definition. A subequation on X is a closed subset

$$F \subset J^2(X)$$

which satisfies the three conditions (P), (N), and (T) above.

The F-subharmonic functions $F(X)$ are defined as before. They have the same remarkable properties.

The key to defining differential equations on X
Definition. A subequation on X is a closed subset

$$F \subset J^2(X)$$

which satisfies the three conditions (P), (N), and (T) above.

The F-subharmonic functions $F(X)$ are defined as before.
They have the same remarkable properties.

The key to defining differential equations on X
is to use subequations and duality.
Duality and F-Harmonics

Define the dual of $F \subset J^2(X)$ by

\[\tilde{F} \equiv \sim(\text{Int} F) = -\sim(\text{Int} F) \]

• F is a subequation $\iff \tilde{F}$ is a subequation.

• In this case $\tilde{\tilde{F}} = F$.

• In our analysis, the roles of F and \tilde{F} are often interchangeable.

Note that $F \cap -\tilde{F} = \partial F$.

Blaine Lawson

Restriction and Removable Singularities

October 27, 2013

11 / 45
Duality and F-Harmonics

Define the **dual** of $F \subset J^2(X)$ by

$$\tilde{F} \equiv \sim (-\text{Int} F) = - (\sim \text{Int} F)$$
Duality and F-Harmonics

Define the dual of $F \subset J^2(X)$ by

$$\tilde{F} \equiv \sim (\sim \text{Int} F) = - (\sim \text{Int} F)$$

- F is a subequation $\iff \tilde{F}$ is a subequation.
Duality and F-Harmonics

Define the dual of $F \subset J^2(X)$ by

$$\tilde{F} \equiv \sim (-\text{Int}F) = -(\sim \text{Int}F)$$

- F is a subequation \iff \tilde{F} is a subequation.
- In this case

$$\tilde{F} = F$$
Duality and F-Harmonics

Define the dual of $F \subset J^2(X)$ by

$$\tilde{F} \equiv \sim (-\text{Int}F) = -(\sim \text{Int}F)$$

- F is a subequation $\iff \tilde{F}$ is a subequation.
- In this case
 $$\tilde{F} = F$$
- In our analysis
 The roles of F and \tilde{F} are often interchangeable.
Duality and F-Harmonics

Define the **dual** of $F \subset J^2(X)$ by

$$\tilde{F} \equiv \sim(-\text{Int}F) = -(\sim\text{Int}F)$$

- F is a subequation $\iff \tilde{F}$ is a subequation.
- In this case
 $$\tilde{F} = F$$
- In our analysis
 The roles of F and \tilde{F} are often interchangeable.
- Note that
 $$F \cap -\tilde{F} = \partial F$$
Duality and F-Harmonics

Let $F \subset J^2(X)$ be a subequation.

Definition. A function u on X is F-harmonic if $u \in F(X)$ and $-u \in \tilde{F}(X)$.

These are our solutions.

$u \in C^2(X)$ is F-harmonic $\iff J^2 x u \in \partial F \forall x \in X$.

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013
Duality and F-Harmonics

Let $F \subset J^2(X)$ be a subequation.

Definition. A function u on X is **F-harmonic** if

$$u \in F(X) \quad \text{and} \quad -u \in \tilde{F}(X)$$
Duality and F-Harmonics

Let $F \subset J^2(X)$ be a subequation.

Definition. A function u on X is *F-harmonic* if

$$u \in F(X) \quad \text{and} \quad -u \in \tilde{F}(X)$$

These are our solutions.
Duality and F-Harmonics

Let $F \subset J^2(X)$ be a subequation.

Definition. A function u on X is F-harmonic if

$$u \in F(X) \quad \text{and} \quad -u \in \tilde{F}(X)$$

These are our solutions.

$$u \in C^2(X) \text{ is } F\text{-harmonic} \quad \iff \quad J^2_x u \in \partial F \quad \forall \ x \in X.$$
Examples P and \tilde{P}

Constant coefficient, pure second-order in \mathbb{R}^n:

\[
\begin{align*}
\text{Define } P & \subset \text{Sym}_2(\mathbb{R}^n) \text{ by } P \equiv \{ A : A \geq 0 \} \\
\tilde{P} & = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}.
\end{align*}
\]

Proposition.

For an open set $X \subset \mathbb{R}^n$:

\[
\begin{align*}
P(X) & = \text{the convex functions on } X \\
\tilde{P}(X) & = \text{the subaffine functions on } X.
\end{align*}
\]

The homogeneous real Monge-Ampère Equation

\[
D^2 u \geq 0 \text{ and } \det(D^2 u) = 0.
\]
Examples P and \tilde{P}

Constant coefficient, pure second-order in \mathbb{R}^n: define $P \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$P \equiv \{ A : A \geq 0 \}$$
Examples P and \tilde{P}

Constant coefficient, pure second-order in \mathbb{R}^n: define $P \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$P \equiv \{A : A \geq 0\}$$

$$\tilde{P} = \{A : A \text{ has at least one eigenvalue } \geq 0\}.$$
Examples P and \tilde{P}

Constant coefficient, pure second-order in \mathbb{R}^n: define $P \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$P \equiv \{ A : A \geq 0 \}$$

$$\tilde{P} = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}.$$

Proposition. For an open set $X \subset \mathbb{R}^n$

$$P(X) = \text{the convex functions on } X.$$
Examples P and \tilde{P}

Constant coefficient, pure second-order in \mathbb{R}^n: define $P \subset \text{Sym}^2(\mathbb{R}^n)$ by

\[P \equiv \{ A : A \geq 0 \} \]

\[\tilde{P} = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}. \]

Proposition. For an open set $X \subset \mathbb{R}^n$

\[P(X) = \text{the convex functions on } X. \]

\[\tilde{P}(X) = \text{the subaffine functions on } X. \]
Examples P and \widetilde{P}
Constant coefficient, pure second-order in \mathbb{R}^n: define $P \subset \text{Sym}^2(\mathbb{R}^n)$ by

\[P \equiv \{ A : A \geq 0 \} \]

\[\widetilde{P} = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}. \]

Proposition. For an open set $X \subset \mathbb{R}^n$

\[P(X) = \text{the convex functions on } X. \]

\[\widetilde{P}(X) = \text{the subaffine functions on } X. \]

The homogeneous real Monge-Ampère Equation

\[D^2 u \geq 0 \quad \text{and} \quad \det(D^2 u) = 0. \]
Examples: Other Branches of the MA Equation
Examples: Other Branches of the MA Equation

For $A \in \text{Sym}^2(\mathbb{R}^n)$ let

$$\lambda_1(A) \leq \lambda_2(A) \leq \cdots \leq \lambda_n(A)$$

be the ordered eigenvalues of A.
Examples: Other Branches of the MA Equation

For \(A \in \text{Sym}^{2}(\mathbb{R}^{n}) \) let

\[
\lambda_{1}(A) \leq \lambda_{2}(A) \leq \cdots \leq \lambda_{n}(A)
\]

be the ordered eigenvalues of \(A \).

\[
P_{k} \equiv \{ \lambda_{k}(A) \geq 0 \}
\]
Examples: Other Branches of the MA Equation

For $A \in \text{Sym}^2(\mathbb{R}^n)$ let

$$\lambda_1(A) \leq \lambda_2(A) \leq \cdots \leq \lambda_n(A)$$

be the ordered eigenvalues of A.

$$P_k \equiv \{ \lambda_k(A) \geq 0 \}$$

$$\tilde{P}_k = P_{n-k+1}$$
Examples: Other Elementary Symmetric Functions

\[S_k \equiv \{ A : \sigma_1(A) \geq 0, \ldots, \sigma_k(A) \geq 0 \} \]

\[\sigma_k(A) \equiv \sigma_k(\lambda_1(A), \ldots, \lambda_n(A)) \]
Examples: Other Elementary Symmetric Functions

\[S_k \equiv \{ A : \sigma_1(A) \geq 0, \ldots, \sigma_k(A) \geq 0 \} \]

\[\sigma_k(A) \equiv \sigma_k(\lambda_1(A), \ldots, \lambda_n(A)) \]

This is the **principal branch** of the equation

\[\sigma_k(D^2u) = 0. \]
Examples: Other Elementary Symmetric Functions

\[S_k \equiv \{ A : \sigma_1(A) \geq 0, \ldots, \sigma_k(A) \geq 0 \} \]

\[\sigma_k(A) \equiv \sigma_k(\lambda_1(A), \ldots, \lambda_n(A)) \]

This is the **principal branch** of the equation

\[\sigma_k(D^2u) = 0. \]

The equation has \((k - 1)\) other branches.
Examples: p-Convexity

For each real number $p \in [1, n]$,
Examples: p-Convexity

For each real number \(p \in [1, n] \), define

\[
\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_p(A) + (p - [p])\lambda_{p+1}(A) \geq 0 \right\}
\]

where \(\lambda_1(A) \leq \cdots \leq \lambda_n(A) \) are the ordered eigenvalues of \(A \).
Examples: p-Convexity

For each real number $p \in [1, n]$, define

$$
\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_p(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}
$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p-subharmonics are p-convex functions.
Examples: p-Convexity

For each real number $p \in [1, n]$, define

$$\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_p(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p-subharmonics are p-convex functions.

Theorem. For p an integer:
Examples: p-Convexity

For each real number \(p \in [1, n] \), define

\[
\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_p(A) + (p - [p])\lambda_{p+1}(A) \geq 0 \right\}
\]

where \(\lambda_1(A) \leq \cdots \leq \lambda_n(A) \) are the ordered eigenvalues of \(A \).

The \(\mathcal{P}_p \)-subharmonics are \(p \)-convex functions.

Theorem. For \(p \) an integer:

The restriction of a \(\mathcal{P}_p \)-subharmonic to any minimal \(p \)-dimensional submanifold \(Y \) is subharmonic in the induced metric on \(Y \).
Examples: p-Convexity

For each real number $p \in [1, n]$, define

$$
\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_p(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}
$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p-subharmonics are p-convex functions.

Theorem. For p an integer:

The restriction of a \mathcal{P}_p-subharmonic to any minimal p-dimensional submanifold Y is subharmonic in the induced metric on Y.

\mathcal{P}_p-harmonics are solutions of the polynomial equation

$$
MA_p(A) = \prod_{i_1 < \cdots < i_p} (\lambda_{i_1}(A) + \cdots + \lambda_{i_p}(A)) = 0.
$$
Examples: p-Convexity

The Riesz kernel

\[K_p(x) \equiv \frac{-1}{(p-2)|x|^{p-2}} \quad \text{if } p \neq 2 \]
Examples: p-Convexity

The Riesz kernel

\[K_p(x) \equiv \frac{-1}{(p-2)|x|^{p-2}} \quad \text{if } p \neq 2 \quad \text{and} \quad K_2(x) \equiv \log|x| \]
Examples: p-Convexity

The Riesz kernel

\[K_p(x) \equiv -\frac{1}{(p-2)|x|^{p-2}} \quad \text{if } p \neq 2 \quad \text{and} \quad K_2(x) \equiv \log|x| \]

is \mathcal{P}_p-harmonic in $\mathbb{R}^n - \{0\}$

and \mathcal{P}_p-subharmonic across 0.
Examples: Complex Analogues

\[\mathbb{C}^n = (\mathbb{R}^{2n}, J). \]
Examples: Complex Analogues

\[C^n = (\mathbb{R}^{2n}, J). \]

\[\text{Sym}^2_C(C^n) \subseteq \text{Sym}^2(\mathbb{R}^{2n}) \]
Examples: Complex Analogues

\[C^n = (\mathbb{R}^{2n}, J). \]

\[\text{Sym}_C^2(C^n) \subset \text{Sym}^2(\mathbb{R}^{2n}) \]

\[A_c \equiv \frac{1}{2}(A - JA J) \]
Examples: Complex Analogues

\[C^n = (R^{2n}, J). \]

\[\text{Sym}_C^2(C^n) \subset \text{Sym}^2(R^{2n}) \]

\[A_C \equiv \frac{1}{2}(A - JAJ) \]

\[A_C \] has complex eigenspaces and ordered eigenvalues

\[\lambda_1^C(A) \leq \cdots \leq \lambda_n^C(A) \]
Examples: Complex Analogues

\[C^n = (\mathbb{R}^{2n}, J). \]

\[\text{Sym}_c^2(C^n) \subset \text{Sym}^2(\mathbb{R}^{2n}) \]

\[A_c \equiv \frac{1}{2}(A - JAJ) \]

\(A_c \) has complex eigenspaces and ordered eigenvalues

\[\lambda_1^c(A) \leq \cdots \leq \lambda_n^c(A) \]

All the O(n)-invariant subequations given in terms of the \(\lambda_k(A) \)
Examples: Complex Analogues

\[C^n = (\mathbb{R}^{2n}, J). \]

\[\text{Sym}^2_c(C^n) \subset \text{Sym}^2(\mathbb{R}^{2n}) \]

\[A_c \equiv \frac{1}{2}(A - JAJ) \]

\(A_c \) has complex eigenspaces and ordered eigenvalues

\[\lambda^c_1(A) \leq \cdots \leq \lambda^c_n(A) \]

All the \(O(n) \)-invariant subequations given in terms of the \(\lambda_k(A) \)
have \(U(n) \)-invariant analogues given by the same conditions on the \(\lambda^c_k(A) \)
Examples: Complex Analogues

\[C^n = (\mathbb{R}^{2n}, J). \]

\[\text{Sym}_C^2(C^n) \subset \text{Sym}^2(\mathbb{R}^{2n}) \]

\[A_C \equiv \frac{1}{2}(A - JAJ) \]

\(A_C \) has complex eigenspaces and ordered eigenvalues

\[\lambda^C_1(A) \leq \cdots \leq \lambda^C_n(A) \]

All the \(O(n) \)-invariant subequations given in terms of the \(\lambda_k(A) \) have \(U(n) \)-invariant analogues given by the same conditions on the \(\lambda^C_k(A) \)

Example: The homogeneous complex Monge-Ampère equation

\[P^C = \{ A : A_C \geq 0 \}, \]

and its branches

\[P^C_k = \{ A : \lambda^C_k(A) \geq 0 \}, \]
Examples: Complex Analogues

\[\mathbb{C}^n = (\mathbb{R}^{2n}, J). \]

\[\text{Sym}_C^2(\mathbb{C}^n) \subset \text{Sym}^2(\mathbb{R}^{2n}) \]

\[A_C \equiv \frac{1}{2}(A - JAJ) \]

\(A_C \) has complex eigenspaces and ordered eigenvalues

\[\lambda_1^C(A) \leq \cdots \leq \lambda_n^C(A) \]

All the O(n)-invariant subequations given in terms of the \(\lambda_k(A) \) have U(n)-invariant analogues given by the same conditions on the \(\lambda_k^C(A) \)

Example: The homogeneous complex Monge-Ampère equation

\[P_C = \{ A : A_C \geq 0 \}, \]

and its branches

\[P_k^C = \{ A : \lambda_k^C(A) \geq 0 \}, \]

(Note: \(P_C(X) \) = the plurisubharmonic functions on \(X \))
Examples: Quaternionic Analogues

\[H^n = (\mathbb{R}^{4n}, I, J, K). \]

\[A_H \equiv \frac{1}{4}(A - |A| - JAJ - KAK) \]

\(A_C \) has quaternionic eigenspaces and ordered eigenvalues

\[\lambda_1^H(A) \leq \cdots \leq \lambda_n^H(A) \]

All the \(O(n) \)-invariant subequations given in terms of the \(\lambda_k(A) \) have \(\text{Sp}(n) \)-invariant analogues given by same conditions on the \(\lambda_k^H(A) \)

Example: The quaternionic Monge-Ampère equation (Alesker, Verbitsky)

\[P^H = \{ A : A_H \geq 0 \}, \]

and its branches

\[P_k^H = \{ A : \lambda_k^H(A) \geq 0 \}, \]
Fix a compact set

$$G \subset G(\rho, \mathbb{R}^n) \quad \text{(Grassmannian)}$$
Examples: Geometric Cases – Calibrations

Fix a compact set

\[\mathbf{G} \subset G(\rho, \mathbb{R}^n) \quad \text{(Grassmannian)} \]

and define

\[F_{\mathbf{G}} \equiv \{ A : \text{tr} \left(A \big|_{\mathcal{W}} \right) \geq 0 \text{ for all } \mathcal{W} \in \mathbf{G} \} \]
Examples: Geometric Cases – Calibrations

Fix a compact set

$$G \subset G(p, \mathbb{R}^n)$$ (Grassmannian)

and define

$$F_G \equiv \{ A : \text{tr} (A|_W) \geq 0 \text{ for all } W \in G \}$$

Examples:

$$G = G(1, \mathbb{R}^n) \Rightarrow F_G = \mathcal{P}.$$
Examples: Geometric Cases – Calibrations

Fix a compact set

$$G \subset G(p, \mathbb{R}^n) \text{ (Grassmannian)}$$

and define

$$F_G \equiv \{ A : \text{tr} (A|_W) \geq 0 \text{ for all } W \in G \}$$

Examples:

- $$G = G(1, \mathbb{R}^n) \Rightarrow F_G = P.$$
- $$G = G(p, \mathbb{R}^n) \Rightarrow F_G = \mathcal{P}_p.$$
Examples: Geometric Cases – Calibrations

Fix a compact set
\[G \subset G(p, \mathbb{R}^n) \] (Grassmannian)

and define
\[F_G \equiv \{ A : \text{tr} (A|_W) \geq 0 \text{ for all } W \in G \} \]

Examples:

\[G = G(1, \mathbb{R}^n) \Rightarrow F_G = \mathcal{P}. \]
\[G = G(p, \mathbb{R}^n) \Rightarrow F_G = \mathcal{P}_p. \]
\[G = G^c(1, \mathbb{C}^n) \Rightarrow F_G = \mathcal{P}_c. \]
Examples: Geometric Cases – Calibrations

Fix a compact set

$$G \subseteq G(p, R^n)$$ (Grassmannian)

and define

$$F_G \equiv \{ A : \text{tr}(A|_W) \geq 0 \text{ for all } W \in G \}$$

Examples:

$$G = G(1, R^n) \Rightarrow F_G = \mathcal{P}.$$

$$G = G(p, R^n) \Rightarrow F_G = \mathcal{P}_p.$$

$$G = G^c(1, C^n) \Rightarrow F_G = \mathcal{P}^c.$$

$$G = \text{LAG} = \text{the lagrangian } n \text{ planes in } C^n.$$
Examples: Geometric Cases – Calibrations

Fix a compact set

$$\mathbf{G} \subset G(p, \mathbb{R}^n) \text{ (Grassmannian)}$$

and define

$$F_\mathbf{G} \equiv \{ A : \text{tr} (A|_W) \geq 0 \text{ for all } W \in \mathbf{G} \}$$

Examples:

- $$\mathbf{G} = G(1, \mathbb{R}^n) \Rightarrow F_\mathbf{G} = \mathcal{P}.$$
- $$\mathbf{G} = G(p, \mathbb{R}^n) \Rightarrow F_\mathbf{G} = \mathcal{P}_p.$$
- $$\mathbf{G} = G^c(1, \mathbb{C}^n) \Rightarrow F_\mathbf{G} = \mathcal{P}^c.$$
- $$\mathbf{G} = \text{LAG} = \text{the lagrangian } n \text{ planes in } \mathbb{C}^n.$$
- $$\mathbf{G} = \mathbf{G}(\phi) = \text{the } \phi\text{-planes associated to a calibration } \phi$$
Riemannian manifolds and the decomposition of $J^2(X)$

When X is Riemannian, there is a canonical bundle splitting $J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X)$ given by

$$J^2_xu = (u(x), (du)_x, \text{Hess}_xu)$$

where $\text{Hess}_u \in \Gamma(\text{Sym}^2(T^*X))$ is the Riemannian hessian defined by

$$(\text{Hess}_u)(V, W) = VWu - (\nabla V W)u$$

for vector fields V, W.
When X is **Riemannian**, there is a canonical bundle splitting

$$J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X)$$
Riemannian manifolds and the decomposition of $J^2(X)$

When X is Riemannian, there is a canonical bundle splitting

$$J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X)$$

given by

$$J^2_x u = (u(x), (du)_x, \text{Hess}_x u)$$
Riemannian manifolds and the decomposition of $J^2(X)$

When X is Riemannian, there is a canonical bundle splitting

$$J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X)$$

given by

$$J^2_xu = (u(x), (du)_x, \text{Hess}_x u)$$

where $\text{Hess} \ u \in \Gamma(\text{Sym}^2(T^*X))$ is the Riemannian hessian defined by

$$(\text{Hess} \ u)(V, W) = VWu - (\nabla_V W)u$$

for vector fields V, W.
Suppose $F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n)$ is closed, $O(n)$-invariant, and satisfies (P), (N) and (T). Then F canonically determines a subequation $F_X \subset J^2(X)$ on any Riemannian manifold X.

Example. $F \equiv \mathbb{R} \times \mathbb{R}^n \times \{\text{tr} A \geq 0\}$ gives $\text{tr}(\text{Hess} u) = \Delta u \geq 0$.
Universal Riemannian subequations

Suppose

\[F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]
Universal Riemannian subequations

Suppose

\[F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

- is closed

Example. \(F \equiv \mathbb{R} \times \mathbb{R}^n \times \{ \text{tr} A \geq 0 \} \) gives \(\text{tr}(\text{Hess} u) = \Delta u \geq 0 \).
Universal Riemannian subequations

Suppose

\[F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

- is closed
- \(O(n)\)-invariant

Example. \(F \equiv \mathbb{R} \times \mathbb{R}^n \times \{ \text{tr} A \geq 0 \}\) gives

\[\text{tr}(\text{Hess} u) = \Delta u \geq 0 \]
Universal Riemannian subequations

Suppose

\[F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

- is closed
- \(O(n) \)--invariant
- and satisfies (P), (N) and (T)
Universal Riemannian subequations

Suppose

\[F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^n) \]

- is closed
- \(O(n)\)-invariant
- and satisfies (P), (N) and (T)

Then \(F \) **canonically determines a subequation**

\[F_X \subset \mathcal{J}^2(X) \]

on any riemannian manifold \(X \).
Universal Riemannian subequations

Suppose

\[F \subset J \equiv R \times R^n \times \text{Sym}^2(R^n) \]

- is closed
- \(O(n)\)-invariant
- and satisfies (P), (N) and (T)

Then \(F \) canonically determines a subequation

\[F_X \subset J^2(X) \]

on any riemannian manifold \(X \).

Example. \(F \equiv R \times R^n \times \{\text{tr}A \geq 0\} \) gives

\[\text{tr}(\text{Hess } u) = \Delta u \geq 0. \]
Universal Hermitian subequations

Let $C^n = (\mathbb{R}^{2n}, J)$. If

$$ F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^{2n}) $$

- is closed
- $U(n)$-invariant
- and satisfies (P), (N) and (T)

Then F canonically determines a subequation

$$ F_X \subset J^2(X) $$

on any almost complex, hermitian manifold X.

Example. $F \equiv \mathbb{R} \times \mathbb{R}^n \times \{A_c \geq 0\}$ gives the homogeneous complex Monge-Ampère subequation.
Manifolds with Topological Structure Group G

Let

\[G \subset O(n) \]

be a closed subgroup. If

\[F \subset J \equiv \mathbb{R} \times \mathbb{R}^n \times \text{Sym}^2(\mathbb{R}^{2n}) \]

- is closed
- \(G \)-invariant
- and satisfies (P), (N) and (T)

Then \(F \) canonically determines a subequation \(F_\chi \) on any riemannian manifold with topological structure group \(G \).
Automorphisms

An automorphism of the 2-jet bundle is an intrinsically defined bundle isomorphism \(\Phi : J^2(X) \rightarrow J^2(X) \) with the property that for any splitting \(J^2(X) = R \oplus T^*X \oplus \text{Sym}^2(T^*X) \) of the short exact sequence, \(\Phi \) has the form

\[
\Phi(r, p, A) = (r, gp, hAh + L(p))
\]

where \(g, h : T^*X \rightarrow T^*X \) are bundle isomorphisms and \(L : T^*X \rightarrow \text{Sym}^2(T^*X) \) is a smooth bundle map.
Automorphisms

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

\[\Phi : J^2(X) \rightarrow J^2(X) \]
Automorphisms

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

\[\Phi : J^2(X) \longrightarrow J^2(X) \]

with the property that for any splitting

\[J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X) \]

of the short exact sequence,
Automorphisms

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

\[\Phi : J^2(X) \rightarrow J^2(X) \]

with the property that for any splitting

\[J^2(X) = R \oplus T^*X \oplus \text{Sym}^2(T^*X) \]

of the short exact sequence, \(\Phi \) has the form

\[\Phi(r, p, A) = (r, gp, hAh^t + L(p)) \]
Automorphisms

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

\[\Phi : J^2(X) \rightarrow J^2(X) \]

with the property that for any splitting

\[J^2(X) = \mathbb{R} \oplus T^* X \oplus \text{Sym}^2(T^* X) \]

of the short exact sequence, \(\Phi \) has the form

\[\Phi(r, p, A) = (r, gp, hAh^t + L(p)) \]

where

\[g, h : T^* X \rightarrow T^* X \]

are bundle isomorphisms.
Automorphisms

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

$$\Phi : J^2(X) \longrightarrow J^2(X)$$

with the property that for any splitting

$$J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X)$$

of the short exact sequence, Φ has the form

$$\Phi(r, p, A) = (r, gp, hAh^t + L(p))$$

where

$$g, h : T^*X \rightarrow T^*X$$

are bundle isomorphisms and

$$L : T^*X \rightarrow \text{Sym}^2(T^*X)$$

is a smooth bundle map.
Affine Automorphisms

An affine automorphism of the 2-jet bundle is a bundle isomorphism $\Psi : J^2(X) \rightarrow J^2(X)$ of the form $\Psi = \Phi + J$ where Φ is an automorphism and J is a section of $J^2(X)$.
An **affine automorphism** of the 2-jet bundle is a bundle isomorphism

$$
\Psi : J^2(X) \rightarrow J^2(X)
$$

of the form

$$
\Psi = \Phi + J
$$
Affine Automorphisms

An **affine automorphism** of the 2-jet bundle is a bundle isomorphism

\[\psi : J^2(X) \longrightarrow J^2(X) \]

of the form

\[\psi = \Phi + J \]

where \(\Phi \) is an automorphism and \(J \) is a section of \(J^2(X) \).
Jet Equivalence of Subequations

Definition. Two subequations $F_1, F_2 \subset J_2(X)$ are affinely jet equivalent if there exists an affine automorphism $\Psi : J_2(X) \rightarrow J_2(X)$ such that $\Psi(F_1) = F_2$.
Definition. Two subequations

\[F_1, F_2 \subset J^2(X) \]

are **affinely jet equivalent**
Definition. Two subequations

\[F_1, F_2 \subset J^2(X) \]

are **affinely jet equivalent** if there exists an affine automorphism

\[\psi : J^2(X) \to J^2(X) \]

such that

\[\psi(F_1) = F_2. \]
Jet Equivalence of Subequations

• Jet equivalence does \textbf{not} send $F_1(X)$ to $F_2(X)$.

• The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.

• Affine jet equivalence converts homogeneous equations to inhomogeneous equations, e.g., $\det C = e^u$ with $\text{Hess} C u \geq 0$.

$\lambda^k \left(\text{Hess} u \right) = f(x)$
Jet Equivalence of Subequations

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.

- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.
Jet Equivalence of Subequations

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.

- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.

- Affine jet equivalence converts **homogeneous** equations to **inhomogeneous** equations,
Jet Equivalence of Subequations

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.

- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.

- Affine jet equivalence converts **homogeneous** equations to **inhomogeneous** equations,

e.g.,

 $$\det_c(\text{Hess}_c u) = e^u \quad \text{with} \quad \text{Hess}_c u \geq 0.$$
Jet Equivalence of Subequations

- Jet equivalence does not send $F_1(X)$ to $F_2(X)$.

- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.

- Affine jet equivalence converts **homogeneous** equations to **inhomogeneous** equations, e.g.,

$$\det_{\mathbb{C}}(\text{Hess}_{\mathbb{C}} u) = e^u \quad \text{with} \quad \text{Hess}_{\mathbb{C}} u \geq 0.$$

$$\lambda_k(\text{Hess}u) = f(x)$$
Monotonicity Cones – An Important Concept

Definition. A subset $M \subset J^2(X)$ is a monotonicity cone for F if

(i) M_x is a convex cone with vertex at 0, and

(ii) $F_x + M_x \subset F_x$

Example 1. In \mathbb{R}^n, $P \equiv \{A \geq 0\}$ is a monotonicity cone for every pure second-order subequation.

Example 2. In \mathbb{C}^n, $P_C \equiv \{A_C \geq 0\}$ is a monotonicity cone for every pure second-order hermitian subequation.
Monotonicity Cones – An Important Concept

\[F \subset J^2(X) \] a subequation on a manifold \(X \).
Monotonicity Cones – An Important Concept

\[F \subseteq J^2(X) \] a subequation on a manifold \(X \).

Definition. A subset \(M \subseteq J^2(X) \) is a **monotonicity cone** for \(F \)
Monotonicity Cones – An Important Concept

\[F \subset J^2(X) \] a subequation on a manifold \(X \).

Definition. A subset \(M \subset J^2(X) \) is a **monotonicity cone** for \(F \) if \(\forall x \in X \)

(i) \(M_x \) is a convex cone with vertex at 0, and
Monotonicity Cones – An Important Concept

\[F \subset J^2(X) \text{ a subequation on a manifold } X. \]

Definition. A subset \(M \subset J^2(X) \) is a **monotonicity cone** for \(F \) if \(\forall x \in X \)

(i) \(M_x \) is a convex cone with vertex at 0, and

(ii) \(F_x + M_x \subset F_x \)
Monotonicity Cones – An Important Concept

\[F \subset J^2(X) \] a subequation on a manifold \(X \).

Definition. A subset \(M \subset J^2(X) \) is a **monotonicity cone** for \(F \) if \(\forall x \in X \)

(i) \(M_x \) is a convex cone with vertex at 0, and

(ii) \(F_x + M_x \subset F_x \)

Example 1. In \(\mathbb{R}^n \), \(P = \{ A \geq 0 \} \) is a monotonicity cone for every pure second-order subequation.

Example 2. In \(\mathbb{C}^n \), \(P_{\mathbb{C}} = \{ A_{\mathbb{C}} \geq 0 \} \) is a monotonicity cone for every pure second-order hermitian subequation.
Monotonicity Cones – An Important Concept

\[F \subset J^2(X) \] a subequation on a manifold \(X \).

Definition. A subset \(M \subset J^2(X) \) is a **monotonicity cone** for \(F \) if \(\forall x \in X \)

(i) \(M_x \) is a convex cone with vertex at 0, and

(ii) \(F_x + M_x \subset F_x \)

Example 1. In \(\mathbb{R}^n \), \(P \equiv \{ A \geq 0 \} \) is a monotonicity cone for every pure second-order subequation.
Monotonicity Cones – An Important Concept

\[F \subseteq J^2(X) \] a subequation on a manifold \(X \).

Definition. A subset \(M \subset J^2(X) \) is a **monotonicity cone** for \(F \) if \(\forall x \in X \)

(i) \(M_x \) is a convex cone with vertex at 0, and

(ii) \(F_x + M_x \subseteq F_x \)

Example 1. In \(\mathbb{R}^n \), \(\mathcal{P} \equiv \{ A \geq 0 \} \) is a monotonicity cone for every pure second-order subequation.

Example 2. In \(\mathbb{C}^n \), \(\mathcal{P}^\mathbb{C} \equiv \{ A_{\mathbb{C}} \geq 0 \} \) is a monotonicity cone for every pure second-order hermitian subequation.
The Dirichlet Problem

Let $\mathcal{F} \subset \mathcal{J}^2(X)$ be a subequation with monotonicity cone \mathcal{M}.

Theorem. Suppose \mathcal{F} is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly \mathcal{M}-harmonic function. Then for any domain $\Omega \subset X$ whose boundary is both \mathcal{F} and $\tilde{\mathcal{F}}$ strictly convex, the Dirichlet Problem for \mathcal{F}-harmonic functions is uniquely solvable for all continuous boundary functions $\phi \in C(\partial \Omega)$.
Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.
Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation.
The Dirichlet Problem

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly M-harmonic function.

The Dirichlet Problem

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly M-harmonic function.

Then for any domain $\Omega \subset X$ whose boundary is both F and \tilde{F} strictly convex,
Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly M-harmonic function.

Then for any domain $\Omega \subset\subset X$ whose boundary is both F and \tilde{F} strictly convex, the Dirichlet Problem for F-harmonic functions is **uniquely solvable** for all continuous boundary functions $\varphi \in C(\partial \Omega)$.
Removable Singularities – General Results

Definition. A subset $E \subset X$ is M-polar if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally M-polar. Then E is removable for F-subharmonic functions which are locally bounded above across E. That is, if $u \in F(X - E)$ and locally bounded above across E, then its canonical upper semi-continuous extension is F-subharmonic on X.

THEOREM B. Suppose E is a closed set with no interior, which is locally M-polar. Then for $u \in C(X)$, u is F-harmonic on $X - E \Rightarrow u$ is F-harmonic on X.
Removable Singularities – General Results

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is M-polar if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.

Theorem A. Suppose $E \subset X$ is a closed subset which is locally M-polar. Then E is removable for F-subharmonic functions which are locally bounded above across E. That is, if $u \in F(X - E)$ and locally bounded above across E, then its canonical upper semi-continuous extension is F-subharmonic on X.

Theorem B. Suppose E is a closed set with no interior, which is locally M-polar. Then for $u \in C(X)$, u is F-harmonic on $X - E \Rightarrow u$ is F-harmonic on X.

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013 31 / 45
Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is *M-polar* if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.
Removable Singularities – General Results

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is **M-polar** if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally M-polar.

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013
Removable Singularities – General Results

Let $F \subset \mathcal{J}^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is M-polar if $E = \{\psi = -\infty\}$ for an M-subharmonic function which is smooth on $X - E$.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally M-polar. Then E is removable for F-subharmonic functions which are locally bounded above across E.

THEOREM B. Suppose E is a closed set with no interior, which is locally M-polar. Then for $u \in C(X)$, u is F-harmonic on $X - E \Rightarrow u$ is F-harmonic on X.

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013 31 / 45
Removable Singularities – General Results

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is M-polar if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally M-polar. Then E is removable for F-subharmonic functions which are locally bounded above across E.

That is, if $u \in F(X - E)$ and locally bounded above across E, then its canonical upper semi-continuous extension is F-subharmonic on X.
Removable Singularities – General Results

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is **M-polar** if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally M-polar. Then E is removable for F-subharmonic functions which are locally bounded above across E.

That is, if $u \in F(X - E)$ and locally bounded above across E, then its canonical upper semi-continuous extension is F-subharmonic on X.

THEOREM B. Suppose E is a closed set with no interior, which is locally M-polar.
Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

Definition. A subset $E \subset X$ is M-polar if $E = \{ \psi = -\infty \}$ for an M-subharmonic function which is smooth on $X - E$.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally M-polar. Then E is removable for F-subharmonic functions which are locally bounded above across E.

That is, if $u \in F(X - E)$ and locally bounded above across E, then its canonical upper semi-continuous extension is F-subharmonic on X.

THEOREM B. Suppose E is a closed set with no interior, which is locally M-polar. Then for $u \in C(X)$,

u is F-harmonic on $X - E$ \implies u is F-harmonic on X.
In particular,

M-polar sets are removable for M-subharmonics and harmonics.
In particular,

M-polar sets are removable for M-subharmonics and harmonics.

This is not interesting since M is convex.
Removable Singularities – Discussion

In particular,

\(M\)-polar sets are removable for \(M\)-subharmonics and harmonics.

This is not interesting since \(M\) is convex.

However,

\(M\)-polar sets are also

removable for \(\tilde{M}\)-subharmonics and harmonics.
Removable Singularities – Discussion

In particular,

\(M\)-polar sets are removable for \(M\)-subharmonics and harmonics.

This is not interesting since \(M\) is convex.

However,

\(M\)-polar sets are also

removable for \(\tilde{M}\)-subharmonics and harmonics.

THEOREM. Pluripolar sets (i.e. \(P^C\)-polar sets) in \(\mathbf{C}^n\) are removable for all branches of the homogeneous Monge-Ampère equation.
Fix $2 \leq n$ and recall

$$P_p \equiv \{ A: \lambda_1(A) + \cdots + \lambda_{\lfloor p \rfloor}(A) + (p - \lfloor p \rfloor) + 1(A) \geq 0 \}.$$

Theorem C. A closed set E with locally finite Hausdorff $(p - 2)$-measure is locally P_p-polar.

Thus, if F is a subequation with $F + P_p \subset F$, then E is removable for F-subharmonics and F-harmonics as before.

The proof uses Riesz potentials $\mu^* K_p$ where $K_p(x) = -\frac{1}{|x|^{p-2}}.$
Fix $2 < p \leq n$ and recall

$$\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_{[p]}(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}$$
Removable Singularities – Riesz Potentials

Fix $2 < p \leq n$ and recall

$$\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_{[p]}(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}$$

THEOREM C. A closed set E with

locally finite Hausdorff $(p - 2)$-measure is locally \mathcal{P}_p-polar.
Removable Singularities – Riesz Potentials

Fix $2 < p \leq n$ and recall

$$\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_{[p]}(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}$$

THEOREM C. A closed set E with

locally finite Hausdorff $(p - 2)$-measure is locally \mathcal{P}_p-polar.

Thus, if F is a subequation with

$$F + \mathcal{P}_p \subset F,$$
Fix $2 < p \leq n$ and recall

$$\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_p(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}$$

THEOREM C. A closed set E with

locally finite Hausdorff $(p - 2)$-measure is locally \mathcal{P}_p-polar.

Thus, if F is a subequation with

$$F + \mathcal{P}_p \subset F,$$

then E is removable for F-subharmonics and F-harmonics as before.
Removable Singularities – Riesz Potentials

Fix $2 < p \leq n$ and recall

$$\mathcal{P}_p \equiv \left\{ A : \lambda_1(A) + \cdots + \lambda_{[p]}(A) + (p - [p])\lambda_{[p]+1}(A) \geq 0 \right\}$$

THEOREM C. A closed set E with locally finite Hausdorff $(p - 2)$-measure is locally \mathcal{P}_p-polar.

Thus, if F is a subequation with $F + \mathcal{P}_p \subset F$, then E is removable for F-subharmonics and F-harmonics as before.

The proof uses Riesz potentials

$$\mu \ast K_p \quad \text{where} \quad K_p(x) = \frac{-1}{|x|^{p-2}}.$$
Riesz Characteristics

Lemma. \(p \in \mathbb{P} \iff I - p \pi e \in \mathcal{M} \) for all unit vectors \(e \in \mathbb{R}^n \).

Definition. The Riesz characteristic of \(\mathcal{M} \) is \(p_{\mathcal{M}} \equiv \sup \{ p : I - p \pi e \in \mathcal{M} \text{ for all } |e| = 1 \} \).

Theorem D. Suppose \(\mathcal{F} \subset \text{Sym}_2(\mathbb{R}^n) \) is a subequation with monotonicity cone \(\mathcal{M} \). Then any closed set \(E \) of locally finite Hausdorff \((p_{\mathcal{M}} - 2) \) measure is removable for \(\mathcal{F} \)-subharmonics and \(\mathcal{F} \)-harmonics.
Riesz Characteristics

Let $M \subset \text{Sym}^2(\mathbb{R}^n)$ be a convex cone subequation and $1 \leq p \leq n$.

Lemma.

$P^p \subset M \Leftrightarrow I - p \pi e \in M$ for all unit vectors $e \in \mathbb{R}^n$.

Definition.

The Riesz characteristic of M is $p_M \equiv \sup \{ p : I - p \pi e \in M \text{ for all } |e| = 1 \}$.

Theorem D.

Suppose $F \subset \text{Sym}^2(\mathbb{R}^n)$ is a subequation with monotonicity cone M.

Then any closed set E of locally finite Hausdorff $(p_M - 2)$-measure is removable for F-subharmonics and F-harmonics.
Riesz Characteristics

Let $M \subset \text{Sym}^2(\mathbb{R}^n)$ be a convex cone subequation and $1 \leq p \leq n$

Lemma.

$$\mathcal{P}_p \subset M \iff I - p\pi_e \in M \text{ for all unit vectors } e \in \mathbb{R}^n.$$
Riesz Characteristics

Let $M \subset \text{Sym}^2(\mathbb{R}^n)$ be a convex cone subequation and $1 \leq p \leq n$

Lemma.

\[\mathcal{P}_p \subset M \iff I - p\pi_e \in M \quad \text{for all unit vectors } e \in \mathbb{R}^n. \]

Definition. The **Riesz characteristic** of M is

\[p_M \equiv \sup \{ p : I - p\pi_e \in M \quad \text{for all } |e| = 1 \} \]
Riesz Characteristics

Let $M \subset \text{Sym}^2(\mathbb{R}^n)$ be a convex cone subequation and $1 \leq p \leq n$

Lemma.

\[\mathcal{P}_p \subset M \iff l - p \pi e \in M \text{ for all unit vectors } e \in \mathbb{R}^n.\]

Definition. The Riesz characteristic of M is

\[p_M \equiv \sup\{p : l - p \pi e \in M \text{ for all } |e| = 1\}\]

THEOREM D.

Suppose $F \subset \text{Sym}^2(\mathbb{R}^n)$ is a subequation with monotonicity cone M.
Riesz Characteristics

Let $M \subset \text{Sym}^2(\mathbb{R}^n)$ be a convex cone subequation and $1 \leq p \leq n$

Lemma.

$\mathcal{P}_p \subset M \iff I - p \pi_e \in M$ for all unit vectors $e \in \mathbb{R}^n$.

Definition. The **Riesz characteristic** of M is

$$p_M \equiv \sup\{p : I - p \pi_e \in M \text{ for all } |e| = 1\}$$

THEOREM D.

Suppose $F \subset \text{Sym}^2(\mathbb{R}^n)$ is a subequation with monotonicity cone M. Then any closed set E of locally finite Hausdorff $(p_M - 2)$-measure is removable for F-subharmonics and F-harmonics.
Examples

Example 1. (The \(\delta\)-Uniformly Elliptic Cone). For \(\delta > 0\) define

\[
P(\delta) \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : A + \delta (\text{tr} A) \cdot I \geq 0 \}
\]

\(P(\delta)\) has Riesz characteristic \(1 + \delta n^{1+\delta}\).

Example 2. (The Pucci Cone). For \(0 < \lambda < \Lambda\) define

\[
P_{\lambda, \Lambda} \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \lambda \text{tr} A + \Lambda \text{tr} A - \geq 0 \},
\]

\(P_{\lambda, \Lambda}\) has Riesz characteristic \(\lambda \Lambda (n-1)^{1} +^{1}\).

Example 3. (The \(k\)th Elementary Symmetric Cone). For \(k = 1, \ldots, n\) define

\[
F_k \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \sigma_1(A) \geq 0, \ldots, \sigma_k(A) \geq 0 \},
\]

\(F_k\) has Riesz characteristic \(n^k\).
Examples

Example 1. (The δ-Uniformly Elliptic Cone). For $\delta > 0$ define

$$P(\delta) \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : A + \delta(\text{tr}A) \cdot I \geq 0 \}$$

$P(\delta)$ has Riesz characteristic $\frac{1 + \delta n}{1 + \delta}$.
Examples

Example 1. (The δ-Uniformly Elliptic Cone). For $\delta > 0$ define

$$P(\delta) \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : A + \delta (\text{tr} A) \cdot I \geq 0 \}$$

$P(\delta)$ has Riesz characteristic $\frac{1 + \delta n}{1 + \delta}$.

Example 2. (The Pucci Cone). For $0 < \lambda < \Lambda$ define

$$P_{\lambda,\Lambda} \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \lambda \text{tr} A^+ + \Lambda \text{tr} A^- \geq 0 \},$$

$P_{\lambda,\Lambda}$ has Riesz characteristic $\frac{\lambda}{\Lambda} (n - 1) + 1$.
Examples

Example 1. (The δ-Uniformly Elliptic Cone). For $\delta > 0$ define

$$P(\delta) \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : A + \delta(\text{tr}A) \cdot I \geq 0 \}$$

$P(\delta)$ has Riesz characteristic $\frac{1 + \delta n}{1 + \delta}$.

Example 2. (The Pucci Cone). For $0 < \lambda < \Lambda$ define

$$P_{\lambda,\Lambda} \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \lambda \text{tr}A^+ + \Lambda \text{tr}A^- \geq 0 \},$$

$P_{\lambda,\Lambda}$ has Riesz characteristic $\frac{\lambda}{\Lambda}(n - 1) + 1$.

Example 3. (The k^{th} Elementary Symmetric Cone). For $k = 1, \ldots, n$ define

$$F_k \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \sigma_1(A) \geq 0, \ldots, \sigma_k(A) \geq 0 \},$$

F_k has Riesz characteristic $\frac{n}{k}$.
Examples

Example 1. (The δ-Uniformly Elliptic Cone). For $\delta > 0$ define

$$P(\delta) \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : A + \delta(\text{tr}A) \cdot I \geq 0 \}$$

$P(\delta)$ has Riesz characteristic $\frac{1 + \delta n}{1 + \delta}$.

Example 2. (The Pucci Cone). For $0 < \lambda < \Lambda$ define

$$\mathcal{P}_{\lambda,\Lambda} \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \lambda \text{tr}A^+ + \Lambda \text{tr}A^- \geq 0 \},$$

$\mathcal{P}_{\lambda,\Lambda}$ has Riesz characteristic $\frac{\lambda}{\Lambda}(n - 1) + 1$.

Example 3. (The k^{th} Elementary Symmetric Cone). For $k = 1, \ldots, n$ define

$$F_k \equiv \{ A \in \text{Sym}^2(\mathbb{R}^n) : \sigma_1(A) \geq 0, \ldots, \sigma_k(A) \geq 0 \},$$

F_k has Riesz characteristic $\frac{n}{k}$.
Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation $i^*F \subset J^2(Y)$.

Problem:
Given an (u.s.c.) $u \in F(X)$, when is $u \big|_{Y} \in (i^*F)(Y)$?

There is a general answer based on a technical restriction hypothesis. This leads to a number of more specific interesting results. For constant coefficient subequations restriction always holds. For linear equations there is a simple and useful linear restriction hypothesis.
Restriction

Given a subequation $F \subset J^2(X)$ and a submanifold $i : Y \hookrightarrow X$, there is an induced subequation $i^* F \subset J^2(Y)$.
Restriction

Given a subequation $F \subset J^2(X)$ and a submanifold $i : Y \hookrightarrow X$, there is an induced subequation

$$i^*F \subset J^2(Y).$$
Restriction

Given a subequation $F \subset J^2(X)$ and a submanifold $i : Y \hookrightarrow X$, there is an induced subequation

$$i^*F \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is $u|_Y \in (i^*F)(Y)$?
Restriction

Given a subequation $F \subset J^2(X)$ and a submanifold $i : Y \hookrightarrow X$, there is an induced subequation

$$i^* F \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is $u\big|_Y \in (i^* F)(Y)$?

There is a general answer based on a technical restriction hypothesis.
Given a subequation \(F \subset J^2(X) \) and a submanifold \(i : Y \hookrightarrow X \), there is an induced subequation

\[
i^*F \subset J^2(Y).
\]

Problem: Given an (u.s.c.) \(u \in F(X) \), when is \(u\big|_Y \in (i^*F)(Y) \)?

There is a general answer based on a technical restriction hypothesis. This leads to a number of more specific interesting results.
Restriction

Given a subequation $F \subset J^2(X)$ and a submanifold $i : Y \hookrightarrow X$, there is an induced subequation

$$i^*F \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is

$$u \big|_Y \in (i^*F)(Y)?$$

There is a general answer based on a technical restriction hypothesis.

This leads to a number of more specific interesting results.

For constant coefficient subequations restriction always holds.
Restriction

Given a subequation $F \subset J^2(X)$ and a submanifold $i : Y \hookrightarrow X$, there is an induced subequation

$$i^*F \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is $u \big|_Y \in (i^*F)(Y)$?

There is a general answer based on a technical **restriction hypothesis**.

This leads to a number of more specific interesting results.

For constant coefficient subequations restriction always holds.

For linear equations there is a simple and useful linear restriction hypothesis.
Consider a closed subset $G_l \subset (k, X)$ and let $F_{G_l} \equiv \{ J_2 u: \text{tr} (\text{Hess} u | W) \geq 0 \}$.

A G_l-submanifold of X is defined to be a k-dimensional submanifold $Y \subset X$ such that $T_y Y \in G_l$ for all $y \in Y$.

Theorem. Let $Y \subset X$ be a G_l-submanifold which is minimal. Then restriction to Y holds for F_{G_l}.

In other words, the restriction of any F_{G_l}-plurisubharmonic function to Y is subharmonic in the induced Riemannian metric on Y.

Blaine Lawson

Restriction and Removable Singularities

October 27, 2013
Restriction Theorem 1

Consider a closed subset

\[G \subset G(k, X) \]
Restriction Theorem 1

Consider a closed subset

\[G \subset G(k, X) \]

and let

\[F_G \equiv \{ J^2 u : \text{tr} (\text{Hess} u|_W) \geq 0 \} \]
Restriction Theorem 1

Consider a closed subset

$$\mathbf{G} \subset G(k, X)$$

and let

$$F_G \equiv \{ J^2 u : \text{tr} \left(\text{Hess } u \big|_W \right) \geq 0 \}$$

A **G-submanifold** of X is defined to be a k-dimensional submanifold $Y \subset X$ such that $T_y Y \in G$ for all $y \in Y$.

Theorem. Let $Y \subset X$ be a G-submanifold which is minimal. Then restriction to Y holds for F_G. In other words, the restriction of any F_G-plurisubharmonic function to Y is subharmonic in the induced riemannian metric on Y.
Restriction Theorem 1

Consider a closed subset
\[\mathbf{G} \subset G(k, X) \]
and let
\[F_{\mathbf{G}} \equiv \{ J^2 u : \text{tr} (\text{Hess } u|_W) \geq 0 \} \]

A **\(\mathbf{G} \)-submanifold** of \(X \) is defined to be a \(k \)-dimensional submanifold \(Y \subset X \) such that \(T_y Y \in \mathbf{G} \) for all \(y \in Y \).

Theorem. Let \(Y \subset X \) be a **\(\mathbf{G} \)-submanifold** which is minimal.
Restriction Theorem 1

Consider a closed subset

$$\mathcal{G} \subset G(k, X)$$

and let

$$F_{\mathcal{G}} \equiv \{ J^2 u : \text{tr} \left(\text{Hess} \ u \big|_W \right) \geq 0 \}$$

A \textbf{\mathcal{G}-submanifold} of \(X\) is defined to be a \(k\)-dimensional submanifold \(Y \subset X\) such that \(T_y Y \in \mathcal{G}\) for all \(y \in Y\).

Theorem. Let \(Y \subset X\) be a \textbf{\mathcal{G}-submanifold} which is minimal. Then restriction to \(Y\) holds for \(F_{\mathcal{G}}\).
Restriction Theorem 1

Consider a closed subset

\[\mathcal{G} \subset G(k, X) \]

and let

\[F_{\mathcal{G}} \equiv \{ J^2 u : \text{tr} (\text{Hess } u|_W) \geq 0 \} \]

A \textbf{\textit{G-submanifold}} of \(X \) is defined to be a \(k \)-dimensional submanifold \(Y \subset X \) such that \(T_y Y \in \mathcal{G} \) for all \(y \in Y \).

Theorem. Let \(Y \subset X \) be a \(\mathcal{G} \)-submanifold which is minimal. Then restriction to \(Y \) holds for \(F_{\mathcal{G}} \).

In other words, the restriction of any \(F_{\mathcal{G}} \)-plurisubharmonic function to \(Y \) is subharmonic in the induced riemannian metric on \(Y \).
There is a second restriction theorem which assumes local jet equivalence mod \mathcal{C} to a constant coefficient subequation. One consequence is:

Theorem. Let X be a riemannian manifold of dimension N and $F \subset \mathcal{C}^2(X)$ a subequation canonically determined by an $O(N)$-invariant universal subequation $F \subset \mathcal{C}^2_N$. Then restriction holds for F on any totally geodesic submanifold $Y \subset X$.

- **Blaine Lawson**
- **Restriction and Removable Singularities**
- **October 27, 2013**

- **Page 40** out of **45**
Restriction Theorem 2

There is a second restriction theorem which assumes

\textbf{local jet equivalence mod } Y

to a constant coefficient subequation.
Restriction Theorem 2

There is a second restriction theorem which assumes

\textbf{local jet equivalence mod } Y

to a constant coefficient subequation.

One consequence is

Theorem. \textit{Let } X \textit{be a riemannian manifold of dimension } N \textit{and } $F \subset J^2(X)$ \textit{a subequation canonically determined by an } O_N-invariant \textit{universal subequation } $F \subset J^2_N$.
Restriction Theorem 2

There is a second restriction theorem which assumes

local jet equivalence mod \mathcal{Y}

to a constant coefficient subequation.

One consequence is

Theorem. *Let X be a riemannian manifold of dimension N and $F \subset J^2(X)$ a subequation canonically determined by an O_N-invariant universal subequation $F \subset J^2_N$. Then restriction holds for F on any totally geodesic submanifold $\mathcal{Y} \subset X$.***
Almost Complex Manifolds and the Pali Conjecture

There are three definitions of plurisubharmonic functions.

1. There is an intrinsic subequation defined by
 \[i \frac{\partial}{\partial u} \geq 0, \]
 or equivalently
 \[H(u)(V, V) = (VV + (JV)(JV) + J[V, JV]) \cdot u \geq 0. \]

 One now applies the viscosity definition as before.
Almost Complex Manifolds and the Pali Conjecture

On any *almost complex* manifold \((X, J)\)

There are three definitions of plurisubharmonic functions
Almost Complex Manifolds and the Pali Conjecture

On any **almost complex** manifold \((X, J)\)

There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation \(\mathcal{P}^c(J)\) defined by

\[
i \partial \bar{\partial} u \geq 0,
\]
Almost Complex Manifolds and the Pali Conjecture

On any **almost complex** manifold \((X, J)\)

There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation \(\mathcal{P}^c(J)\) defined by

\[
i \partial \overline{\partial} u \geq 0,
\]

or equivalently

\[
H(u)(V, V) = (VV + (JV)(JV) + J[V, JV]) \cdot u \geq 0.
\]
Almost Complex Manifolds and the Pali Conjecture

On any almost complex manifold \((X, J)\)

There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation \(\mathcal{P}^c(J)\) defined by

\[
\overline{i\partial \partial} u \geq 0,
\]

or equivalently

\[
H(u)(V, V) = (VV + (JV)(JV) + J[V, JV]) \cdot u \geq 0.
\]

One now applies the viscosity definition as before.
2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x
Almost Complex Manifolds and the Pali Conjecture

2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x
there exists a (pseudo-)holomorphic curve $\Sigma \subset X$ through x with tangent ℓ.

We now define $u \in USC(X)$ to be plurisubharmonic if its
restriction to each $\Sigma \subset X$ through x with tangent ℓ.

3. A distribution $u \in D'(X)$ is plurisubharmonic if
$i \partial \partial u = \mu \geq 0$ (a positive $(1,1)$−current).

THEOREM. These three definitions are equivalent.
2. A classical result of Nijenhuis and Woolf states that

Given \(x \in X \) and a complex tangent line \(\ell \) at \(x \)
there exists a (pseudo-)holomorphic curve \(\Sigma \subset X \) through \(x \) with tangent \(\ell \).

We now define \(u \in \text{USC}(X) \) to be plurisubharmonic if its \textit{restriction} to each
holomorphic curve is classically subharmonic.
2. A classical result of Nijenhuis and Woolf states that

Given \(x \in X \) and a complex tangent line \(\ell \) at \(x \)
there exists a (pseudo-)holomorphic curve \(\Sigma \subset X \) through \(x \) with tangent \(\ell \).

We now define \(u \in \text{USC}(X) \) to be plurisubharmonic if its restriction to each holomorphic curve is classically subharmonic.

3. A **distribution** \(u \in \mathcal{D}'(X) \) is plurisubharmonic
2. A classical result of Nijenhuis and Woolf states that

Given \(x \in X \) and a complex tangent line \(\ell \) at \(x \) there exists a (pseudo-)holomorphic curve \(\Sigma \subset X \) through \(x \) with tangent \(\ell \).

We now define \(u \in \text{USC}(X) \) to be plurisubharmonic if its restriction to each holomorphic curve is classically subharmonic.

3. A distribution \(u \in \mathcal{D}'(X) \) is plurisubharmonic if

\[
i\partial \overline{\partial} u = \mu \geq 0 \quad \text{(a positive \((1,1)\) − current)}.
\]
2. A classical result of Nijenhuis and Woolf states that

Given \(x \in X \) and a complex tangent line \(\ell \) at \(x \)
there exists a (pseudo-)holomorphic curve \(\Sigma \subset X \) through \(x \) with tangent \(\ell \).

We now define \(u \in \text{USC}(X) \) to be plurisubharmonic if its restriction to each
holomorphic curve is classically subharmonic.

3. A distribution \(u \in \mathcal{D}'(X) \) is plurisubharmonic if

\[
 i\partial\bar{\partial}u = \mu \geq 0 \quad \text{(a positive \((1, 1)\) − current)}.
\]

THEOREM. These three definitions are equivalent.
Almost Complex Manifolds and the Pali Conjecture

That (1) ⇔ (2) uses the Restriction Theorem.
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.
Almost Complex Manifolds and the Pali Conjecture

That (1) ⇔ (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $\mathcal{P}^c(J)$-plurisubharmonic.

That (1) \Rightarrow (3) was proven years ago by Nefton Pali.

Pali conjectured (3) \Rightarrow (1) and proved it under certain assumptions on u. Blaine Lawson

Restriction and Removable Singularities

October 27, 2013 43 / 45
Almost Complex Manifolds and the Pali Conjecture

That \((1) \iff (2) \) uses the Restriction Theorem.

The equivalence of \((1) \) and \((3) \) uses the following.

THEOREM.

(a) Suppose \(u \) is \(\mathcal{P}^c(J) \)-plurisubharmonic. Then \(u \in L^1_{\text{loc}}(X) \subset \mathcal{D}'(X) \), and \(u \) is distributionally \(J \)-plurisubharmonic.
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $\mathcal{P}^{c}(J)$-plurisubharmonic. Then $u \in L^{1}_{\text{loc}}(X) \subset \mathcal{D}'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally J-plurisubharmonic.
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $\mathcal{P}^c(J)$-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X) \subset \mathcal{D}'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally J-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$,
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $\mathcal{P}^c(J)$-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X) \subset D'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in D'(X)$ is distributionally J-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc}-class u which is $\mathcal{P}^c(J)$-plurisubharmonic.

That (1) \Rightarrow (3) was proven years ago by Nefton Pali. Pali conjectured (3) \Rightarrow (1) and proved it under certain assumptions on u. Blaine Lawson

Restriction and Removable Singularities

October 27, 2013 43 / 45
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $\mathcal{P}^c(J)$-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X) \subset \mathcal{D}'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally J-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc}-class u which is $\mathcal{P}^c(J)$-plurisubharmonic. Moreover,

$$\tilde{u}(x) = \text{ess lim sup}_{y \rightarrow x} u(y)$$
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.
The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $P^c(J)$-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X) \subset D'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in D'(X)$ is distributionally J-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc}-class u which is $P^c(J)$-plurisubharmonic. Moreover,

$$\tilde{u}(x) = \text{ess lim sup}_{y \to x} u(y) = \lim_{r \searrow 0} \text{ess sup}_{B_r(x)} u$$
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $P^C(J)$-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X) \subset D'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in D'(X)$ is distributionally J-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc}-class u which is $P^C(J)$-plurisubharmonic. Moreover,

$$\tilde{u}(x) = \text{ess lim sup}_{y \to x} u(y) = \lim_{r \searrow 0} \text{ess sup}_{B_r(x)} u$$

That (1) \implies (3) was proven years ago by Nefton Pali.
Almost Complex Manifolds and the Pali Conjecture

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is $\mathcal{P}^c(J)$-plurisubharmonic. Then $u \in L^1_{loc}(X) \subset \mathcal{D}'(X)$, and u is distributionally J-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally J-plurisubharmonic. Then $u \in L^1_{loc}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc}-class u which is $\mathcal{P}^c(J)$-plurisubharmonic. Moreover,

$$\tilde{u}(x) = \text{ess lim sup}_{y \to x} u(y) = \lim_{r \downarrow 0} \text{ess sup}_{B_r(x)} u$$

That (1) \Rightarrow (3) was proven years ago by Nefton Pali.

Pali conjectured (3) \Rightarrow (1) and proved it under certain assumptions on u.
Fix a smooth volume form λ and a continuous function $f \geq 0$ on X.

Fix a domain $\Omega \subset X$ with smooth boundary $\partial \Omega$.

For $\phi \in C(\partial \Omega)$, consider the Dirichlet Problem:

Find $u \in PC(\Omega)$ with $(i \partial / \partial n) u = f \lambda$ (viscosity sense) on Ω and $u \mid_{\partial \Omega} = \phi$.

THEOREM. (a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2-strictly plurisubharmonic function.

(b) Existence holds for the Dirichlet Problem if $(\Omega, \partial \Omega)$ has a strictly plurisubharmonic defining function.
Fix a smooth volume form λ and a continuous function $f \geq 0$ on X.

Theorem.

(a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2-strictly plurisubharmonic function.

(b) Existence holds for the Dirichlet Problem if $(\Omega, \partial \Omega)$ has a strictly plurisubharmonic defining function.
The Dirichlet Problem on Almost Complex Manifolds

Fix a smooth volume form λ and a continuous function $f \geq 0$ on X.
Fix a domain $\Omega \subset X$ with smooth boundary $\partial \Omega$.

THEOREM.
(a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2-strictly plurisubharmonic function.
(b) Existence holds for the Dirichlet Problem if $(\Omega, \partial \Omega)$ has a strictly plurisubharmonic defining function.
The Dirichlet Problem on Almost Complex Manifolds

Fix a smooth volume form λ and a continuous function $f \geq 0$ on X.
Fix a domain $\Omega \subset \subset X$ with smooth boundary $\partial \Omega$.

For $\varphi \in C(\partial \Omega)$, consider the **Dirichlet Problem:** Find $u \in P^c(\Omega)$ with

$$(i\partial\bar{\partial}u)^n = f\lambda \text{ (viscosity sense) on } \Omega \text{ and } u|_{\partial \Omega} = \varphi.$$
The Dirichlet Problem on Almost Complex Manifolds

Fix a smooth volume form λ and a continuous function $f \geq 0$ on X.

Fix a domain $\Omega \subset \subset X$ with smooth boundary $\partial \Omega$.

For $\varphi \in C(\partial \Omega)$, consider the **Dirichlet Problem:** Find $u \in \mathcal{P}^c(\Omega)$ with

\[(i \partial \bar{\partial} u)^n = f \lambda \text{ (viscosity sense) on } \Omega \text{ and } u \big|_{\partial \Omega} = \varphi.\]

THEOREM.

(a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2-strictly plurisubharmonic function.
The Dirichlet Problem on Almost Complex Manifolds

Fix a smooth volume form λ and a continuous function $f \geq 0$ on X.
Fix a domain $\Omega \subset\subset X$ with smooth boundary $\partial \Omega$.
For $\varphi \in C(\partial \Omega)$, consider the **Dirichlet Problem**: Find $u \in \mathcal{P}^c(\overline{\Omega})$ with

$$(i\partial \overline{\partial} u)^n = f \lambda \quad \text{(viscosity sense)} \quad \text{on } \Omega \quad \text{and} \quad u \big|_{\partial \Omega} = \varphi.$$

THEOREM.

(a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2-strictly plurisubharmonic function.

(b) Existence holds for the Dirichlet Problem if $(\Omega, \partial \Omega)$ has a strictly plurisubharmonic defining function.
Consider a conical subequation $F \subset \text{Sym}_2(\mathbb{R}^n)$ which has Riesz characteristic p, $2 \leq p \leq n$, and is P_p-monotone.

Let $\Omega \subset \mathbb{R}^n$ be a domain with a smooth boundary which is both F and \tilde{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_{\epsilon} - \{0\})$ be an F-harmonic function with $\lim_{x \to 0} h(x) = -\infty$. Fix $\phi \in C(\partial \Omega)$.

Existence. There exists $H \in C(\Omega - \{0\})$ such that:

1. H is F-harmonic on $\Omega - \{0\}$,
2. $H|_{\partial \Omega} = \phi$,
3. $h(x) + c \leq H(x) \leq h(x) + C$ on a neighborhood of 0 for some constants c, C.

Uniqueness. There is at most one function $h \in C(\Omega - \{0\})$ satisfying (1), (2), and (3).
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation $F \subset \text{Sym}^2(\mathbb{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p-monotone.
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation $F \subset \text{Sym}^2(\mathbb{R}^n)$ which has Riesz characteristic p, $2 \leq p \leq n$, and is \mathcal{P}_p-monotone.

Let $\Omega \subset \subset \mathbb{R}^n$ be a domain with a smooth boundary which is both F and \tilde{F} strictly convex.
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation $F \subset \text{Sym}^2(\mathbb{R}^n)$ which has Riesz characteristic p, $2 \leq p \leq n$, and is \mathcal{P}_p-monotone.

Let $\Omega \subset \subset \mathbb{R}^n$ be a domain with a smooth boundary which is both F and \tilde{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_\epsilon - \{0\})$ be an F-harmonic function with $\lim_{x \to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Existence. There exists $H \in C(\Omega - \{0\})$ such that:
1. H is F-harmonic on $\Omega - \{0\}$,
2. $H \mid \partial\Omega = \varphi$,
3. $h(x) + c \leq H(x) \leq h(x) + C$ on a neighborhood of 0 for some constants c, C.

Uniqueness. There is at most one function $h \in C(\Omega - \{0\})$ satisfying (1), (2), and (3).
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation \(F \subset \text{Sym}^2(\mathbb{R}^n) \) which has Riesz characteristic \(p, \ 2 \leq p \leq n \), and is \(\mathcal{P}_p \)-monotone.

Let \(\Omega \subset \subset \mathbb{R}^n \) be a domain with a smooth boundary which is both \(F \) and \(\tilde{F} \) strictly convex.

Theorem. Suppose \(0 \in \Omega \) and let \(h \in C(B_\epsilon - \{0\}) \) be an \(F \)-harmonic function with \(\lim_{x \to 0} h(x) = -\infty \). Fix \(\varphi \in C(\partial \Omega) \).

Existence. There exists \(H \in C(\Omega - \{0\}) \) such that:

(1) \(H \) is \(F \)-harmonic on \(\Omega - \{0\} \),
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation \(F \subset \text{Sym}^2(\mathbb{R}^n) \) which has Riesz characteristic \(p, 2 \leq p \leq n \), and is \(P_p \)-monotone.

Let \(\Omega \subset \subset \mathbb{R}^n \) be a domain with a smooth boundary which is both \(F \) and \(\tilde{F} \) strictly convex.

Theorem. Suppose \(0 \in \Omega \) and let \(h \in C(B_\epsilon - \{0\}) \) be an \(F \)-harmonic function with \(\lim_{x \to 0} h(x) = -\infty \). Fix \(\varphi \in C(\partial \Omega) \).

Existence. There exists \(H \in C(\overline{\Omega} - \{0\}) \) such that:

1. \(H \) is \(F \)-harmonic on \(\Omega - \{0\} \),
2. \(H|_{\partial \Omega} = \varphi \),
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation \(F \subset \text{Sym}^2(\mathbb{R}^n) \) which has Riesz characteristic \(p, 2 \leq p \leq n \), and is \(P_p \)-monotone.

Let \(\Omega \subset \mathbb{R}^n \) be a domain with a smooth boundary which is both \(F \) and \(\tilde{F} \) strictly convex.

Theorem. Suppose \(0 \in \Omega \) and let \(h \in C(B_\epsilon - \{0\}) \) be an \(F \)-harmonic function with \(\lim_{x \to 0} h(x) = -\infty \). Fix \(\varphi \in C(\partial \Omega) \).

Existence. There exists \(H \in C(\overline{\Omega} - \{0\}) \) such that:

1. \(H \) is \(F \)-harmonic on \(\Omega - \{0\} \),
2. \(H|_{\partial \Omega} = \varphi \),
3. \(h(x) + c \leq H(x) \leq h(x) + C \) on a neighborhood of \(0 \) for some constants \(c, C \).

Blaine Lawson
Restriction and Removable Singularities
October 27, 2013
The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation $F \subset \text{Sym}^2(\mathbb{R}^n)$ which has Riesz characteristic p, $2 \leq p \leq n$, and is \mathcal{P}_p-monotone.

Let $\Omega \subset \subset \mathbb{R}^n$ be a domain with a smooth boundary which is both F and \tilde{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_\epsilon - \{0\})$ be an F-harmonic function with $\lim_{x \to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Existence. There exists $H \in C(\overline{\Omega} - \{0\})$ such that:

1. H is F-harmonic on $\Omega - \{0\}$,
2. $H|_{\partial\Omega} = \varphi$,
3. $h(x) + c \leq H(x) \leq h(x) + C$ on a neighborhood of 0 for some constants c, C.

Uniqueness. There is at most one function $h \in C(\overline{\Omega} - \{0\})$ satisfying (1), (2), and (3).