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My current research interests include various topics in geometric function theory, holo-

morphic dynamics, computational geometry and probability theory. Below I describe some

specific problems I am thinking about. More detailed descriptions can be found in my past

and current NSF proposals, and the unifying role of harmonic measure in all these prob-

lems is described in my 2018 ICM article “Harmonic measure: algorithms and applications”.

Links to these are given at http://www.math.stonybrook.edu/~bishop/vita.

Harmonic measure, trees and triangulations

• Harmonic measure: The most intuitive definition of harmonic measure is as the bound-

ary hitting distribution of Brownian motion. More precisely, suppose Ω ⊂ R
n is a domain

(open and connected) and z ∈ Ω. We start a random particle at z and let it run until the

first time it hits ∂Ω. See left figure below. We will assume this happens almost surely; this

is true for all bounded domains in R
n and many, but not all, unbounded domains. Then the

first hit defines a probability measure on ∂Ω. The measure of E ⊂ ∂Ω is usually denoted

ω(z, E,Ω) or ωz(E). For E fixed, ω(z, E,Ω) is a harmonic function of z on Ω, hence the

name “harmonic measure”. Therefore harmonic measure can also be defined using the Riesz

representation theorem: if f is continuous on ∂Ω and u is its harmonic extension to Ω then

f → u(z) is a bounded linear functional on C(∂Ω), so there is a measure ωz so that

u(z) =

∫
∂Ω

f(x)dωz(x).

This is harmonic measure again. Finally, for simply connected planar domains, harmonic

measure for z is the also image of normalized length measure on the unit circle under a

conformal map from the disk to Ω taking 0 to z (because Brownian motion is conformally

invariant). This allows allows much of complex function theory to be applied, at least in

2 dimensions. The two right figures below illustrate a conformal map from the disk to a

polygon; harmonic measures of various edges can be estimated by the number of dyadic grid

boxes needed to cover them.

Harnack’s inequality implies that ω(z, E,Ω) is either the constant 0 or 1 or is strictly

between 0 and 1 on all of Ω. Thus the null sets for harmonic measure are independent of z.

Much of my previous work centers around the geometric properties of harmonic measure,

such as rectifiability, and its connections to dynamics and probability. Such results from



my previous work are described in the survey mentioned above; here I will discuss some

problems I am currently thinking about.

• True trees: It is not hard to prove that if the harmonic measures for two points on

opposite sides of a closed Jordan curve are exactly the same measure, then the curve is a

circle, and the points are reflections of each other. A more interesting version is to ask if

any finite planar tree T can be drawn so that harmonic measure is equal on “both sides” of

each edge? More precisely, with base point equal to infinity, can we draw T so that

(1) every edge has equal harmonic measure,

(2) any subset of any edge has equal harmonic measure from both sides?

Perhaps surprisingly, the answer is yes, every finite planar tree T has such drawing, unique

up to similarities, called the “true form of the tree” (or a “true tree” for short). Here are a

few examples with 10 edges.

The fact that every tree can be drawn in this way is well known, and closely related to

the uniformization theorem: given a planar tree T , we can connect each vertex to infinity,

so as to obtain a topological triangulation of the sphere where each side of the tree occurs

as one side of a triangle. If we identify each topological triangle with an equilateral triangle,

this gives the sphere a conformal structure, which must agree with the usual one by the

uniformization theorem, and the true form of T is its image under identification with the

usual Riemann sphere.

This is a special case of Grothendieck’s theory of dessins d’enfants, in which a finite graph

on a topological surface imparts a conformal structure to the surface (in our case, a tree on

the sphere). Associated to each true tree is a polynomial that has critical values exactly

±1. This polynomial has algebraic coefficients ad gives rise to an action of the absolute

Galois group on planar trees, i.e., an action that permutes finite trees, although a general

description of the orbits is unknown e.g., two trees in the same orbit must have the same

vertex degree sequences, but this is not sufficient. The blue tree (leftmost) above is a fixed

point of the action, and the red ones (the rest) form a single orbit.

Because of the relation to balanced harmonic measure, conformal maps between the ex-

teriors of true trees with the same number of vertices have analytic extensions across the

interiors of every edge; this allows us to “glue” the exteriors in a natural way to form Rie-

mann surfaces covering a punctured plane. Is the orbit structure of the trees be related to

these surfaces and relations among them? There are also a variety of interesting problems

about particular families of true trees. For example, it has been observed that taking the

true forms of finite truncations of the infinite 3-regular tree gives a sequence of trees that

seems to converge to the “deltoid fractal” (see right side below), a fractal set that arises in



the iteration theory of anti-holomorphic dynamics and reflection maps. See below. Can we

prove this convergence?

• Triangulating surfaces by folding: As noted above, true trees are related to equilat-

eral triangulations of the sphere, and these triangulations are related to polynomials that

have exactly three critical points (±1 and ∞). Is this true for all Riemann surfaces? A

holomorphic function f : X → S
2 on a Riemann surface X is called a Belyi function if f

is branched only over 0, 1 and ∞, and f has no removable singularities at punctures of

X. The latter condition implies that f cannot be holomorphically extended to a Riemann

surface properly containing X. For example, the polynomials associated to true trees above

are Belyi functions for the Riemann sphere.

Question 1. Do all open Riemann surfaces have Belyi functions? All planar domains?

If the surface X has a Belyi function f , then the preimages of the upper and lower half-

planes are topological triangles in G which are conformally equivalent to equilateral triangles

glued (according to arclength) along their edges. Thus the previous question really asks if

every open Riemann surface can be constructed from a countable collection of equilateral

triangles glued along their boundaries. If we also assume the Belyi functions have no as-

ymptotic values (limits along curves tending to ∞ on the surface) then these triangles are

compact, and we get a standard triangulation. More concisely:

Conjecture 2. Every open Riemann surface has an equilateral triangulation.

This is not true for compact surfaces: by a famous theorem of Belyi [7], a compact surface

X has a Belyi function (= has an equilateral equilateral triangulation) iff it is algebraic.

It is also easy to see directly that there are only countably many ways to glue equilateral

triangles together to get a compact surface (compactness implies only finitely many triangles

per surface). But for open surfaces, we can use countable triangulations and there are

uncountable many ways to glue them together.

Above we saw that finite planar trees can be associated to polynomials with exactly

two critical values. Recently I developed a method called quasiconformal folding, which

associates entire functions with two critical values to certain infinite planar trees (an infinite

version of dessins d’enfants which is still mostly unexplored).

Roughly speaking, a quasiconformal map is a homeomorphism that maps infinitesimal cir-

cles to ellipses of eccentricity at most K; taking K = 1 gives conformal maps. Quasiregular



maps are defined similarly but need not be 1-1, i.e., quasiregular is to quasiconformal as holo-

morphic is to conformal. Indeed, every quasiregular map in two dimensions is a holomorphic

map pre-composed with a quasiconformal one. The idea of QC folding is to explicitly build

a quasiregular function with the desired properties and then make it holomorphic by solving

a Beltrami equation; in many applications the holomorphic function can be taken to be as

close to the quasiregular model as we wish. The QC-folding method is very flexible and

can be used to construct quasiregular analogs of Belyi functions on any Riemann surface.

However, solving the Beltrami equation to make this quasiregular function holomorphic may

change the conformal structure of the surface, i.e., the holomorphic function is defined on a

different Riemann surface than the quasiregular model was. Moreover, the case of compact

surfaces shows this does, in fact, occur. For non-compact surfaces, however, it should be

possible to alternate applications of the folding construction on compact sub-surfaces (which

we can choose to alter the conformal structure only slightly), with conformal correction maps

that “push” the perturbed sub-surface back into X. I am currently pursuing this approach

with Lasse Rempe-Gillen.

•Holomorphic embeddings: Similar difficulties arise in constructions of minimal surfaces

in R
3 and holomorphic embeddings of Riemann surfaces, e.g., the famous and well studied

Bell-Narasimhan Conjecture (e.g., page 20, [6]):

Conjecture 3. Every open Riemann surface has a proper holomorphic embedding in C
2.

Certain approaches (e.g., [27]) use Runge’s theorem, but have to “cut out” certain regions

where the Runge approximation may be too large (Runge’s theorem gives no control of

the approximating function off the set where the approximation is made). QC-folding gives

similar approximations by entire or meromorphic functions, but these also come with growth

bounds everywhere on the plane in terms of the approximation set and the desired degree

of approximation. Perhaps this “Quantitative Runge’s Theorem”, can be applied to some

aspects of the embedding problem?

• Transcendental dynamics: Transcendental dynamics refers to the iteration theory of

non-polynomial entire functions. We let T denote this class of functions. As usual, the

Fatou set F is the maximal open set where the iterates of f form a normal family and

the Julia set J is its complement (and is always non-empty). While similar to polynomial

dynamics in many respects, there are several significant differences: wandering domains can

exist, Fatou components of any finite or infinite multiplicity may occur, the escaping set

I(f) = {z : f(z) → ∞} plays a more prominent role (and has interesting subsets based on

rates of escape), the Julia set always contains a non-trivial continuum, and it is generally

harder to build “small” Julia sets than “large” ones, in the sense of fractal dimensions.

The singular set of an entire function f is the closure of its critical values and finite

asymptotic values (limits of f along curves to ∞); the complement of the singular set is

the largest open set where f−1 is always well defined locally. In transcendental dynamics

much attention is devoted to the Eremenko-Lyubich class (transcendental entire functions

with bounded singular set) and the Speiser class (finite singular set). My quasiconformal



folding method [12] is well adapted to constricting examples in these classes based on the

desired geometry. QC-folding has already solved several longstanding problems, such as

the existence of wandering domain in the Eremenko-Lyubich class, disproving Adam Ep-

stein’s order conjecture (that quasiconformally equivalent Speiser class functions have the

same order or growth), and finding a Speiser class counterexample to the strong Eremenko

conjecture (connected components of the escaping set are path connected).

Recall that Hausdorff, upper Minkowski and packing dimension are defined as

Hdim(K) = inf{s : inf{∑j r
s
j : K ⊂ ∪jD(xj, rj)} = 0},

Mdim(K) = inf{s : lim supr→0 infN Nr
s = 0 : K ⊂ ∪N

j=1D(xj, r)},
Pdim(K) = inf{s : K ⊂ ∪∞

j=1Kj : Mdim(Kj) ≤ s for all j}.
It is elementary that Hdim ≤ Pdim ≤ Mdim. We shall see below that these can differ for

transcendental Julia sets.

• The smallest transcendental Julia set In [14] I construct a transcendental entire

function f whose Julia set has Hausdorff dimension 1. This had been open since 1975

when Baker [4] proved that Hdim(J (f)) ≥ 1 for all such f , by showing every such Julia

set contains a non-degenerate continuum. This example has finite spherical 1-measure, and

packing dimension 1 (the first with Pdim(J ) < 2), but the following remains open:

Question 4. Can a transcendental Julia set lie on a rectifiable curve on the sphere?

The Julia set of tan(z) is R, so this can occur for meromorphic functions. My “dim =1”

example is the transcendental analog to Shishikura’s construction [36] of quadratic Julia

sets of dimension 2. Similarly, finding a rectifiable example would be analogous to Buff and

Cheritat’s construction [19] of a positive area polynomial Julia set. Question 4 seems very

delicate, and I have ideas for both constructing such an example and for proving it can’t

exist. The Fatou components in my example are infinitely connected, which leads to the

infinite packing measure and the impossibility of connecting the Julia set by a finite length

curve. Kisaka and Shishikura [25] have constructed examples in T with annular Fatou

components, and I believe similar examples can also be constructed by QC-folding. Can

we combine all these ideas (perhaps with characterizations of rectifiability from [3], [23]) to

produce a positive answer to Question 4?

• Small Julia sets in the Speiser class: The “dim = 1” example discussed above has

an unbounded singular set. Indeed, this must hold for any such example: Gwyneth Stallard

[37], [38] proved Julia sets for the Eremenko-Lyubich class have Hausdorff dimensions strictly

bigger than 1 and all values in (1, 2] can occur. However, Rippon and Stallard [35] proved the

packing dimension for Eremenko-Lyubich Julia sets is always 2, so the two dimensions need

not be the same, even in “nice” cases. Stallard’s examples are not in the more restrictive

the Speiser class (finite singular set), but using a refinement of QC folding, Simon Albrecht

and I [16] have shown that inf{dim(J (f)) : f ∈ S} = 1. These are the first Speiser class

examples with dimension < 2. Do all dimensions occur?

Question 5. Is {Hdim(J (f)) : f ∈ S} = (1, 2]?



Given an entire function f we let Mf denote the class of quasiconformal deformations of

f , i.e., entire functions of the form g = ψ ◦ f ◦ϕ, where ψ, ϕ are quasiconformal. For Speiser

class functions this is a finite dimensional manifold. The Hausdorff dimension of the Julia

set is continuous on Mf , so Question 5 would follow from:

Conjecture 6. If f ∈ S, then sup{Hdim(J (g)) : g ∈Mf} = 2.

This is an analog of Shishikura’s result [36] about dimensions of quadratic Julia sets

tending to 2 near generic points in the boundary of the Mandelbrot set (also analogous my

theorem with Peter Jones that Kleinian limit sets have dimension tending to 2 near most

boundary points of Teichmüller space [17]). Possibly Shishikura’s proof can be adapted to

this case. In the other direction,

Question 7. Is there an f ∈ S with inf{Hdim(J (g)) : g ∈Mf} = 1?

However, we do not currently even know any example of a Speiser class f where Hdim(J )

is non-constant on the moduli space Mf , so the last two questions are somewhat ambitious.

• Packing dimension: As noted above, the Hausdorff and packing dimensions of tran-

scendental Julia sets can be different, but only a few examples of this are known. The gray

triangle below shows the possible pairs 1 ≤ Hdim ≤ Pdim ≤ 2 and the black parts denote

all known transcendental examples: the vertex (2, 2) is due to Misiurewicz [29] (see also

McMullen [28]); the top edge (t, 2), 1 < t < 2 is due to Stallard [37], [38]; (1, 1) is my

example.
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Question 8. For each 1 < s < t < 2 is there a f ∈ T
with Hdim(J ) = s and Pdim(J ) = t? (gray triangle)

Question 9. Is there a transcendental Julia set with
Hdim(J ) = 1,Pdim(J ) = 2? (upper left corner)

Question 10. For t ∈ (1, 2), is there a f ∈ T with
Hdim(J (f)) = Pdim(J (f)) = t? (diagonal edge)

Jack Burkart, a current PhD student of mine, has shown that for any 1 ≤ s < t ≤ 2 there is

a transcendental Julia set with s < Hdim ≤ Pdim < t, so the diagonal edge in the diagram

above is in the closure of occurring pairs. We do not currently know if Jack’s examples have

equal Hausdorff and packing dimension, or whether all packing dimensions between 1 and 2

occur. Surprisingly, the analogous questions for polynomials also seem to be open:

Question 11. Are the Hausdorff and packing dimensions of a polynomial Julia set always

equal? If not, what pairs 0 < Hdim ≤ Pdim ≤ 2 can occur?

The two dimensions are known to be equal in many cases (e.g., hyperbolic examples).



Computational geometry and optimal meshing

• Optimal triangulation: A planar straight line graph (PSLG) is any finite union of

segments and points in the plane; a polygon is a special case when the segments meet end-

to-end. Besides a polygon, a PSLG could be a point cloud, a triangulation, a tree, . . . ;

almost anything we can draw. A few examples are given below:

Meshes for numerical PDE and other problems generally perform better if the angles

are not too small or too large, so there is great interest in triangulating domains bounded

by polygons or PSLGs with angle bounds strictly between 0◦ and 180◦, and using a small

number of triangles, e.g., only a polynomial number of them (as a function of the number n of

boundary vertices). Easy examples show that polynomial complexity rules out any uniform

lower bound on angles (consider a long narrow rectangle), and also any upper bound that is

less than 90◦ (since the angles sum to 180◦, an upper bound < 90◦ implies a strictly positive

lower bound).

Polynomial algorithms giving 90◦ for simply polygons and larger angle bounds for PSLGs

were found in the 1990’s (see [9], [30], [40]), but the first polynomial bound with optimal

angles for PSLGs is more recent: I proved in [13] that any PSLG with n vertices has a O(n2.5)

conforming non-obtuse triangulation (called a NOT for brevity; non-obtuse means all angles

≤ 90◦, conforming means the edges of the triangulation cover the edges of the PSLG). The

NOT theorem improves a famous O(n3) bound of Eldesbrunner and Tan [21] for conforming

Delaunay triangulations, and also improves a variety of other optimal triangulation results,

e.g., from [8]. The worst known PSLG requires ≃ n2 for a non-obtuse triangulation and this

is likely sharp:

Conjecture 12. Every PSLG has a conforming NOT with O(n2) elements.

Conjecture 13. Every PSLG has an O(n2) conforming Delaunay triangulation.

Conjecture 14. Every PSLG has an O(n2) conforming Voronoi diagram.

A Delaunay triangulation is defined by the property that any pair of triangles sharing

an edge having opposite angles summing to ≤ π. Given a point set V , the corresponding

Voronoi digram is the collection of points that are nearest to two or more different points.



Conforming means that the edges of the triangulation or diagram covers the edges of the

given PSLG. It is obvious that a NOT is also Delaunay, and it is easy to build a conforming

Voronoi diagram for a NOT by placing six points in each triangle in a certain way. Thus

the first conjecture is stronger than the second two, but I have never found any approach

for the latter cases that simplified the proof, or gave a better estimate, than in the NOT

problem. Perhaps all three problems are equivalent to each other: can we prove they have

the same complexity (even if we can’t determine exactly what that complexity is)?

• Meshing and dynamics: Given a PSLG, the NOT algorithm uses a natural flow asso-

ciated to any triangulation. Given a triangle, take the in-circle as shown at left below. The

three tangent points (cusp points) define three disjoint sectors, each of which is foliated by

circular arcs centered at a vertex:

We can flow each cusp point along this foliation until it hits another cusp point, or exits

the triangulation. The left figure below shows a flow on random triangulation, the center is

an enlargement. The right is an example where some paths propagate forever.

The proof of the NOT theorem involves showing that the flow associated to n triangles

can be perturbed in a precise way so that the average number of triangles each flow line hits

is only O(n). To make this work, I currently have to add up to O(
√
n) new flow lines for each

original one, and these are also propagated for O(n) steps, giving the O(n2.5) bound. In order

to get this uniform complexity bound, the algorithm bends paths to terminate them faster;

in order to maintain the desired angle bounds the bending is limited by constraints that

closely resemble keeping a discrete second derivative of the propagation paths bounded.

The fact that the bending process is constrained by something that looks like a discrete

derivative bound is reminiscent of Pugh’s closing lemma: every C1 vector field has a small

perturbation with a closed orbit [32], [33], [34]. This is still open for C2 vector fields and

Dennis Sullivan suggested there might be a connection:



Question 15. Can a closing lemma help prove the O(n2) NOT-theorem? Can the NOT

argument help prove a C2-closing lemma (or suggest a counterexample)?

The propagation paths described above define return maps on the triangle edges that pre-

serve length, so perhaps the theory of interval exchange maps or billiards in polygons is also

relevant to these problems. Possibly the theory of translations surfaces is also involved. So

far as I know, these triangle flows have not been studied before, so essentially all reasonable

questions are open and interesting.

• Thick and thin parts: I also have similar results for meshing with quadrilaterals rather

than triangles [11]: every PSLG on size n can be meshed by O(n2) quadrilaterals with all

angles between 60◦ and 120◦ (except for smaller angles in the original boundary, which are

left unchanged). Both the complexity and angle bounds are sharp. One tool that I developed

for optimal quad-meshing is a method for decomposing any polygon into disjoint thick and

thin pieces that are analogous to the thick/thin pieces of a hyperbolic manifold (regions

where the injectivity radius is larger/smaller than some ǫ). See the figure below. On the left

are the thin parts of a surface and on the right the thin parts of a polygon:

For an n-gon, each thin piece is either a neighborhood of a vertex (parabolic thin parts),

or corresponds to a pair of sides that have small extremal distance within Ω (hyperbolic thin

parts); the thin parts are in 1-to-1 correspondence with the thin parts of the n-punctured

Riemann sphere formed by gluing two copies of the polygon along its (open) edges. Despite

there being ≃ n2 pairs of edges, there are only O(n) thin parts, and they can be found in

time O(n) using the iota-map, a fast quasiconformal approximation to the conformal map.

See [10]. For the application to quad-meshing, ad hoc explicit constructions are used inside

the thin parts, and in the thick parts approximate conformal maps are used to transfer

meshes from the hyperbolic disk to the thick part. Thus the thick/thin decomposition of

the polygon breaks it up into regions where we use Euclidean and hyperbolic geometry,

respectively, to generate the mesh.

Polygons satisfy an analog of Mumford compactness: a family of n-gons is non-compact

iff the thin parts degenerate; is this useful for anything, e.g., “soft” proofs of constructive

results? It would be interesting if this could be exploited to give “compactness” proofs

of various complexity results about polygons. The thick/thin decomposition is also a key

component in my linear time conformal mapping algorithm [10], and I suspect it might have

other numerical applications.



• NOTs in 3 dimensions: Solving Conjectures 12-14 would mostly complete the theory

of optimal triangulation in R
2, but the corresponding theory using tetrahedra in R

3 (the

really important case for applications) is wide open:

Question 16. Do polyhedra in R
3 have non-obtuse tetrahedralizations of polynomial size?

Even finding an acute tetrahedralization (all angles < 90◦) of a cube in R
3 was open until

recently (the smallest known example uses 1,370 pieces [41]) and there is no acute decom-

position for the cube in R
4, [26]. As noted above, my work in 2-dimensional meshing uses

a thick/thin decomposition of a polygon to partition the polygon into two types of regions

where Euclidean and hyperbolic geometry respectively are used to create the mesh. Can we

use analogous ideas in R
3? Can one create a 3-manifold out of a polyhedron, run a Ricci

flow on it (as in Perelman’s proof of Thurston’s geometrization conjecture) to decompose it

into pieces with geometric structure and then utilize the “natural” geometries on the dif-

ferent pieces to define meshes? An intermediate problem between 2 and 3 dimensions is to

find NOTs for triangulated surfaces in R
3. The proof of the NOT theorem uses properties

of planar geometry that may not hold on a general polyhedral surface. Is there always a

uniform polynomial bound for a non-obtuse refinement of a triangulated surface, or does

the size of a NOT necessarily depend on the geometry, e.g., the curvature properties of the

surface?

Applications of hyperbolic geometry

Above I described the application of thick/thin decompositions and the iota map, ideas

coming from hyperbolic manifolds, to 2 dimensional meshing and conformal mapping. Be-

low I describe some other problems where 3-dimensional hyperbolic geometry makes an

unexpected appearance.

• Weil-Petersson curves and hyperbolic convex hulls: Quasicircles are closed Jordan

curves Γ in the plane that are quasiconformal images of circles. These can be characterized

by the Ahlfors M-condition: if z is on the smaller diameter arc of Γ with endpoints x, y

then |z − x| ≤ M |x − y| for some M < ∞. In general, quasicircles can be fractals, such as

the von Koch snowflake. Quasicircles can be identified with points of universal Teichmüller

space (usually identified as quasi-symmetric homeomorphisms of the unit circle to itself),

and it was a long standing problem to put a metric on this space that corresponds to the

Weil-Petersson metric on finite dimensional Teichmüller spaces of Riemann surface; this was

of interest for applications in, e.g., string theory and computer vision. Such a metric was

found by Takhtajan and Teo [39]; it gives universal Teichmüller space the structure of a

Hilbert manifold, and the finite dimensional metrics can be derived from it. However, the

Takhtajan-Teo topology is disconnected and it was an open problem to give a geometric

characterization of the connected component that contains all smooth curves: this sub-class

of quasicircles is called the Weil-Petersson class.



diam(Q)βΓ

3Q

Q

For a curve Γ, Peter Jones’ β-numbers βΓ(Q) measures the deviation of Γ ∩ 3Q from a

straight line where Q is a dyadic square in the plane. See left-hand figure above. Jones used

them to characterize rectifiable curves: his “traveling salesman theorem” implies that Γ has

finite length iff

∑
Q

βΓ(Q)
2diam(Q) <∞,

where the sum is over all dyadic squares in the plane that hit Γ (see right-hand figure above).

I proved in [15] in [15] that Γ is Weil-Petersson iff

∑
Q

βΓ(Q)
2 <∞,

and I give a number of natural alternative conditions that are equivalent to this one. One

of the most surprising involves the hyperbolic convex hull of Γ in the upper half-space

R
3
+ = R

3
+. This is the union of all hyperbolic geodesics (half-circles perpendicular to R

2

with endpoints in Γ. If Γ is a circle then its hyperbolic convex hull, CH(Γ) is a hemi-sphere

of zero hyperbolic volume, but otherwise it has non-empty interior and is bounded by two

surfaces, each of which meets R
2 along Γ, e.g., the left and center figures below show the

lower and upper boundaries of the hyperbolic convex hull of a square. For z in one of these

two boundary surfaces we let δ(z) be the hyperbolic distance to other boundary component;

this measures the “width” of the convex hull near z. See rightmost figure below. I prove in

[15] that Γ is Weil-Petersson iff

∫
∂CH(Γ)

δ2(z)dA(z) <∞,

where dA denotes hyperbolic surface area on the boundary of the convex hull. This is

very reminiscent of a result of Brock [18] that says the Weil-Petersson distance between

two Riemann surfaces X, Y (the same topological surface Σ, but with different conformal

structures) is approximately the volume of the convex core of an associated 3-manifold with

X and Y as boundaries at infinity. In this case, the volume of the convex core is comparable

to the L2 norm of the function δ defined above, so it would be interesting to see if the two

results can be unified.
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• Minimal surfaces and renormalized area: One consequence of the hyperbolic convex

hull characterization of Weil-Petersson curves is that Γ ⊂ R
2 is Weil-Petersson if and only if it

is the boundary of a minimal surface S ⊂ R
3
+ with finite total curvature, i.e.,

∫
S
|K|2dA where

K is the norm of the second fundamental form of S. This leads to a number of questions that

I am currently investigating, one of which concerns the idea of renormalized area. A surface

S ⊂ R
3
+ that has a non-degenerate curve Γ ⊂ R

2 as its asymptotic boundary must have

infinite hyperbolic area. However Robin Graham and Ed Witten [22] have introduced the

idea of a renormalized area that is finite if the boundary curve is sufficiently smooth. Alexakis

and Mazzeo [1], [2] have shown C3,α is sufficient. I show that if Γ is Weil-Petersson (and such

curves need not be even C1) then the associated minimal surface has finite renormalized still

area. Conversely,

Conjecture 17. A curve Γ ⊂ R
2 is Weil-Petersson iff it is the asymptotic boundary of a

minimal surface in hyperbolic space that has finite renormalized area.

The main idea of my proof is a “discrete approximation” of the minimal surface. I show

the renormalized area of this object is finite iff the boundary curve is Weil-Petersson, and

finiteness for the discrete approximation implies it for the actual minimal surface. The

opposite implication is what remains open. Renormalized area is relevant conformal field

theory and quantum entanglement, and I would also like to understand the connections, if

any, of Weil-Petersson curves to physics, and see whether my results in 2 and 3 dimensions

extend to the settings relevant to these topics.

• Some exotic 4-manifolds: Claude LeBrun and I recently constructed the first examples

of anti-self-dual 4-manifolds N , so that the almost-Kähler metrics on N form an non-empty

but proper subset of the moduli space. The simplest case is to start with a hyperbolic 3-

manifoldM that is homeomorphic to R×Σ where Σ is a compact surface. Such a 3-manifold

has a harmonic function u that tends to 0 in one end of M and tends to 1 in the other end

(u is called the tunnel vision function, or the harmonic measure of one end, since it measures

the probability that a Brownian particle will tend to infinity down one end or the other).

On the universal cover u lifts to the harmonic measure for one side of the limit set Γ of the

Kleinian group associated to M (in this setting, this limit set is a Jordan curve, indeed, a

quasicircle). To get a 4-manifold, we collapse the two ends ofM×T to two points; this gives

a conformally flat 4-manifold N (but a hierarchy of topologically distinct non-flat examples

also exists). One can show that this conformal metric is conformal to an almost-Kähler

metric if and only if the tunnel vision function doesn’t have any critical points.



Thus the construction is reduced to building quasi-Fuchsian Kleinian groups whose limit

set is a quasicircle in the plane with the property that the harmonic function in the hyperbolic

upper half-space with boundary values 0 on one side of the curve and 1 on the other side,

has a critical point. Our example uses a group with a large number of generators and a

limit set chosen to approximate a “dogbone” contour (see left below). At a certain height,

the harmonic measure for the dogbone approximates the harmonic measure for two disjoint

disks, whose level sets go from being disconnected to connected (see right below), indicating

the existence of a critical point.

However, many questions remain. For which planar domains Ω does ω(z,Ω,R3
+) have a

critical point? Does it matter whether we consider Euclidean or hyperbolic harmonic func-

tions? How few generators are needed to create an example? Can we locate “small” examples

using numerical experiments? Are critical points common for groups near the boundary of

Teichmüller space for any large G, e.g., near degenerate limit sets in the boundary? Are

such examples “common” or “‘rare” in Teichmüller space, e.g., finite or infinite volume?

Geometry of random sets

• Werner’s conjecture: Brownian motion has been intensely studied for over a century,

but some of its basic geometric properties, even in the plane, remain unknown. One of my

favorite such problems was formulated by Wendelin Werner. Consider the Brownian trace

in R
2, i.e., the image of [0, 1] under Brownian motion. This is a compact random set with

infinitely many complementary components.

Conjecture 18. Can any two complementary components be connected by a path that hits

the trace only finitely often?

Werner’s problem is illustrated by the following figures. They show 2 random walks on a

square grid, where the number of steps from each complementary component to the unique

unbounded component is color coded: red is close to the outer component and blue is far.

A counterexample would correspond to there being components with diameter bounded

away from zero, but arbitrarily many “steps” from the unbounded component, i.e., a “big

blue” component. Numerical simulations indicate that component diameters decrease like a

negative power of the step distance to the unbounded component, supporting the conjecture.



An alternative version of Werner’s question asks if every point of the Brownian trace can

be surrounded by arbitrarily small closed curves that each only hit the trace finitely often.

This would imply that the topological Hausdorff dimension is tHdim(B([0, 1])) = 1 (see [5];

tHdim(K) ≤ 1 + α if K has a neighborhood basis whose elements all have boundaries of

Hausdorff dimension ≤ α).

• Jordan curves inside the trace: If Werner’s conjecture fails, then B([0, 1]) contains a

continuum disjoint from every frontier. Since this continuum lies in a “very dense” part of

trace, perhaps it contains a “fairly straight” curve, at least in the sense of dimension. See

the figures below showing shortest paths in the trace of a random walk on a grid. Burdzy

[20], defines percolation dimension as Hdimperc(K) = inf{dim(γ) : γ ⊂ K, γ a Jordan arc}.

Question 19. Is the percolation dimension of the Brownian trace strictly bigger than 1?

Is the percolation dimension attained by some curve? Can any two points of the trace be

connected by a minimal dimension curve? A result of Lawler and Werner shows Brownian

frontiers (boundaries of the complementary components) have dimension 3/4. These fron-

tiers are Jordan curves, so the percolation dimension of Brownian motion is ≤ 3/4. This

has recently been improved to 5/4 by Dapeng Zhan [42]. If the answer is 1, we can ask a

stronger question:

Question 20. Does B([0, 1]) almost surely contain a rectifiable curve? Can any two points

of B([0, 1]) be connected by a rectifiable curve in the trace?

Pemantle [31] showed that the Brownian trace almost surely contains no line segments

(or even any positive length subset of a segment).

A few years ago an undergraduate student of mine, Shalin Parekh (currently in the PhD

program at Columbia), wrote an honors thesis with me using random walks on a square

grid to estimate the percolation dimension of B([0, 1]) as ≈ 1.02. The sizes of his random

walks were fairly small and the numerical result is too close to 1 to be decisive, but the

pictures generated are very suggestive. Here is a random walk with 107 steps, a shortest

path between two points and two blow-ups of different portions of the path:



In the “thick” portions of the trace the shortest path seems quite straight, but when the

path runs between two adjacent complementary components, Ω1,Ω2, it is forced to travel

through the corresponding crossing set, ∂Ω1 ∩ ∂Ω2, which suggests we ask

Question 21. Is the intersection of two frontiers a.s. contained in a rectifiable curve?

The intersection of two frontiers has dimension 3/4 almost surely, so it is small enough to

lie on a rectifiable curve, if not too much length is needed to connect it. Perhaps Jones’

traveling salesman theorem can be used to answer this, by computing estimated sizes of

β-numbers and the distribution of dyadic squares hitting two frontiers.

• Diffusion limited aggregation: One of the most interesting problems involving har-

monic measure is the growth rate of diffusion limited aggregation. DLA is defined by fixing

a unit disk at the origin and sending in a second unit disk moving by Brownian motion from

infinity until it touches the first disk. Successive disks are added in the same way. The main

problem is to determine the almost sure growth rate α = lim supn
1
n
log diam(DLA(n)). Some

DLA clusters with n = 100, 1000, 10000 are shown below. The last one is colored according

to when the disk was added; the colors on the first two will be explained below.

Obviously diam(DLA(n)) ≤ 2n, but Harry Kesten [24] improved this to O(n2/3) almost

surely; this remains the best known upper bound even 30 years later. The trivial lower

bound is &
√
n (consider the areas), and shockingly, this is still the best known:

Conjecture 22. limn diam(DLA(n))/
√
n = ∞ almost surely.

To prove this, we need to quantify that the “tips” of DLA have larger harmonic measure

than the trivial 1/n estimate. One way to do this is to show there are few such tips. It

seems reasonable to think of vertices of the convex hull of DLA to be the set of these tips:



Question 23. Is the number of convex hull vertices O(log n) almost surely? If this is true,

can we deduce Conjecture 22? A growth rate α > 1/2?

In the figures on the left and center above, disks are colored red if they were vertices of

the convex hull when added. The pictures indicate this is fairly common, and numerical

simulations strongly support the logarithmic growth rate of such points. See below for a

plot of a DLA cluster and its convex hull. Also shown is a plot of the number of vertices in

the convex hull as a function on log n (averaged over 100 random trials). The plot clearly

looks linear as a function of log n.
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Books

I recently published “Fractals in probability and analysis” with Yuval Peres, a graduate

level introduction to fractals, dimension, Brownian motion and other related topics. I am

currently working on several book projects: “Conformal Fractals” with Yuval Peres (deal-

ing with harmonic measure, Julia sets, Kleinian limit sets, DLA, SLE,...), “Quasiconformal

Maps and Applications” (an introduction to QC mappings and their applications to func-

tion theory and dynamics, including a self-contained account of the folding theorem), and

“The Riemann Mapping Theorem” (an introduction to conformal mapping and the various

numerical methods for computing Riemann maps).
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