
Reflections on the Early Work of
Eugenio Calabi

Blaine Lawson1

I first met Gene2 Calabi at Stanford in 1967 while I was still a graduate
student. That encounter had special significance in my mathematical life.
Most importantly it began a long friendship with a man whose mathematical
originality and character I have always deeply admired. I can’t remember a
conversation with Gene in which I did not learn something fascinating. He
has always been open and free with his ideas and wonderfully supportive of
young mathematicians.

Much is made in this volume, and in the mathematical community in gen-
eral, about Gene’s role in the subjects of Calabi–Yau manifolds and extremal
metrics. While his ideas and theorems about special metrics in complex ge-
ometry have certainly been revolutionary, his earlier work was also of trans-
forming originality. For personal reasons I am particularly fond of that early
work, and I would like to present it here and discuss its impact over the years.

I want to express my thanks and indebtedness to Gopal Prasad for the
detailed comments below concerning the seminal impact of the work of Calabi
and Vesentini on the subject of rigidity of lattices in Lie groups.

Note: Naturally I submitted a preliminary version of this article to Gene for
his comments. Several of his responses are included at appropriate points in
the text below. The reader should find them interesting.

1 Blaine Lawson
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2 ‘Gene’ is the nickname given to Eugenio Calabi by the author.
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1. Calabi’s Thesis: Isometric Holomorphic
Embeddings
Gene wrote his Ph.D. thesis at Princeton under the direction of Salomon
Bochner. It was concerned with the question:

Which complex hermitian manifolds (X,h) can be holomorphically and
isometrically embedded into CN (or more generally into a complex space
form)?

Calabi’s answers to this problem constitute a gorgeous contribution to
mathematics. It pre-dated by only a few years the work of Nash [21, 22] on
the analogous riemannian embedding problem. As you shall see, these two
cases are quite different in nature.

Note to begin that if (X,h) can be isometrically and holomorphically em-
bedded into CN , then the metric h must be Kähler and real analytic. This
holds also if CN is replaced by any separable complex Hilbert space. Let E
denote the indefinite complex Hilbert space of sequences (z1,z−1,z2,z−2, . . .)
such that

∑
k |zk|2 <∞, provided with the indefinite hermitian form ds2 =∑

k sgn(k)|zk|2.

Calabi’s Universal Embedding Theorem. Every complex manifold with
an analytic Kähler metric can be locally embedded isometrically and holomor-
phically into E.

For embeddings into CN (with positive definite metric) the story is quite
different. The metrics that can be embedded are highly restricted and intrinsi-
cally characterized. Furthermore, when embeddings exist, they are unique up
to ambient isometries. All this is true with CN replaced by the complex space
form MN (c) of constant holomorphic sectional curvature c (complex projec-
tive, euclidean or hyperbolic spaces). Note that there are totally geodesic
embeddings MN (c)⊂MN+N ′(c) unique up to isometries.

Calabi’s Local Rigidity Theorem. Suppose f :X→MN (c) and f ′ :X→
MN+N ′(c) are holomorphic isometric embeddings. Then f = F ◦f ′ for some
isometry F of MN+N ′(c).

This is of course in stark contrast to the riemannian case. Let γ : R ↪→R2

be a curve parameterized by arc-length. Then (x,s) 7→ (x,γ(s)) is an isometric
embedding of euclidean space Rn ↪→Rn+1.

Calabi’s Intrinsic Characterization of Existence. Let (X,h) be a con-
nected Kähler manifold with a real analytic metric. Then there exists a holo-
morphic isometric embedding of a neighborhood of a point p ∈X into MN (c)
if and only if the metric satisfies an intrinsic, explicitly computable condition
at p. Moreover, if this condition holds at one point, then it holds at all points
of X.
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This intrinsic condition on the metric can be expressed in terms of Calabi’s
diastatic function, which we shall now examine. Recall that in holomorphic
coordinates z = (z1, ...,zn) a Kahler metric ds2 =

∑
i,j hij̄dzidz̄j can be writ-

ten locally in terms of a real-valued potential function ϕ, that is,

hij̄ = ∂2ϕ

∂zi∂z̄j
.

This potential is not unique, but any other such potential ϕ̃ is of the form

ϕ̃(z, z̄) = ϕ(z, z̄) +f(z) +f(z) where f is holomorphic. (1.1)

Recall now that a real analytic function ϕ(z, z̄) can be expressed as a conver-
gent power series in z and z̄ and therefore extends to a holomorphic function
of 2n variables ϕ(z,w). The expression in (1.1) becomes

ϕ̃(z,w) = ϕ(z,w) +f(z) +f(w) where f(w) = f(w̄). (1.2)

From all of this one can deduce the following.
Calabi’s Diastatic Function D. Let U ⊂X be an open set with local holo-
morphic coordinates z : U

∼=−−−→ V ⊂Cn (V simply-connected). Then the di-
astatic function

D : U ×U −→ R,

defined by

D(p,q) ≡ ϕ(z(p), z̄(p)) +ϕ(z(q), z̄(q))−ϕ(z(p), z̄(q))−ϕ(z(q), z̄(p)),

is independent of the choice of potential and independent of the choice of local
coordinates. Hence it is intrinsically defined in terms of the Kähler metric
on U . It is real-valued, D(p,q) = D(q,p), and D(p,p) = 0. Furthermore, if
d(p,q) is the intrinsic (riemannian) distance function on X, then D(p,q) =
d(p,q)2 +O(d(p,q)4).

This function can be placed in a global context. Given any complex mani-
fold X, there is a complex conjugate manifold X obtained by taking the atlas
{(Uα,zα)}α and replacing it with the atlas {(Uα,zα)}α whose transition func-
tions are also holomorphic. The assertions above show that for real analytic
Kähler metrics, the diastatic function D is well-defined in a neighborhood of
the diagonal in X×X .
The Fundamental Property of D. Let Y be a Kähler manifold with real
analytic metric and diastatic function DY . Suppose f :X→ Y is a holomor-
phic isometric embedding. Then DY pulls back to be the diastatic function of
X, i.e., DX(p,q) =DY (f(p),f(q)).

Thus if f :X →CN is a holomorphic isometric immersion, then

D(p,q) = |f(p)−f(q)|2.
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Therefore, for fixed q,

Dq(p) ≡ D(p,q) =
N∑
k=1
|fk(p)|2 where f1, ...,fN are holomorphic functions.

Taking power series expansions in local coordinates z we have

Dq =
∑
α,β

Cαβz
αz̄β and fk =

∑
α

ak,αz
α for each k.

Enumerating the multi-indices we get the following identity of ∞×∞-
matrices

C = a1 ·at1 + · · ·+aN ·atN ,

where ak is considered as an infinite column vector. Thus

C is a positive semidefinite matrix of rank ≤N. (1.3)

This is precisely the necessary and sufficient condition for the euclidean case
in the Intrinsic Characterization Theorem above.

For f : X → MN (c) with c 6= 0, the function Dq takes the form
1
c log(1 + c

∑
k |fk|2) in appropriate local coordinates, so one can exponen-

tiate and apply the above.
These general results have the following very nice application.

Theorem 1.1. Let X ⊂MN (c) be a (local) n-dimensional complex subman-
ifold whose induced metric has constant holomorphic sectional curvature c.

(i) If c≤ 0, then c= c and X is totally geodesic
(ii) If c > 0, then c = 1

k c for some integer k with
(n+1
k

)
≤ N + 1, and (after

normalizing to c= 1), X is congruent to a piece of the “round” Veronese
embedding

Φk : Pn ↪→PN

given in homogeneous coordinates [Z] = [Z0, ...,Zn] by

[Z] 7→
[
Zk0 , ...,

√(
n

α

)
Zα, ...,Zkn,0, ...,0

]
≡ [W ],

so that |W |2 = |Z|2k.

2. The Special Case of Holomorphic Curves
Suppose now that dimC(X) = 1, that is, we restrict attention to holomorphic
isometric immersions

f :Σ → Mn(c)
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of a metric Riemann surface Σ. This is the most transparent and beautiful
case. It is also the basic one. The general results as stated above follow directly
from the 1-dimensional versions.

In many ways it is intuitively correct to think of f :Σ→Mn(c) as a com-
plex curve – generalizing real curves in, say, euclidean space. Note, however,
that by the Rigidity Theorem, all the extrinsic invariants of this curve are
intrinsically determined by the metric. More specifically, for any such holo-
morphic curve, one can establish Frenet formulas in complete analogy with
the real case. The normal bundle decomposes generically into a flag of oscu-
lating bundles with associated curvature functions Kk > 0, k = 1, ...,n−1. In
the real case these curvature functions can be chosen freely. In the complex
case, Calabi shows that each Kk can be computed explicitly in terms of the
metric ds2 on Σ. Furthermore, points where the kth osculating bundles fail to
be defined directly (some Kj = 0 for j ≤ k) are isolated, and the bundle has a
holomorphic extension across these points. These points determine a divisor
on the Riemann surface Σ, and in the case of an algebraic curve Σ→Pn one
can deduce the classical Plücker formulas directly from the metric and these
divisors.

To present these explicit calculations we work locally on the Riemann
surface. Let

ds2 = 2F |dz|2

be a real analytic metric on the unit disk ∆= {z : |z|< 1}. In [3, 4] (see also
[8]) Calabi proves the following.

Theorem 2.1. The metric ds2 is induced by a full homomorphic map

f :∆ → Mn(c)

if and only if the recursively defined functions

F0 = 1, F1 = F,

Fk+1 =
F 2
k

Fk−1

(
d
dz

d
dz̄ logFk+ (k+ 1)c

)
(2.1)

satisfy the conditions:

(1) For k ≤ n the function Fk is ≥ 0 and vanishes only at isolated points.
(2) The succeeding function Fk+1 is defined by (2.1) away from those points,

but extends to a real analytic function on all of ∆.
(3) Fn+1 ≡ 0.

(A “full” map is one whose image does not lie in any totally geodesic Mm(c)⊂
Mn(c) for m< n.)

If (Σ,ds2) is a connected Riemann surface with an analytic metric, then
the conditions in Theorem 2.1 hold in some local coordinate system on Σ
if and only if they hold in every local coordinate system. In this case there
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exists a global holomorphic isometric immersion of the universal covering of
Σ into Mn(c).

Associated to the Fk is a globally defined sequence of curvature functions

Kk ≡
Fk+1Fk−1
FFk

= 1
2 {∆logFk+ (k+ 1)c} , (2.2)

where ∆≡ 2
F

d
dz

d
dz̄ . Note that each Kk ≥ 0 and K1 = c−K, where K is the

Gauss curvature of the metric ds2.
To see the meaning of all this we first consider the euclidean case c = 0.

Given a holomorphic map
f :∆ → Cn

with induced metric ds2 = 2F |dz|2, we have

F = |ϕ|2 =
n∑
j=1
|ϕj |2,

where ϕ(z)≡ f ′(z). Calculation shows that

F1 = |ϕ|2

F2 = |ϕ∧ϕ′|2

F3 = |ϕ∧ϕ′∧ϕ′′|2

...

Fk = |ϕ∧ϕ′∧ϕ′′∧·· ·∧ϕ(k)|2

...

from which the necessity of the conditions in Theorem 2.1 is clear, as is the
relation of the functions Fk to the kth osculating curve Φk ≡ [ϕ∧ϕ′ ∧ ·· · ∧
ϕ(k−1)] :∆→P(n

k)−1 of f .
The functions K1,K2,K3, ... are exactly the curvature functions which

appear in the “Frenet formulas” for this given curve. (See [13] for details.)
The function Kk can also be expressed as the ratio dσ2

k/ds2 where dσ2
k is

the metric induced from P(n
k)−1 by the map Φk.

The projective case is similar. Let

f :∆ → Pn

(with holomorphic sectional curvature 1) be represented in homogeneous co-
ordinates by a holomorphic map

ϕ= (ϕ0, ...,ϕn) :∆ → Cn+1.
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Then the functions in Theorem 2.1 are seen to be

Fk = |ϕ∧ϕ′∧·· ·ϕ(k)|2

|ϕ|2(k+1) .

Again there is a well-defined osculating curve

Φk ≡ [ϕ∧ϕ′∧·· ·∧ϕk)] :Σ → P(n+1
k+1)−1

and again Kk can also be expressed as the ratio dσ2
k/ds2 where dσ2

k is the
metric induced by the map Φk. When the Riemann surface Σ is compact,
the projective degree νk of the Kth osculating curve Φk is given by

νk = 1
2π

∫
Σ
Kk dA.

For further details see [13].

Final Note. In the case of curves Calabi’s Rigidity Theorem has an elemen-
tary proof. Suppose f : ∆→Cn and g : ∆→Cn+m are isometric holomor-
phic maps. We claim that f = T ◦ g, where T is a holomorphic isometry of
Cn+m (a unitary transformation followed by a translation). Setting ϕ = f ′

and ψ = g′ we have |ϕ|2 ≡ |ψ|2 on ∆ since the induced metrics agree. As-
sume the first coordinate function ϕ1(0) 6= 0 and set Φ= 1

ϕ1
ϕ, Ψ = 1

ϕ1
ψ on a

neighborhood of zero. Then 1 + |Φ2|2 + |Φ3|2 + · · ·= |Ψ |2. Taking d
dz

d
dz̄ gives

|Φ′2|2 + |Φ′3|2 + · · · = |Ψ ′|2. By induction on n there exists a unitary trans-
form U0 with Φ′ = U0Ψ ′. Integrating and then multiplying through by ϕ1
and checking constants of integration gives ϕ= Uψ for a unitary matrix U .

Calabi’s Comments on his Thesis: “The original idea came in the sum-
mer of 1949. I knew from recent lecture notes about Bieberbach’s imbedding
of the complex unit disc with the hyperbolic metric in the Hilbert space `2
(square-summable complex sequences), and was calculating, as an exercise,
what happens when one extends real analytic curves in Rn, with their Frenet–
Serret formulas, to their corresponding extensions as holomorphic Riemann
surfaces in Cn. The thesis itself grew out of elaborating from the original
drafts.”

3. Minimal Surfaces in Euclidean Space
Calabi understood that his work on holomorphic curves had direct application
to the theory of minimal surfaces. Every minimal surface in euclidean space
can be realized locally by a conformal immersion

f :∆ → Rn

whose coordinate functions are harmonic. In particular, we have
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d
dz

d
dz̄ f = 0 (3.1)

and conformality implies that∣∣∣∣dfdz

∣∣∣∣2 =
∣∣∣∣dfdz̄

∣∣∣∣2 = F and df
dz ·

df
dz = 0 (3.2)

where the induced metric is ds2 = 2F |dz|2.

Let f̃ :∆→Rn be the harmonic conjugate mapping. Then
∣∣∣dfdz ∣∣∣2 =

∣∣∣∣df̃dz ∣∣∣∣2,
and we obtain a holomorphic mapping

f ≡ 1√
2

(
f + if̃

)
:∆ → Cn (3.3)

giving the same induced metric.
These remarks apply globally to the universal covering of any minimal

surface in Rn.
Calabi’s results above can now be applied to:

(1) Intrinsically characterize the metrics which can appear on minimal sur-
faces in euclidean space.

(2) Classify the minimal surfaces up to congruence which are intrinsically
isometric to a given one.

Part (1) is clear. These metrics are exactly the ones which can be realized
on holomorphic curves in Cn. For Part (2) the key observation is that by
Calabi’s Rigidity Theorem (in the simply-connected case)

Each class of isometric non-congruent minimal surfaces in euclidean
space contains exactly one holomorphic curve.

Starting with this holomorphic curve, all minimal surfaces isometric to it are
obtained by applying an appropriate complex linear transformation and then
taking the real part. This leads to the following theorem. Let Σ be a simply
connected Riemann surface.

Calabi’s Classification Theorem. The space of non-conguent minimal
immersions f : Σ →Rm, which are isometric to a given (full) holomorphic
immersion f :Σ→Cm, is naturally described as the set of all complex sym-
metric m×m matrices P such that

(a) 1m−PP ≥ 0, and
(b) (f)tP f ′ ≡ 0,

that is, P annihilates all tangent vectors to the curve f . Furthermore, let n be
the dimension of the smallest affine subspace of Rm containing the minimal
surface corresponding to P . Then
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n−m = rank(1m−PP )

so that m≤ n≤ 2m, and n= 2m ⇐⇒ 1m−PP > 0.

Examples. Let fθ =
√

2Re(eiθf), where f is given as in (3.3). This is the
family of associate minimal surfaces for f .

The classical case m= 3 is interesting. Here the intrinsic characterization
goes back to Ricci–Curbastro. A metric ds2 = 2F |dz|2 appears on a minimal
surface in R3 if and only if its Gauss curvatureK is ≤ 0 with isolated analytic
zeros, and the metric

dŝ2 ≡
√
−Kds2isflat.

All the other minimal surfaces in euclidean space which are isometric to this
given one in R3 are either associate surfaces or they are linearly full in R6

([14]).

4. Some Personal Reminiscences
My first encounter with Gene Calabi was an event that transformed my
graduate – and indeed my mathematical – career. I had been working for my
thesis on the problem of fully understanding the theorem of Ricci–Curbastro
mentioned above. Doing this led me to the discovery of Theorem 1.1 and
some of its applications. Checking with some experts led me to believe the
result was new, and I was joyfully writing up the results when Calabi came
to give the colloquium at Stanford. My advisor mentioned to Gene what I
had been doing and learned the bad news, which he passed on to me in the
early afternoon.

Later that day I went to Gene’s colloquium, which turned out to be one
of the most astonishing and beautiful mathematical lectures I had heard. It
pulled me directly into the study of minimal submanifolds of spheres, which
became the subject of my Ph.D. thesis.

For me it was quite a day.
What follows is a description of the results that Gene presented in that

colloquium.

5. Minimal Surfaces in the Euclidean Sphere
By a minimal surface in Sn = {x ∈Rn=1 : |x|= 1} I mean an immersion of a
smooth surface

f :Σ → Sn

with mean curvature ≡ 0. Such immersions are real analytic. We take the
induced metric on Σ which gives it the structure of a Riemann surface with
an analytic metric.
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Consider the case where Σ is compact (without boundary). In 1967 almost
nothing was known about such surfaces, except for a theorem of Fred Almgren
[1], which states that when n= 3 and Σ has genus zero, the surface must be
totally geodesic.

Calabi’s Theorem on Minimal 2-spheres in Sn. Let

f : S2 → Sn (5.1)

be a minimal 2-sphere which does not lie in any totally geodesic (equatorial)
Sn−1. Then

(i) n= 2m for some integer m,
(ii) Area(Σ) = 2πN , where N is an integer with

N ≥ m(m+ 1).

(iii) There exists a holomorphic map

Ψ : S2 → Im

into the hermitian symmetric space Im ≡ SO(2m+ 1)/U(m) such that

f = π ◦Ψ,

where
π : Im → S2m (5.2)

is the projection SO(2m+ 1)/U(m) → SO(2m+ 1)/SO(2m). Further-
more, this map Ψ is everywhere orthogonal to the fibres of π and the
metric induced on S2 by f coincides with the one induced by Ψ .

This theorem asserts that minimal 2-spheres in the euclidean sphere are in
a strong sense algebraic, they correspond explicitly to certain rational curves
in the rational variety Im. Note that Im can be realized as the space of
complex m-planes in C2m+1 = R2m+1⊗R C which are totally isotropic with
respect to the complex quadratic form on C2m+1 obtained by extending the
metric on R2m+1.

Note that part (i) in Calabi’s theorem generalizes Almgren’s result.
The first non-trivial case of this result, where n= 4, is already interesting.

Here the map (5.2) is the twistor fibration

π : P3
C → S4

whose horizontal complex 2-plane field is a homogeneous contact structure
on P3

C. Every holomorphic curve tangent to this structure pushes down to a
minimal surface in S4. By the theorem above every minimal 2-sphere in S4

which is non-totally geodesic has area 2πN for N ≥ 6. Furthermore, every
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twisted cubic in P3
C is isometric to a minimal 2-sphere in S4 whose area is

exactly 12π.
The construction of this lifting Ψ is gorgeous and quite explicit. Let’s

realize the map (5.1) in local coordinates as a conformal map

ψ :∆ → Sn

whose induced metric is
ds2 = 2F |dz|2.

Then ψ is a minimal surface if and only if

d
dz

d
dz̄ ψ = −Fψ, (5.3)

where we are considering ψ as a map ψ : ∆→ Rn+1 with |ψ|2 ≡ 1. The
conformality of ψ is equivalent to

dψ
dz ·

dψ
dz = 0. (5.4)

Note that by (5.3) and the fact that ψ · dψdz = 0 we have

d
dz̄

(
dψ
dz ·

dψ
dz

)
= 0.

Therefore (
dψ
dz ·

dψ
dz

)
dz2

is a global holomorphic 2-form on the Riemann surface Σ, and therefore if
Σ = S2, it must be identically zero. Proceeding by induction shows that

dkψ
dzk
· d
`ψ

dz`
= 0 for all k+ ` > 0. (5.5)

Therefore, the complex k-plane corresponding to the simple vector

τk ≡
dψ
dz ∧

d2ψ

dz2 ∧·· ·∧
dkψ
dzk

is totally isotropic. Furthermore, using (5.3) again one sees that the 2k-jet of
ψ at every point is spanned by ψ and the vectors in τk and τk. It now follows
that the image of ψ is linearly full in some R2m+1.

If we now set
Fk = |τk|2

one can show that 1
Fm

τm is holomorphic, and the mapping Ψ is then defined
in Plücker coordinates by
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Ψ = 1
Fm

τm.

Incidentally, the functions Fk satisfy the recursion relations

F0 = 1, F1 = F,

Fk+1 =
F 2
k

Fk−1

(
d
dz

d
dz̄ logFk+F

)
(5.6)

for 1≤ k ≤m (and Fm+1 ≡ 0), very close to those given in (2.1) above.

This spectacular, highly original work engendered well over a decade of
intense research on minimal surfaces and harmonic mappings by people such
as Barbosa, Bryant, Burns, Chern, Eells, Guest, Lemaire, Salamon, Wood,
the author, and many others (See the Bourbaki article [16] for references).

6. Rigidity of Arithmetic Groups
In 1960, Gene Calabi and Edoardo Vesentini wrote a paper which was founda-
tional in the modern theory of arithmetic groups and rigidity. They considered
smooth compact quotients

X =D/Γ

by a discrete group of holomorphic isometries, where D is a Cartan do-
main, that is, a bounded symmetric, homogeneous domain in Cn. These
domains are simply connected, and decompose into products of irreducible
ones. Their main technical result is a vanishing theorem for the cohomology
groups Hq(X,Θ), where Θ is the tangent sheaf. They proved that when D is
irreducible

Hq(X,Θ) = 0 for 0≤ q < γ(D)−1,

where γ(D) is an integer, independent of Γ , which satisfies
√

2n < γ(D)≤ n+ 1,

where n= dimC(D).

By the deformation theory of Frölicher–Nijenhuis [11] and Kodaira–Spencer
[12], this proves

The Calabi–Vesentini Rigidity Theorem. When D is irreducible with
dimC(D)> 1, the complex structure on D/Γ is rigid for any co-compact dis-
crete subgroup of holomorphic isometries Γ acting freely and properly discon-
tinuously on D. This rigidity continues to hold when D is reducible provided
that no irreducible factor of D has dimension 1.

The assertion is famously false when dimC(D) = 1, i.e., when D is the unit
disk in C.
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The proof of the main technical result proceeds by the Bochner method.
It involves a masterful calculation of the curvature term appearing in the for-
mulas of Bochner–Kodaira–Nakano type for harmonic tangent-bundle-valued
forms.

Combined with results of Atle Selberg, this theorem led to the following.

The Algebraicity Theorem. Let D be a Cartan domain with no irreducible
factors of dimension 1. Let G be the group of all holomorphic (isometric)
transformations of D, represented as a group of real matrices. Let Γ ⊂G be
a discrete subgroup acting on D with smooth compact quotient. Then there
exists an inner automorphism of G such that the components of all matrices
representing the transform of Γ generate a simple algebraic extension of the
rational number field.

A little before the Calabi–Vesentini work, Selberg announced a related
rigidity result for co-compact discrete subgroups of SLn(R). A full length
paper [25] appeared in 1960 with references to [10]. A summary of this and
some subsequent work appeared in [26].

The work of Calabi–Vesentini greatly influenced Andrei Weil who in his
1962 paper [29] proved a best possible deformation rigidity result for co-
compact lattices in real semi-simple Lie groups. The work of Selberg, Calabi–
Vesentini and Weil marked the beginning of one of the major developments
in modern mathematics, with early contributions by A. Borel, J. Tits, J.-
P. Serre, Harish-Chandra, H. Garland, M. S. Raghunathan, among many oth-
ers. (See [24] for an account in 1972.) This field, concerned with lattices in
Lie groups, culminated in famous work of G. Mostow and then G. Margulis.

The notion of Mostow rigidity is stronger than the deformation rigidity
discussed above. Deformation rigidity says that under appropriate assump-
tions on Γ ⊂G, the only continuous deformations Γt ⊂G, |t|< 1, come from
families of inner automorphisms of G. Mostow’s strong rigidity asserts that
given Γ ⊂G and Γ ′ ⊂G′ (again with appropriate assumptions), any abstract
isomorphism Γ ∼= Γ ′ extends to an isomorphism G ∼= G′. Mostow was more
explicitly influenced by the work of Selberg than the analytic approach of
Calabi–Vesentini. However, Mostow says on page 6 of his monograph [20]
that “The phenomenon of strong rigidity for arbitrary lattices first turned
up in 1965 in my search for a geometric explanation of deformation-rigidity”.
The earlier results of Selberg, Calabi–Vesentini, and Andrei Weil on deforma-
tion rigidity had a decisive influence on him and in his formulation of strong
rigidity.

Calabi’s Comments: “The rigidity theorem for discrete, uniform trans-
formation groups of uniform, bounded domains came from a coincidence of
contacts. In 1958–59 I was spending a year at the I.A.S., and listened to
lectures by Kodaira, in which I finally understood for the first time (after
about six years of hearing about them) what cohomology with coefficients
in a linear space sheaf is about. At the same time, I remember talking with
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A. Selberg about compact Riemannian manifolds with constant negative sec-
tional curvature: to my surprise, he told me then that, even in 3 dimensions,
he believed that they might be rigid, while I was actually dreaming of finding
moduli. I got then the idea of calculating the cohomology with coefficients in
the sheaf of germs of Killing vector fields. While writing it up and discussing
it with Vesentini, we got the idea of applying the ‘vanishing theorem’ idea to
the cohomology in the sheaf of holomorphic vector fields in the irreducible,
locally symmetric Kähler manifolds. The case of the real hyperbolic manifolds
then fell by the wayside, because, by about 1961, Dan Mostow had proved
their global rigidity.”

7. Complex Structures on Products of Spheres
Together with Beno Eckmann, Gene Calabi wrote a paper in 1953 which was
transformational in complex geometry. At the time very little was known
about complex manifolds outside the Kähler domain. Aside from the exam-
ples of H. Hopf, obtained by dividing Cn−{0} by powers of a homothety,
most known compact complex manifolds were either projective or deforma-
tions of projective. Calabi and Eckmann showed that for all integers p,q ≥ 1
there exist complex structures on the product of spheres:

Mp,q ≡ S2p+1×S2q+1.

These were the first known examples of simply-connected compact complex
manifolds which were not algebraic. (Kodaira’s classification of surfaces
came over a decade later.) They have remarkable properties. There is a holo-
morphic fibration

Mp,q = S2p+1×S2q+1 π−−−→ Pp
C× Pq

C,

given by the product π = π1 × π2 of the standard Hopf fibrations, whose
fibres are elliptic curves. These fibres are homologous to zero, and therefore
Mp,q cannot carry a Kähler metric. There are many complex subvarieties
of Mp,q, but they are all of the form π−1(V ), where V is a subvariety of
Pp

C× Pq
C. (Taking V to be smooth gives a wealth of new compact complex

manifolds.) Similarly the meromorphic functions on Mp,q are all pull-backs
of meromorphic functions on Pp

C× Pq
C.

The subdomain (
S2p+1−{x0}

)
×
(
S2q+1−{y0}

)
is particularly interesting. It is a complex manifold diffeomorphic to R2(p+q+1)

which contains an enormous family of compact complex analytic subvarieties.
For example, take π−1(W ×W ′) = π−1

1 (W )×π−1
2 (W ′), whereW,W ′ are sub-

varieties of Pp
C and Pq

C respectively with x0 /∈W and y0 /∈W ′. Any entire
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holomorphic function must be constant, so Mp,q admits no global coordinate
chart.

The construction of the complex structure onMp,q is as follows. Note that
S2p+1⊂Cp+1 carries a field of tangent complex p-planesH which is invariant
under the family of diffeomorphisms given by scalar multiplication by eit. Let
H be the “Hopf” vector field which generates this flow. Let H′ and H ′ be
the corresponding objects on S2q+1. At each point (x,y)∈ S2p+1×S2q+1 the
subspace H×H′ is already provided with an almost complex structure J . We
extend it to the complement by defining J(H) = H ′ and J(H ′) = −H. The
invariance of J under the flows generated by H and H ′ is the key to proving
its integrability, that is, the vanishing of the Nijenhuis tensor.

This construction of Calabi–Eckmann can be directly generalized to a
large and interesting class of spaces, as pointed out by Sid Webster. Let
Σ2p+1 ⊂CN be a compact submanifold which arises as the local boundary of
a complex (p+1)-dimensional submanifold. Let H be the tangential complex
p plane field to Σ2p+1. Suppose there is an S1-action on Σ2p+1 generated by
a vector field H which is transversal to H and whose flow preserves H and its
almost complex structure. Let Σ2q+1 be another such creature of dimension
2q+1. Then the construction above gives an integrable complex structure on

Σ2p+1×Σ2q+1.

Such manifolds Σ2n−1 can be easily constructed by taking

Σ2n−1 = S2n+1∩{Z ∈Cn+1 : P (Z) = 0},

where P is a weighted homogeneous polynomial in (Z0, ...,Zn), such as Za0
0 +

· · ·+Zan
n . These include the Brieskorn polynomials whose links Σ are exotic

spheres.
Over the years there have been many further constructions of compact

complex non-Kähler manifolds. Notable among them is the work of Taubes
[27] in complex dimension 3, involving twistor geometry, and the work of
Lopez de Medrano, Meersseman, and Verjovsky [17], [18], [19] which repre-
sents a highly non-trivial extension of the Calabi–Eckmann construction.

8. Generalizing the Hopf Maximum Principle
In a paper entitled An extension of E. Hopf’s maximum principle with an
application to Riemannian geometry, written in 1958, Calabi introduced the
notion of a weak subsolution for a linear elliptic partial differential equation
and established the Strong Maximum Principle for such functions. This theo-
rem enabled him to prove a beautiful theorem in global riemannian geometry.

What is particularly remarkable about this paper is that it presages mod-
ern viscosity theory (cf. [2]) more than twenty years before its emergence as
a major branch of analysis.
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Calabi considered differential operators in Rn of the form

L[u] =
∑
j,k

ajk(x) ∂2u

∂xj∂xk
+
∑
j

bj(x) ∂u
∂xj

with a > 0,

and extended the notion L[u] ≥ 0 to upper semi-continuous functions u as
follows. We say that a C2-function ϕ defined near x is a lower (upper) test
function for u at x if u−ϕ has minimum (resp. maximum) value zero at x.
Calabi defined u to be a weak solution to L[u]≥ c at x if for each ε > 0 there
is a lower test function ϕ for u at x with L[ϕ](x)≥ c− ε.

In modern viscosity theory one requires that for every upper test function ϕ
at x, one has L[ϕ](x)≥ c. (If upper test functions do not exist, the condition is
considered to be satisfied.) This viscosity criterion follows easily from Calabi’s
and is slightly more general. It allows functions to assume the value −∞
for example. Using this fundamental approach, the school of Crandall, Ishii,
Lions, Evans, and others, developed a substantial theory for fully nonlinear
equations with important wide-ranging applications. It is an example of the
depth and originality of Gene Calabi that he saw this important idea and its
usefulness twenty years “before its time”.

The first part of Gene’s paper proved that any upper semi-continuous
function u which satisfies L[u] ≥ 0 (in his sense) on a domain in Rn, and
has an interior maximum point, must be constant. He then showed that on a
riemannian n-manifold of non-negative Ricci curvature, the geodesic distance
ρ from a point satisfies the inequality ∆ρ≤ (n−1)ρ in the weak sense. From
this he then deduced that on such a manifold, assumed complete, there are
no global solutions to the differential inequality ∆u ≥ f(u) where f(t) is a
positive increasing function satisfying∫ ∞

0

{∫ s

0
f(t)dt

} 1
2

ds < ∞.

Calabi’s Comments: The paper on the maximum principle was really an
auxiliary result. The leitmotif of my work at the time was to complete the
proof of what was called the Calabi conjectures, looking at the function space
of all Kähler metrics in a compact, complex manifold, in a fixed cohomology
class, and formulating variational problems that might yield the most ‘har-
monious’ metric in such a space. By the time I announced the problems at
the A.M.S. meeting in Baltimore in December 1952 (and again in Amsterdam
in 1954), I had learned how little was known about nonlinear elliptic p.d.e.s.,
and was trying to find a priori estimates, using relations motivated by the
geometry. The real inspiration came from a paper, presented by Bob Osser-
man, at an A.M.S. meeting around 1957, on the existence of solutions of the
equation ∆u = f(u) in Euclidean Rn. That was the incident that triggered
the result that I am most proud of, “Improper Affine Hyperspheres...”, in
the Mich. Math. J., 1958. In that paper I needed to interpret sub-harmonic
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inequalities for non-smooth functions, like Riemannian geodesic distance and
Finsler norms. I wrote the paper [5] separately, simply because I thought that
it might have broader applications. By the way, the operator and inequality
L[u] =

∑
jk ajk∂

2u/∂xj∂xk+
∑
j bj∂u/∂xj ≥ 0 was first considered by Eber-

hard Hopf. I first studied it in the book by Bochner and Yano, “Curvature and
Betti Numbers”. For the rest, I used Osserman’s argument literally, except
that, while Osserman considered only the Laplace operator in a Euclidean
metric, I realized that it applied also in the case of metrics with non-negative
Ricci curvature.”

Author’s Comments: The interaction between Bob Osserman and Gene
Calabi at the A.M.S. meeting referred to above, was, in itself, one of the more
interesting mathematical exchanges. The two were scheduled to give short
presentations in the same session. Gene, however, was delayed and arrived
only after Osserman had already left. However, Bob’s final result remained
suspended on a higher blackboard. Looking at it, Gene recognized exactly
what he needed for the problem he was working on.
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