Given With Deep Respect and Affection

for Marcel Berger

who was a father to so many

and one of the great geometers of his century
A MONGE AMPÈRE OPERATOR
in SYMPLECTIC GEOMETRY

with Reese Harvey
The Outline

1. LAGRANGIAN POTENTIAL THEORY

2. THE LAGRANGIAN MONGE-AMPÈRE OPERATOR

3. TRANSPLANTATION TO GROMOV MANIFOLDS

4. THE DIRICHLET PROBLEM

5. A FUNDAMENTAL SOLUTION IN \mathbb{C}^n

6. QUESTIONS
LAGRANGIAN POTENTIAL THEORY
“Geometrically Based” Potential Theories:

Consider a compact set

\[G \subset G(p, \mathbb{R}^n) = \text{The Grassmannian of } p\text{-planes in } \mathbb{R}^n \]

Let

\[\mathcal{P}(G) = \left\{ A \in \text{Sym}^2(\mathbb{R}^n) : \text{tr} (A|_W) \geq 0 \quad \forall W \in G \right\} \]

Definition. \(u \in C^2(\Omega^{\text{open}}) \) is **G-plurisubharmonic** if

\[\text{tr} (D^2 u|_W) \geq 0 \quad \forall W \in G \]

i.e.,

\[D^2 u \in \mathcal{P}(G) \]

on \(\Omega \).
Note

\[u \in C^2(\Omega) \text{ is } \mathcal{G}-\text{psh} \quad \iff \quad u \big|_{\Omega \cap W} \text{ is subharmonic for all affine } \mathcal{G}\text{-planes } W \quad \iff \quad u \big|_M \text{ is subharmonic on every minimal } \mathcal{G}\text{-manifold } M \]
Definition. A function $u \in C^2(\Omega^{\text{open}})$ is **G-harmonic** if

$$D^2 u \in \partial \mathcal{P}(G)$$

on Ω.

This means at every point $\exists \, W \in G$ with

$$\text{tr} \left(D^2 u \big|_W \right) = 0.$$
Example 1.

\[G = [\mathbb{R}^n] = G(n, \mathbb{R}^n) \]

\[\mathcal{P}(G) = \{ A : \text{tr}(A) \geq 0 \} \]

\[u \text{ is } G\text{-psh} \iff \text{tr}(D^2 u) = \Delta u \geq 0. \]

\[u \text{ is } G\text{-harmonic} \iff \text{tr}(D^2 u) = \Delta u = 0. \]

Classical Potential Theory
Example 2.

\[\mathbf{G} = G(1, \mathbb{R}^n) \]

\[\mathcal{P}(\mathbf{G}) = \{ A : \langle Av, v \rangle \geq 0 \ \forall \ v \in \mathbb{R}^n \} = \{ A \geq 0 \} \]

\[u \text{ is } \mathbf{G}\text{-psh} \iff D^2 u \geq 0. \]

The Theory of Convex Functions

\[u \text{ is } \mathbf{G}\text{-harmonic} \iff D^2 u \geq 0 \text{ and } \det(D^2 u) = 0 \]

The Real Monge-Ampère Equation
Example 3.

\[\mathbf{G} = G_c(1, \mathbb{C}^n) \subset G(2, \mathbb{R}^{2n}) \]

Note the decomposition

\[\text{Sym}^2(\mathbb{R}^{2n}) = \text{Herm}^{\text{sym}} \oplus \text{Herm}^{\text{skew}} \]

\[A = \frac{1}{2}(A - JAJ) + \frac{1}{2}(A + JAJ) = A_c^{\text{sym}} + A_c^{\text{skew}} \]

\[A_c^{\text{sym}} J = J A_c^{\text{sym}} \quad \text{and} \quad A_c^{\text{skew}} J = -J A_c^{\text{skew}} \]

\[\mathcal{P}(\mathbf{G}) = \{ A_c^{\text{sym}} \geq 0 \} \]

\[u \text{ is } \mathbf{G}\text{-psh} \iff (D^2 u)_c^{\text{sym}} \geq 0. \]

The Theory of Plurisubharmonic Functions

\[u \text{ is } \mathbf{G}\text{-harmonic} \iff (D^2 u)_c^{\text{sym}} \geq 0 \text{ and } \det_c(D^2 u)_c^{\text{sym}} = 0 \]

The Complex Monge-Ampère Equation
Example 4. Calibrations.

\[\phi \in \Lambda^p \mathbb{R}^n \quad \text{constant coefficient } p\text{-form} \]

is a **calibration** if

\[\phi|_W \leq \text{dvol}_W \quad \text{for all oriented } p\text{-planes } W \]

We define

\[\mathcal{G} = \mathcal{G}(\phi) = \{ W : \phi|_W = \text{dvol}_W \} \]
Lagrangian Planes

Here

\[\mathcal{G} = \text{Lag} \subset G(n, \mathbb{R}^{2n}) \]

the set of Lagrangian \textit{n}-planes in \(\mathbb{C}^n = (\mathbb{R}^{2n}, J) \)

Recall

\(W \) is Lagrangian \iff \(\mathbb{C}^n = W \oplus J(W) \) (orthogonal direct sum)

As before

\[\mathcal{P}(\text{Lag}) = \left\{ A \in \text{Sym}^2(\mathbb{R}^{2n}) : \text{tr} \left(A \big|_W \right) \geq 0 \ \forall \ W \in \text{Lag} \right\} \]

Definition. \(u \in C^2(\Omega) \) is \text{Lag-plurisubharmonic} if

\[D^2u \in \mathcal{P}(\text{Lag}) \quad \text{on} \ \Omega. \]
$u \in C^2(\Omega)$ is Lag–psh

$\iff u \big|_{W \cap \Omega}$ is subharmonic for all affine Lagrangian planes W

$\iff u \big|_M$ is M-subharmonic for minimal Lagrangian submanifolds M

For the last

$$D^2 u \big|_M = \Delta_M u + H_M u$$
Semi-Continuous G-psh functions

We want to extend the notion of G-psh to non-differentiable functions. We use the notions from viscosity theory (Crandall, Ishii, Lions, Evans, ...). For a domain $\Omega \subset \mathbb{R}^n$ we define

$$USC(\Omega) \equiv \{ u : \Omega \to [-\infty, \infty) : u \text{ is upper semi-continuous} \}$$

Definition. By a test function for $u \in USC(\Omega)$ at a point $x \in \Omega$ we mean a C^2-function φ defined near x with

$$u \leq \varphi \quad \text{and} \quad u(x) = \varphi(x).$$

Definition. A function $u \in USC(\Omega)$ is Lag-psh if for all $x \in \Omega$ and for each test function φ for u at x,

$$D^2 \varphi \in \mathcal{P}(\text{Lag})$$

$$\mathcal{P}_{\text{Lag}}(\Omega) = \text{the set of these}.$$
Note

Test functions **may not exist** for \(u \) at some point \(x \in \Omega \).

This is OK, and an important part of the definition.
Remarkable Properties

- \(u, v \in \mathcal{P}_{\text{Lag}}(\Omega) \Rightarrow \max\{u, v\} \in \mathcal{P}_{\text{Lag}}(\Omega) \)
- \(\mathcal{P}_{\text{Lag}}(\Omega) \) is closed under decreasing limits.
- \(\mathcal{P}_{\text{Lag}}(\Omega) \) is closed under uniform limits.
- If \(\mathcal{F} \subset \mathcal{P}_{\text{Lag}}(\Omega) \) is locally uniformly bounded above,

\[
\text{then} \quad U^* \in \mathcal{P}_{\text{Lag}}(\Omega) \quad \text{where}
\]

\[
U(x) \equiv \sup_{u \in \mathcal{F}} u(x) \quad \text{(Perron)}
\]
Also

- \(C^2 \) Lag-psh functions are in \(\mathcal{P}_{\text{Lag}}(\Omega) \).
- \(u \in \mathcal{P}_{\text{Lag}}(\Omega) \) is classically subharmonic on \(\Omega \).

For this note that \(C^n = W \oplus JW \) for \(W \in \text{Lag} \).
Viscosity Lag-Harmonics

Dual Equation

\[\mathcal{P}(\text{Lag}) \equiv -\left(\sim \text{Int} \mathcal{P}(\text{Lag}) \right) = \sim \left(-\text{Int} \mathcal{P}(\text{Lag}) \right) \]

\[\mathcal{P}(\text{Lag}) = \{ A : \text{tr} \left(A \big|_W \right) \geq 0 \text{ for some } w \in \text{Lag} \} \]

Definition
u is **Lag-harmonic** on \(\Omega \) if

\[u \in \mathcal{P}_{\text{Lag}}(\Omega) \quad \text{and} \quad -u \in \tilde{\mathcal{P}}_{\text{Lag}}(\Omega) \]

Note that

\[\mathcal{P}(\text{LAG}) \cap \left(-\mathcal{P}(\text{Lag}) \right) = \partial \mathcal{P}(\text{Lag}) \]

Otherwise said: \(u \) is both a subsolution and a supersolution.
Lag-Convex Domains

Definition
Consider $\Omega \subset \subset \mathbb{C}^n$ with smooth boundary $\partial \Omega$.

Then $\partial \Omega$ is **strictly Lag convex** if every point $x \in \partial \Omega$ has a smooth defining function which is strictly Lag-psh.

Alternatively: if the second fundamental form of $\partial \Omega$ (w.r.t. inner normal) has strictly positive trace on every $W \in \text{Lag}$ which is tangent to $\partial \Omega$.
The Dirichlet Problem

Theorem Let $\Omega \subset \subset \mathbb{C}^n$ have a smooth strictly Lag convex boundary $\partial \Omega$. Then for every $\varphi \in C(\partial \Omega)$ there exists a unique function $u \in C(\Omega)$, with

1. $u \big|_{\Omega}$ Lag-harmonic, and
2. $u \big|_{\partial \Omega} = \varphi$.

THE LAGRANGIAN MONGE-AMPÈRE OPERATOR
Is There a Polynomial Differential Operator Whose Solutions are Lag-Harmonic?

\[\text{Sym}^2(\mathbb{R}^{2n}) \text{ decomposes under } U(n): \]

\[\text{Sym}^2(\mathbb{R}^{2n}) = \text{Herm}^{\text{sym}} \oplus \text{Herm}^{\text{skew}} \]

\[= (\mathbb{R} \cdot \text{Id}) \oplus \text{Herm}_0^{\text{sym}} \oplus \text{Herm}^{\text{skew}} \]

\[A = \frac{1}{2}(A - JAJ) + \frac{1}{2}(A + JAJ) = A_c^{\text{sym}} + A_c^{\text{skew}} \]

\[= \left(\frac{\text{tr}A}{2n} \right) \text{Id} + (A_c^{\text{sym}})_0 + A_c^{\text{skew}} \]

Basic Fact

The Lag-Analysis is independent of \(\text{Herm}_0^{\text{sym}} \).
Basic Fact

The Lag-Analysis is independent of \(\text{Herm}_0^{\text{sym}} \).

Proof. Let

\[E \in \text{Herm}_0^{\text{sym}} \quad \text{and} \quad W \in \text{Lag.} \]

Choose orthonormal basis \(\{e_k\}_k \) for \(W \). Then

\[
\text{tr} \left(E \mid_W \right) = \sum_k \langle Ee_k, e_k \rangle = \frac{1}{2} \left\{ \sum_k \langle Ee_k, e_k \rangle + \sum_k \langle JEe_k, Je_k \rangle \right\} = \frac{1}{2} \left\{ \sum_k \langle Ee_k, e_k \rangle + \sum_k \langle EJe_k, Je_k \rangle \right\} = \frac{1}{2} \text{tr}(E) = 0 \quad \blacksquare
\]
So we see:

\[A^\text{sym}_C \text{ plays a central role in } \mathbf{C}\text{-psh functions} \]
and the complex Monge-Ampère equation,
but \(A^\text{skew}_C \) is invisible (trace = 0 on complex lines)

\[A_{\text{Lag}} \equiv \left(\frac{\text{tr}A}{2n} \right) \text{Id} + A^\text{skew}_C \text{ plays a central role in Lag-psh functions} \]
and the Lagrangian Monge-Ampère equation,
but \((A^\text{sym}_C)_0 \) is invisible (trace = 0 on Lagrangians).
The Lagrangian Monge-Ampère Operator

Suppose

\[B \in \text{Herm}^{\text{skew}} \quad BJ = -JB \]

\[B(e) = \lambda e \quad \Rightarrow \quad B(Je) = -\lambda Je \]

\[
\begin{pmatrix}
\lambda_1 \\
-\lambda_1 \\
\vdots \\
\ldots \\
\lambda_n \\
-\lambda_n
\end{pmatrix}
\]

Assume \(0 \leq \lambda_1 \leq \cdots \leq \lambda_n \)

If \(W \) is Lagrangian, \(\text{tr} \left(B \big|_W \right) \geq -(\lambda_1 + \cdots + \lambda_n) \)
The Lagrangian Monge-Ampère Operator

Suppose

\[A \in \text{Sym}^2(\mathbb{R}^{2n}) \quad \text{and} \quad W \in \text{Lag} \]

\[\text{tr} (A|_W) = \text{tr} \left\{ \left(\frac{\text{tr}A}{2n} \text{Id} + A_{\text{skew}}^c \right)|_W \right\} \]

\[= \frac{\text{tr}A}{2} + \text{tr} (A_{\text{skew}}^c|_W) \]

\[\geq \mu - (\lambda_1 + \cdots + \lambda_n) \]

where \(\mu \equiv \frac{\text{tr}A}{2} \) and

\[0 \leq \lambda_1 \leq \cdots \leq \lambda_n \quad \text{are the non-negative e-values of} \quad A_{\text{skew}}^c. \]
The Lagrangian Monge-Ampère Operator

\[\text{tr} \left(A \mid_W \right) \geq \mu - (\lambda_1 + \cdots + \lambda_n) \]

\[\mu \equiv \frac{\text{tr} A}{2} \quad \text{and} \quad 0 \leq \lambda_1 \leq \cdots \leq \lambda_n \quad \text{are e-values of } A_{c_{\text{skew}}}^\text{skew}. \text{ So} \]

\[\text{tr} \left(A \mid_W \right) \geq 0 \quad \forall \ W \in \text{Lag} \quad \iff \quad \mu - (\lambda_1 + \cdots + \lambda_n) \geq 0 \]

Consider the operator

\[\text{MA}_{\text{Lag}}(A) \equiv \prod_{\pm \pm \cdots \pm} (\mu \pm \lambda_1 \pm \lambda_2 \pm \cdots \pm \lambda_n) \]

This is a polynomial in \(\mu \)

coefficients are symmetric functions of \(\lambda_1^2, \ldots, \lambda_n^2 \)
The Lagrangian Monge-Ampère Operator

\[\text{MA}_{\text{Lag}}(A) \equiv \prod_{\pm} (\mu \pm \lambda_1 \pm \lambda_2 \pm \cdots \pm \lambda_n) \]

- \(\mathcal{P}(\text{Lag}) = \text{Closure}\{\text{MA}_{\text{Lag}}(A) > 0\}\text{Id} \)

- A Lag-Harmonic \(u \) is a \textit{viscosity solution} of

\[(D^2u)_{\text{Lag}} \geq 0 \quad \text{and} \quad \text{MA}_{\text{Lag}}(D^2u) = 0. \]
An Invariant Definition, I

\[A \in \text{Sym}^2(\mathbb{R}^{2n}) \quad \text{and} \quad A_{\text{Lag}} = \frac{\text{tr}A}{2n} \text{Id} + A_{\text{C}}^{\text{skew}} \]

\[D_{A_{\text{Lag}}} \equiv \text{the derivation on} \quad \Lambda^n \mathbb{R}^{2n} \]

\[M_{A_{\text{Lag}}}(A) = \text{a factor of} \quad \det(D_{A_{\text{Lag}}}) \]
An Invariant Definition, II (Spinors)

\[A \in \text{Sym}^2(\mathbb{R}^{2n}) \quad \text{and} \quad B = A^{\text{skew}}_c \]

\[B \cong \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} \]

Set \(|B| = \sqrt{B^2} \). Then

\[|B|J = \begin{pmatrix} \lambda & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix} \]

and hence defines an element in \(\Lambda^2 \mathbb{R}^{2n} \):

\[\mathbf{B} = \sum \lambda_k e_k \wedge Je_k \in \Lambda^2 \mathbb{R}^{2n} \subset \mathbb{C}\ell(\mathbb{R}^{2n}) \]
An Invariant Definition, II (Spinors)

Let S be an irreducible complex representation of $\mathcal{C}l(\mathbb{R}^{2n})$

$$(S = \Lambda^{0,*})$$

Then B acts by Clifford multiplication on S and

$$MA_{\text{Lag}}(A) = \det(\mu \text{Id} + iB)$$
TRANSPLANTATION TO GROMOV MANIFOLDS
Gromov Manifolds

Definition

A **Gromov manifold** is a triple (X, ω, J) where

(X, ω) is a symplectic manifold and

J is an almost complex structure on X with:

$$\omega(v, w) = \omega(Jv, Jw) \quad \text{and} \quad \omega(Jv, v) > 0$$

The riemannian metric

$$\langle v, w \rangle \equiv \omega(Jv, w) \quad \text{has} \quad \langle Jv, Jw \rangle = \langle v, w \rangle.$$

By Gromov any compact symplectic manifold admits such a structure.

This structure pushes forward under symplectomorphisms.
Riemannian Hessian

Definition

For $u \in C^\infty(X)$, the **hessian** of u is a section of $\text{Sym}^2(T^*X)$ defined on vector fields v, w by

$$(\text{Hess} f)(v, w) \equiv vw f - (\nabla_v w) f$$

This Hessian gives a canonical splitting of the 2-jet bundle of X:

$$J^2(X) = \mathbb{R} \oplus T^*X \oplus \text{Sym}^2(T^*X),$$

Via the metric and J

$$\text{Sym}^2(T^*X) = \mathbb{R} \oplus \text{Herm}^\text{sym}_0(TX) \oplus \text{Herm}^\text{skew}(TX)$$

Everything above carries over – including the Lag Monge-Ampère operator.
Lagrangian Pseudoconvexity

∃ Lag analogues of pseudoconvexity and total reality from complex analysis.

For example.

Definition The **Lagrangian hull** of a compact subset $K \subset X$ is

$$
\hat{K} \equiv \{ x \in X : u(x) \leq \sup_{K} u \ \forall \text{Lag-psh } u \text{ on } X \}
$$

Theorem The following are equivalent.

1) If $K \subset X$, then $\hat{K} \subset X$.

2) There exists a Lag-psh proper exhaustion function f on X.

This defines Lag-pseudoconvexity.
Freeness

A manifold $M \subset X$ is **Lag-free** if it has no tangent Lagrangian planes
(always true if $\dim(M) < n$)

If M is free, then

$$M_\varepsilon = \{ x : \text{dist}(x, M) < \varepsilon \}$$

is Lag-convex.

In fact, M has a fundamental neighborhood system
of Lag-convex neighborhoods
THE DIRICHLET PROBLEM
THEOREM. Let $\Omega \subset X$ be a Lag-convex domain. Then for every

$$\psi \in C(\overline{\Omega}), \quad \psi \geq 0 \quad \text{and} \quad \varphi \in C(\partial \Omega)$$

there exists a unique

$$H \in C(\overline{\Omega}) \cap \mathcal{P}_{\text{Lag}}(\Omega)$$

with

$$\text{MA}_{\text{Lag}}(H) = \psi, \quad \text{and} \quad H\big|_{\partial \Omega} = \varphi.$$
The (Homog) Dirichlet Problem for Other Branches

Given $A \in \text{Sym}^2(\mathbb{R}^{2n})$, let

$$\Lambda_1 \leq \Lambda_2 \leq \cdots$$

be the ordered eigenvalues of $\mathcal{M}_{\text{Lag}}(A)$, and set

$$\mathcal{P}^k_{\text{Lag}} = \{ A : \Lambda_k(A) \geq 0 \}$$

THEOREM. Let $\Omega \subset X$ be a Lag-convex domain. Then for every

$$\varphi \in C(\partial \Omega)$$

there exists a unique

$$H \in C(\overline{\Omega}) \cap \mathcal{P}^k_{\text{Lag}}(\Omega)$$

with

$$\mathcal{M}_{\text{Lag}}(H) = 0, \quad \text{and} \quad H\big|_{\partial \Omega} = \varphi.$$
A FUNDAMENTAL SOLUTION
IN EUCLIDEAN SPACE
Riesz Kernels

The **Riesz characteristic** of the subequation \mathcal{P}_{Lag} in \mathbb{C}^n is n.

The **Riesz kernel**

$$K_n(x) \equiv \begin{cases} -\frac{1}{|x|^{n-2}} & \text{for } n \geq 3 \\ \log|x| & \text{for } n = 2 \end{cases}$$

is **Lag-harmonic** in $\mathbb{C}^n - \{0\}$ and **Lag-psh** across 0.

THEOREM.

$$\text{MA}_{\text{Lag}}(K_n)^\alpha = c \delta_0 \quad (c > 0)$$

where $\alpha = \frac{1}{2n-1}$.
This Means:

\[K_{n,\epsilon}(x) = -\frac{1}{(|x|^2 + \epsilon^2)^{n/2}} \]

is Lag-psh and \(\downarrow K_n(X) \)

and

\[\text{MA}_{\text{Lag}}(K_{n,\epsilon})^\alpha = \frac{1}{\epsilon^{2n}} \varphi \left(\frac{|x|}{\epsilon} \right) \to c \delta_0 \]

where \(\varphi \geq 0 \) is integrable on \(\mathbb{C}^n \).
QUESTIONS
Questions

1. **Regularity** of the solution to (DP) when $\psi > 0$?

 We note that MA_{Lag} is not uniformly elliptic.

 However its linearization at a solution is elliptic.

2. Is there a **foliation** (generically) attached to a Lag-harmonic?

3. Can one establish useful **capacities** using Lag-harmonics?