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INTELLECTUAL MERIT OF PREVIOUS WORK

My recent work has focused on understanding the Weil-Petersson class of closed curves,
optimal meshing algorithms for planar domains, constructing equilateral triangulations of
Riemann surfaces, and a variety of results involving holomorphic dynamics and quasiconfor-
mal analysis. Some highlights are described below.
• Weil-Petersson curves [28],[29]: Motivated by questions in string theory, Takhtajan
and Teo defined a Weil-Petersson metric on universal Teichmüler T (1) (a space of closed
curves in plane, moduli similarities), generalizing the usual definition for finite dimensional
Teichmüller spaces associated to Riemann surfaces. The resulting topology is disconnected,
and the Weil-Petersson class is the connected component of T(1) that contains the smooth
curves (it is also the closure of the smooth curves). Besides string theory, these curves arise
naturally in computer vision (see broader impacts) and are closely connected to Schramm-
Loewner evolutions (SLE). No geometric characterization of Weil-Petersson curves was pre-
viously known, but my paper [29] gives 20 equivalent definitions in terms of various quantities
such as Peter Jones’s β-numbers, Sobolev parameterizations, lengths of inscribed curves, and
knot energies. Particularly interesting are the connections to hyperbolic geometry and mini-
mal surfaces: I prove in [29] that Γ ⊂ R2 is Weil-Petersson iff it is the boundary of a minimal
surface S in the hyperbolic upper half-space R3

+ that has finite total curvature (sectional
curvatures κj are in L2 for hyperbolic area on S). Using this, I show the asymptotic bound-
ary Γ of a finite total curvature surface need not be C1, answering a question of de Oliveira
[50]. I prove that Γ is Weil-Petersson iff the minimal surface S has finite renormalized area
(introduced by Graham and Witten [65]), and give a formula for renormalized area, valid

for all Jordan curves Γ, extending a result of Alexakis and
Mazzeo [3], [4] for C3,α curves. One of the novel ideas intro-
duced in [29] is the “dyadic dome” (see picture at left). This is
a polyhedral surface with horizontal cross sections that project
vertically to inscribed polygons in the curve Γ, and that has a
“horizontal”’ projection onto the minimal surface correspond-
ing to Γ, thus providing the connection between the Euclidean
and hyperbolic characterizations. The dyadic dome should be
useful for both theoretical investigations and numerical calcu-
lations of minimal surfaces in hyperbolic space.

• Optimal triangulation of polygons [31]: Efficient meshing and triangulation of
polygons is one of the fundamental problems of computational geometry with numerous
applications (see broader impacts). In a triangulation, adjacent triangles meet in vertices or
full edges; but in a dissection, triangles can
meet along subsets of edges (compare the
center and right figures). Triangulation
vertices other than the polygon’s vertices
are called Steiner points (left versus center
picture). Charles Lawson [81] proved in

1977 that the famous Delaunay triangulation maximizes the minimum angle (MaxMin) over
the finitely many triangulations of a polygon when no Steiner points are allowed, and al-
gorithms for minimizing the maximum angle (MinMax) in this case are given in [15], [54].



In [31] I solve both the MaxMin and MinMax problems when Steiner points are permit-
ted (the most common case in applications). Since the space of such triangulations is
infinite dimensional, it is not obvious that extremal triangulations even exist, but I prove
that they do (except in one special case, explained later). Moreover, I give a linear-time
algorithm for computing the optimal angle bound Φ(P ) for any given polygon P . A conse-
quence is that a polygon with minimal interior angle θ has a triangulation with all angles
in [θ,max(72◦, 90◦ − θ/2)]. This sharpens a 1960 result of Burago and Zalgaller [46] that
every polygon has an acute triangulation (angles < 90◦). Surprisingly, the optimal bounds
for polygonal triangulations are the same as for triangular dissections, proving, in a stronger
form, a 1984 conjecture of Gerver. My proof in [31] involves conformally mapping an equi-
lateral triangulation from a model domain (sometimes a Riemann surface) to the target
polygon. The two left pictures show a simple model/target pair. The two right pictures
illustrate a conformal welding problem arising in some cases: the model is conformally
“folded” and images of boundary vertices must match up along a new interior edge.

• Traveling salesman for Jordan curves [32]: Peter Jones’s traveling salesman theorem
(TST) estimates the length of the shortest curve Γ passing through a given set E ⊂ R2 in
terms of “β-numbers”, βE(Q), that measure the “flatness” of the set E inside a dyadic square
Q (a precise definition will be given later). In the special case when E = Γ ⊂ Rn is a Jordan
curve, I prove that `(Γ) = |z − w|+O[

∑
Q β

2
E(Q)diam(Q)], where z, w are the endpoints of

Γ. This sharpens Jones’s original theorem, and is used in the paper on WP-curves above.
• Equilateral triangulations of Riemann surfaces [40]: A Belyi function on a Riemann
surface R is a holomorphic map from R to the Riemann sphere S2 that is branched over only
three points (usually 0, 1,∞). A theorem of Voevodsky and Shabat [118] says R has a Belyi
function iff it can be constructed by gluing together equilateral triangles. An equilateral

triangulation of the 2-sphere is shown at right. There are only
countably many ways to glue together a finite number of equilateral
triangles, so at most countably many compact surfaces have this
property. A famous theorem of Belyi [13] says these are exactly the
compact surfaces defined over number fields; this result inspired
Grothendieck’s theory of dessins d’enfants. However, Lasse Rempe
and I used my quasiconformal folding method [24] to show that

every non-compact Riemann surface has uncountably many combinatorial distinct Belyi
functions. In particular, this proves that every Riemann surface is a holomorphic cover of
the 2-sphere branched over finitely many points (for compact surfaces this follows from the
Riemann-Roch theorem). Our construction also produces finite type dynamical systems (as
defined by Epstein [55]) on hyperbolic surfaces. All previously known examples were defined
on parabolic surfaces, e.g., rational maps on S2, or Speiser class entire functions on C.
• Post-singular orbits of meromorphic functions [37], [38]: Kirill Lazebnik and
I show that any dynamics on any discrete planar sequence can be approximated by the
postsingular dynamics of some transcendental meromorphic function. This generalizes work
of DeMarco, Koch and McMullen [51] for finite sets and rational functions. Subsequently,
with Mariusz Urbanski, we extended this to any discrete set in any planar domain D. A



lemma of independent interest is that for any continuous f > 0 on a planar domain D, there
is an equilateral triangulation of D dominated by f (z ∈ T implies diam(T ) ≤ f(z)).
• Small transcendental Julia sets [2], [27]: In 1975 Baker proved that if f is a tran-
scendental (i.e., non-polynomial) entire function, then its Julia set contains a continuum and
hence has Hausdorff dimension d ≥ 1. Examples with all dimensions 1 < d < 2 are due to
Gwyneth Stallard, who also proved d > 1 if f has bounded singular set. Simon Albrecht and
I proved [2] that dimensions arbitrarily close to 1 occur for functions with only three singular
values. In [27], I gave the first example of a transcendental Julia set attaining dimension
d = 1. This was also the first example with packing dimension < 2, and the first with a
multiply connected Fatou component where the dynamics can be completely described.
• Conformal removability is hard [30]: I prove that compact planar sets that are
removable for conformal homeomorphisms are not a Borel subset of the space of all compact
subsets with the Hausdorff metric. By contrast, removable sets for bounded holomorphic
functions are a Gδ set (and were famously characterized by Tolsa [110], [111]).
• Falconer’s distance set conjecture for general norms [33]: Hindy Drillick, Dim-
itrios Ntalampekos and I show that for any norm ‖ · ‖ on Rd with countably many extreme
points, there is a set E ⊂ Rd whose distance set ∆(E) = {‖x − y‖ : x, y ∈ E} has zero
linear measure. This says Falconer’s distance set conjecture (e.g., [59], [69]) fails for such
norms. Falconer proved, for the Euclidean norm on Rd, that ∆(E) has positive length if
dim(E) > (d+1)/2 and conjectured this holds if dim(E) > d/2. This problem has attracted
much attention, e.g., [42], [52], [56], [66], [122]. Failure of the conjecture was previously
known only for certain polygonal norms in R2, [76], [77]. We also show it fails for some
norms that are strictly convex and C1; the conjecture holds for C2 norms [70].
• Exotic 4-manifolds [39]: This joint paper with Claude LeBrun constructs a co-compact
quasi-Fuchsian hyperbolic 3-manifold M so that the harmonic measure of one end at infinity
defines a harmonic function on M that has a critical point. This implies the existence
of a compact Riemannian 4-manifold that is anti-self-dual but not almost-Kahler. The
almost-Kahler metrics form a non-empty, open subset of the anti-self-dual metrics on such a
manifold, and this example shows, for this first time, that this can be a proper open subset.
Many interesting questions remain open, e.g., how few generators can the fundamental group
of M have? Are such examples “generic” near the boundary of Teichmüller space?

BROADER IMPACT OF PREVIOUS WORK
• Physics and pattern recognition: The impact of my Weil-Petersson results on these
areas will be discussed at the end of the proposal.
• Optimal meshing: My meshing results enhance the suite of available automatic meshing
algorithms available for research and industry, and improve practical computational methods
in various ways. The optimal triangulation result gives an easy-to-compute angle bound that
can be used to benchmark a wide variety of meshing algorithms in use, showing how close
they are to optimal, and it provides a stopping criterion for methods that iteratively improve
the quality of a mesh. See e.g., [57], [64], [67], [102].
• Other scientific impacts: My work on non-obtuse triangulation is cited in [10], a paper
dealing with the optimal placement of heat sinks on integrated circuits (removing excess
heat is one of the primary bottlenecks in circuit design). The related problem of efficient
packing by Voronoi cells also occurs in biological growth models [106], geographic information
systems [123], and facility location problems [84], [121]. My work on optimal meshing
depends on my earlier work on numerical conformal mapping [22], which also has applications
include automated face recognition (which enhances privacy and security), medical imaging,
obstacle avoidance for robots (or self-driving cars), among others. My work on numerical



conformal mapping has been cited in papers by applied mathematicians, e.g., [11], [60], [61].
My paper [34] with Feinberg and Zhang has been cited in the economics literature, [72], [73].
• Building interdisciplinary connections: The interdisciplinary character of the prob-
lems in the proposal serve as a bridge between researchers with common interests but dif-
ferent backgrounds. I have spoken at various computer science conferences: the annual Fall
Workshop on Computational Geometry, SoCG (Symposium on Computational Geometry)
and most recently at SODA 2022 (Symposium on Discrete Algorithms). I co-hosted a gradu-
ate workshop on computational geometry which included a mixture of “pure” and “applied”
topics, e.g., mini-courses by Scott Sheffield, Esther Ezra, David Mount, and Yusu Wang.
• Educational impact: The results obtained under previous grants have been the basis
of a series of graduate courses and lecture notes on dynamics, quasiconformal analysis, and
conformal mapping. In 2020 I gave an online course on Weil-Petersson curves attended
by about 40 students and postdocs around the world, and in Spring 2022 gave another
such course on DLA (diffusion limited aggregation) and Brownian motion. Problems raised
in the 2020 course on Weil-Petersson curves were answered in the PhD theses of Jared
Krandel (Stony Brook) and Tim Mesikepp (Univ. of Washington). My recent students
Kirill Lazebnik and Jack Burkart wrote theses on transcendental dynamics problems from
past proposals, and I expect to have another student working on these next year. My
paper on removable sets was motivated by questions of Guillaume Baverez (a PhD student
at Cambridge) during discussions of his thesis on SLE. My most recent work on optimal
triangulation answered a question of Florestan Brunck, needed to complete his master’s
thesis [44] at McGill (currently he is a PhD student of Edelsbrunner at IAS in Austria).
Topics in past proposals have been investigated by several Stony Brook post-docs: Simon
Albrecht, Matthew Romney, Peter Lin, James Waterman and Dimitrios Ntalampekos (now
tenure track at Stony Brook). Dimitrios recently published a paper in Inventiones solving a
problem (conformal removability of gaskets) stated in my 2016 proposal.

Past NSF proposals have also contributed topics for undergraduate research projects:
Ahmed Rafiqi used random walks to calculate conformal maps (Cornell Ph.D.); Kevin Sackel
worked on QC removability (MIT PhD); Shalin Parekh numerically estimated percolation di-
mension of random walks (PhD program at Columbia); Christopher Dular implemented my
O(n2) triangulation refinement algorithm (grad student at Georgia Tech); Ray Zhang wrote
his honors thesis with on functional analysis and machine learning (working in the finan-
cial sector); Joe Suk implemented my “Trues trees are dense” theorem numerically (Ph.D.
program at Columbia). The paper on Falconer’s conjecture grew out of Hindy Drillick’s
undergraduate thesis: she found an incorrect theorem in Falconer’s 30-year-old textbook
Fractal Geometry [58] (Falconer was shocked no one had noticed it before), and our paper
gives the counterexample and fixes an application from [80] of the faulty theorem. Drillick
is now a PhD student at Columbia. My former student Jack Burkart used problems on the
carpenter’s rule problem from a previous proposal as the basis for an 2022 REU, and I met
with the students via Zoom. Currently I am working with two undergraduates, Thant Win
Saw and Luke Russo, studying Riemann surfaces and dessins d’enfants.

PUBLICATIONS RESULTING FROM RECENT NSF SUPPORT

• A transcendental Julia set of dimension 1. Invent. Math., 212(2) 407–460, 2018.
• Harmonic measure: algorithms and applications, Proc. ICM. 2018, Vol. 2, 1507–1534.
• Prescribing the postsingular dynamics of meromorphic functions, with K. Lazebnik, Math.

Annalen, vol 365, no 3, 1761–1782, 2019.
• Anti-self-dual 4-manifolds, quasi-Fuchsian groups and almost-Kahler geometry, with C. LeBrun,

Comm. in Analysis and Geo., vol 28, no 4, 745–780, 2020 (volume in honor of K. Uhlenbeck).



• Speiser class Julia sets with dimension near one, with S. Albrecht. J. d’Analyse vol 141, no 1,
49–98, 2020 (volume in honor of L. Zalcman).
• Falconer’s (K, d) distance set conjecture can fail for strictly convex sets K in Rd, with H. Drillick

and D. Ntalampekos, Revista Mat. Iberoamericana, vol 37, no 5, 1953–1968, 2021.
• The traveling salesman theorem for Jordan curves, Advances in Math. vol 404, 2022.
• Conformal images of Carleson curves, Proc. Amer. Math. Soc., vol. 9, 2022, 90–94.
• Quasiconformal maps with thin dilatations, to appear in Publicacions Matematiques.
• Uniformly acute triangulation of PSLGs, to appear Discrete Comp. Geom.
• Uniformly acute triangulation of polygons, to appear Discrete Comp. Geom.
• Weil-Petersson curves, β-numbers, and minimal surfaces, submitted to Annals of Math.
• Optimal triangulation of polygons, submitted to J. Amer. Math. Soc.
• Non-compact Riemann surfaces are equilaterally trianguable, with L. Rempe, submitted to

Inventiones.
• Equilateral triangulations and the postcritical dynamics of meromorphic functions, with K.

Lazebnik and M. Urbanski, submitted to Math. Annalen.
• Function theoretic characterizations of Weil-Petersson curves, submitted to Revista

Iberoamericana (volume in honor of A. Cordoba and J.L. Fernandéz).
• Conformal removability is hard, preprint, 2021.

EVIDENCE OF RESEARCH PRODUCTS AND THEIR AVAILABILITY
All preprints are posted on my Stony Brook webpage. My webpage also contains lecture

notes and slides of lectures related to my research (also links to videos of my lectures), class
notes with links to relevant literature, as well as abstracts of my papers, descriptions of my
research, and links to workshops I have organized or attended. A survey of my recent work
was published in the proceedings of the 2018 ICM. Two online graduate courses related to
this proposal were recorded; videos and slides and are available from my website.

PROJECT DESCRIPTION

The proposal involves applications of conformal, quasiconformal and hyperbolic geometry
to: (1) studying the Weil-Petersson class of closed curves, (2) finding triangulations of
polygons and PSLGs, and (3) investigating the geometric properties of various dynamical and
probabilistic fractal sets. The proposed questions range from long standing (and probably
very difficult) conjectures to problems suitable for students.

—————————— 1. THE WEIL-PETERSSON CLASS ——————————

• Quasicircles and β-numbers: A quasiconformal map f : R2 → R2 is a homeomorphism
that is absolutely continuous on almost all lines and satisfies |µf | = |fz/fz| ≤ k < 1 almost

everywhere. Quasicircles are quasiconformal images of circles. These
can be characterized by the Ahlfors M-condition: if z is on the smaller
diameter arc of Γ with endpoints x, y, then |z − x| ≤ M |x− y| for some
fixed M < ∞. Quasicircles can be fractals; the figure at left shows that
the von Koch snowflake satisfies the M-condition. The set of quasicircles,
modulo similarities, forms universal Teichmüller space, T (1), and it was

a long standing problem to put a Hilbert manifold structure on this space of loops, corre-
sponding to the Weil-Petersson metric on finite dimensional Teichmüller spaces. In 2009
such a metric was found by Takhtajan and Teo [107], but this metric makes T (1) discon-
nected, and they asked for a geometric characterization of the connected component that
contains all smooth curves, the so called Weil-Petersson class. More precisely, is there an
analog for WP curves of the M-condition for quasicircles? My paper [29] gives over twenty
equivalent geometric definitions of such curves. Many of these new definitions make sense
and remain equivalent for curves in Rn, or even in Hilbert space or in a metric space.



Given a set E, Peter Jones’s β-numbers measure the local deviation from a line:

βE(Q) = inf
L

sup{dist(z, L) : z ∈ 3Q ∩ E}/diam(Q),

where the infimum is over all lines L hitting Q, and where Q is dyadic square (see figure).
Jones’s traveling salesman theorem (TST) says that
a planar set E is contained in a curve Γ of length '∑

Q βΓ(Q)2diam(Q) where the sum is over all dyadic
squares in the plane; convergence of the sum for a set
E characterizes subsets of rectifiable curves. I proved
in [29] that Γ is Weil-Petersson iff

∑

Q

βΓ(Q)2 <∞.(1)

diam(Q)β
Γ

3Q

Q

This is Jones’s criterion but with the “diam(Q)” term left out. Thus WP curves have
“finite total curvature” in an L2 sense, and all the conditions in [29] say, in some sense, that
curvature is square summable over all locations and all scales.

Question 1. Construct a section for T (1), i.e., a collection of quasicircles containing one
representative from each connected component of T (1) in the WP metric.

This was suggested by Leon Takhtajan. A good starting point might be Rohde’s paper [98]
giving a section for quasicircles modulo biLipschitz images. I characterized the connected
component of T (1) containing smooth functions. What about the other components?

Question 2. Geometrically characterize other connected components of T (1). Which curves
are finite WP distance from a given polygon? From the von Koch snowflake?

Question 3. Characterize subsets of Weil-Petersson curves.

This is the direct analog of Jones’s characterization of subsets of rectifiable curves. So far,
Matthew Hyde and I have shown the obvious guess is wrong: the series in (1) can converge
for a set E, but E is not a subset of any WP curve. A set E is uniformly perfect if for any
x ∈ E and 0 < r < diam(E) there is a y ∈ E with |x − r| ' r. Our counterexample is not
uniformly perfect, and as we zoom into a point, the best approximating lines defining βE
rotate by π/2 between widely separated scales, even though the β-numbers for intermediate
scales are all small. We are working on showing that (1) is sufficient if we also assume that
the β’s are all small, and that E is uniformly perfect. This should lead to a general criteria
involving (1) summed over squares where E looks uniformly perfect, and the oscillation of
the best approximating directions over scales where this fails.
• Higher dimensions: What is a Weil-Petersson surface? Following Takhtajan and Teo
for curves, we could consider the image of Sn−1 ⊂ Rn under a quasiconformal mapping of
Rn whose dilatation is in L2 for dx/|1 − |x||. Can such surfaces be characterized using the
β-numbers? The sum

∑
Q β

2(Q) diverges even for smooth surfaces, but both
∑

Q

β2
Γ,n−1(Q)diam(Q)n−1 <∞ and

∑

Q

βn−1
Γ,n−1(Q) <∞,

are finite for spheres. The second condition implies the first, is scale invariant, and does not
allow “corners”. Is this the correct generalization of Weil-Petersson curves to surfaces? Do
such surfaces have connections to physics as WP curves do? Is there a characterization of
such surfaces in terms of the minimal hyperbolic varieties they bound?
•Hyperbolic convex hulls: Given a set Γ in R2 we can consider its hyperbolic convex hull
CH(Γ) in the upper half-space R3

+ (take the smallest hyperbolically convex set containing



all geodesics with endpoints in Γ). For circles, CH(Γ) is a hemi-sphere, but otherwise CH(Γ)
has non-empty interior and it is bounded by two disjoint surfaces, each meeting R2 along Γ.
The left figure shows the hyperbolic convex hull of a square. For z ∈ CH(Γ), let δ(z) be the
hyperbolic distance to farther boundary
component; this measures the “width” of
the convex hull near z; see right figure. I
prove in [29] that Γ is Weil-Petersson iff∫

∂CH(Γ)

δ2(z)dA(z) <∞,(2)

δ(  )z

CH(   )Γ
z

where dA denotes hyperbolic surface area on the boundary of the convex hull. Condition
(2) is the conformally invariant version of (1). In 1982, Mike Anderson [5], [6] proved that
any Jordan curve Γ ⊂ R2 bounds at least one minimal surface S in the hyperbolic upper
half-space, and this surface is contained inside CH(Γ). I showed in [29] that Γ is WP iff S has
finite total curvature (i.e., the scalar curvatures κj are in L2 for hyperbolic area). The total
curvature of S is a Möbius invariant of Γ; is there a formula linking it to the Weil-Petersson
distance of Γ to a circle, or other invariants of Γ? More generally, I expect δ and κj to be
more natural for studying conformally invariant properties than the β-numbers.

Problem 4. Connect estimates of δ(z) to the geometry Γ.

Problem 5. Connect curvature bounds for the minimal surface SΓ to the geometry of Γ.

These are open-ended questions and contain many concrete sub-problems. For example,
Michel Zinsmeister asked if BMO-curves (i.e., the conformal map f to the interior domain
satisfies log |f ′| ∈ BMO) can be characterized in terms of δ or κ on S. These curves were
studied by Zinsmeister and Astala [7] and by Jones and myself [35]. Another direction to
pursue these questions is suggested by a result of Brock [43] which says that the usual Weil-
Petersson distance between two Riemann surfaces X, Y is related to the hyperbolic volume
of the convex hull of a related fractal curve (the limit set of the Kleinian group given by the
Bers simultaneous uniformization theorem). Is there a precise connection between his result
and mine? Both measure distances in terms of the “size” of a hyperbolic convex hull and
perhaps Brock’s result follows from an analogous result about T (1).
• Knot energies: Using a result of Blatt [41], I proved that a curve Γ is WP iff it has
arclength parameterization in the Sobolev space H3/2, and iff it has finite Möbius energy:

Möb(Γ) =

∫

Γ

∫

Γ

(
1

|x− y|2 −
1

`(x, y)2

)
dxdy <∞.

This is exactly the Hadamard renormalization of the divergent energy integral
∫

Γ

∫
Γ

dxdy
|x−y|2 ,

corresponding to placing a charge distributed as arclength on Γ under an inverse-cube repul-
sive force (e.g., the Newtonian kernel in R4). Möbius energy was introduced in knot theory
by O’Hara [90],[92], [91]; it blows up if the curve self-intersects, and a gradient flow for this
energy was studied as a means of finding canonical representation of knots in R3 [68].

Question 6. How does this gradient flow act on the Weil-Petersson curves in Rn? Is the
limit always a circle if n 6= 3?

Another class of knot energies considered in [105] are the Menger energies

Mp(Γ) =

∫

Γ

∫

Γ

∫

Γ

cp(x, y, z)|dx||dy||dz|,

where c(x, y, z) is the curvature of the unique circle passing through x, y, z. It is known that
M2(Γ) <∞ is equivalent to rectifiability e.g., see [83]. For p ≥ 3, can finite Menger energy



curves be characterized in terms of β-numbers, hyperbolic convex hulls or minimal surfaces?
The most interesting case is p = 3; this is the only scale-invariant Menger energy.

Problem 7. Geometrically characterize curves of finite M3 energy. Other energies?

In [29] I show that Weil-Petersson curves are characterized by the related condition
∫

Γ

∫

Γ

∫

Γ

c2(x, y, z)|dx||dy||dz|
|x− y|+ |y − z|+ |z − x| <∞,

using β-numbers and my extension of Jones’s TST, and I expect the techniques used there
can be applied to describe other types of finite energy curves. Some of my techniques for
WP curves have already been extended from p = 2 to general p by Tim Mesikepp [86].
• SLE and random minimal surfaces: Schramm-Loewner Evolutions, SLE(κ), are fam-
ilies random Jordan curves depending on a parameter κ ∈ (0,∞): for κ small the curves
are nearly straight, and for large κ they become space filling. SLE was invented by Oded
Schramm (calling them Stochastic Loewner Evolutions) using random conformal maps gen-
erated by Loewner’s equation with Brownian motion as data, and they are now a major
research topic. Recently, Wang and Viklund [119], [117] showed that Weil-Petersson curves
are related to the large deviations theory of Schramm-Loewner evolutions (SLE) as the pa-
rameter κ tends to either zero or infinity. See also [99], [116], [120]. Is there some more
direct connection? We noted above that Weil-Petersson curves are characterized by the
Hadamard renormalization of a inverse-cube repulsive energy that prevents self-intersections.
Do SLE(κ) curves have finite energy (or finite renormalized energy) for some repulsive force
depending on κ? Can an SLE path be considered as a “uniformly random” choice of such
finite energy curves? If so, this might suggest a way to extend the definition of SLE to Rn.
An SLE(κ) curve also has an associated hyperbolic convex hull and (at least one) associated
(random) minimal surface Sκ.

Problem 8. Is the minimal surface Sκ for SLE(κ) unique? Does this depend on κ?

Problem 9. Does Sκ have a well defined “average curvature”? If so, compute it.

• Inscribed polygons: The most elementary description of Weil-Petersson curves involves
approximation by inscribed polygons. Given a closed rectifiable curve Γ, let Γn be an
inscribed polygon with nested sets of 2n equally spaced vertices {znj }2n

j=1 on Γ (there is a 1-
parameter family of such polygons, depending on the choice of a base point z0 ∈ Γ). Clearly
`(Γn)↗ `(Γ), and I proved Γ is WP iff

∑
n 2n(`(Γ)− `(Γn)) <∞ with a bound independent

of the base point. Consider the angles of Γn: θ(n, k) = arg
(
znj+1 − znj )/(znj − znj−1)

)
.

Conjecture 10. Γ is WP iff
∑∞

n=1

∑2n

k=1 θ
2(n, k) <∞, with a bound independent of z0.

I can prove “WP⇒ convergence” using (1). The converse is harder because θ can be zero
at a point, even if β is large, e.g., at the center of a symmetric spiral. The same thing happens
in the longstanding ε2-conjecture of Carleson [20], characterizing tangent points of a curve
Γ using a quantity ε(x, t) defined in terms of the angle formed at x by Γ ∩ {y : |y − x| = t}.
Like θ above, ε(x, t) can vanish at points where the β-numbers are large. In a tour-de-force,
Jaye, Tolsa and Villa [71] overcame the difficulties using a “smoothed” version of ε(x, t):

α(x, r) =

∣∣∣∣
π

2
− 1

r2

∫

Ω

e−|y−x|
2

dy

∣∣∣∣ , A(x)2 =

∫ 1

0

α(x, r)2dr

r
.

This acts as an intermediary between ε(x, t) and β(x, t), a disk-based variant of the square-
based β-numbers defined earlier, and reduces the conjecture to a theorem of Peter Jones and
myself. Because of the similarity between Conjecture 10 and Carleson’s conjecture, I expect
that the new α-numbers (or some discrete analog) will be the key to proving Conjecture 10.



————————— 2. OPTIMAL TRIANGULATIONS —————————

It is a problem of longstanding theoretical and practical1 interest to triangulate a poly-
gon with the best possible bounds on the angles used. Many algorithms, such as finite
element methods, work best when the associated meshes have well formed elements (see
discussion of broader impacts). The constrained Delaunay triangulation famously maxi-
mizes the minimal angle if no additional vertices (called Steiner points) are allowed [48]
[81], [82], and algorithms for minimizing the maximum angle (again without Steiner points)
are given in [15] and [54]. If Steiner points are allowed, Burago and Zalgaller [46] proved
in 1960 that every planar polygon P has an acute triangulation (all angles < 90◦). This
is the best possible bound independent of P , but in [31] I compute the optimal bound
Φ(P ) = inf{φ : P has a φ-triangulation} for any given polygon. There are many open ques-
tions about efficiently constructing triangulations that have the optimal (or nearly optimal)
angle bounds, and how to extend these ideas to R3.
• Minimal weight triangulations: When we allow Steiner points, the space of possible
triangulations of P becomes infinite dimensional, and it is far from clear that the infimum
defining Φ(P ) is attained. In [31], I prove the optimal angle bounds are always attained
except for some 60◦-polygons (e.g., polygons where all angles are multiples of 60◦). For 60◦-
polygons, I prove Φ(P ) = 60◦, but (up to similarity) only countably many polygons have
equilateral triangulations, so “most” 60◦-polygons cannot have triangulations attaining the
infimum Φ(P ). The analogous problem of minimizing the total edge length remains open.
In [21] I give a polygon with no minimal weight Steiner triangulation (MWST), but the
example has three co-linear vertices. To computer scientists, this is cheating, and they ask:

Question 11. Does a polygon in general position always have a MWST?

Without Steiner points, finding a minimal weight triangulation is NP-hard [88], versus
polynomial time for MinMax angles, [15], [54]. Thus proving even the existence of an
optimal triangulation may be significantly harder for lengths than for angles.
• Near optimal complexity: My proof that angle-optimal triangulations exist does not
attempt to optimize the number of triangles needed. Indeed, it uses an exponential number
of triangles for a 1 × n rectangle, when it is easy to see that O(n) suffices by choosing a
model 60◦-polygon that “looks rectangular”, as shown below:

Question 12. Estimate the number of triangles needed to attain the Φ(P ) bound for a given
polygon P . Is computing the exact minimal number of triangles needed NP hard?

My current proof uses the Schwarz-Christoffel formula to construct P ′ from P , giving P ′

the same number of vertices as P . The rectangle example above shows we can do better
by letting P ′ have more vertices, thus allowing it to mimic the overall shape of P better.
The problem is to find a systematic way to do this that maintains the sharp angle bounds
of the current proof, but also approximates “shape” of P as well as possible. My paper [22]
on fast conformal mapping introduces the thick-thin decomposition of a polygon (analogous
to the thick-thin decomposition of a Riemann surface) and [23] uses this decomposition to
give a quadrilateral mesh of nearly optimal size for any polygon. Very likely, by combining
approximating the thick-thin pieces of P by 60◦-polygons, we can construct angle-optimal
triangulations with nearly optimal complexity.

1In theory, practice and theory are the same. In practice, they are not. – A. Einstein



• Planar straight line graphs: A planar straight line graph (PSLG) is any finite union
of segments and points; a polygon is a special case when the segments meet end-to-end. A
PSLG could also be a point cloud, a triangulation, a tree, . . . , or almost anything we can
draw. See some examples below. A mesh of a PSLG must be consistent across all the edges:

meshing each face separately is not enough, since boundary
vertices for adjacent faces must match exactly. This makes
triangulating PSLGs significantly harder than triangulating
polygons, e.g., every n-gon has a O(n) non-obtuse triangula-
tion (a “NOT”) [18], but non-obtuse triangulations for some
PSLGs require at least n2 elements. Polynomial algorithms
giving angle bounds < 180◦ for PSLGs were found in the
1990’s (see [18], [87], [108]). My “NOT Theorem” [26] says
every PSLG has a NOT of size O(n2.5), but there is a gap
between this and the n2 example.

Conjecture 13. (NOT Conj.) Every PSLG has a conforming NOT with O(n2) elements.

Below we will discuss the proof of the NOT theorem and how it might be improved to
give the NOT conjecture. First we mention some variations and corollaries. A Delaunay
triangulation is defined by the property that any pair of triangles sharing an edge having
opposite angles summing to ≤ 180◦. Any NOT is also Delaunay, so the NOT theorem
improves a famous O(n3) bound of Eldesbrunner and Tan [53] for conforming Delaunay
triangulations, (and improves other optimal meshing results, e.g., [16] by Bern and Eppstein).

Conjecture 14. Every PSLG has an O(n2) conforming Delaunay triangulation.

Conjecture 13 immediately implies Conjecture 14, but I suspect they are equivalent to
each other. Can we prove the two problems have the same complexity, even if we can’t
determine exactly what that complexity is? Can my angle-optimal triangulation results for
polygons, discussed earlier, be extended to PSLGs?

Problem 15. Compute the optimal upper angle bound, Φ(Γ), for triangulating a PSLG Γ.

Conjecture 16. If a PSLG Γ has minimal angle θ, then Φ(Γ) ≤ 90◦ −min(36◦, θ).

[31] shows the latter holds for polygons, and in [19] I prove it for PSLGs, but with 36◦

replaced by some θ0 > 0 given by a compactness argument. Elementary examples show that
36◦ is best possible (e.g., any triangulation of a square has an angle ≥ 72◦). Conjecturing
θ0 = 36◦ for PSLGs may be too optimistic, but any explicit bound would be very significant.
• Meshing and dynamics: Non-obtuse triangulation of PSLGs reduces to the study of
certain dynamical systems. Given a triangle, take the in-circle as shown at left below. The
three tangent points (cusp points) define three disjoint sectors, each of which is foliated by
circular arcs centered at a vertex. We flow each cusp point along this foliation until it hits

another cusp point or exits the triangulation. The points where the flow hits triangle edges
define the vertices of non-obtuse refinement of the original triangulation. The size of the



NOT is thus related to the number of times flow lines hit triangles. The pictures above show
a random triangulation flow, an enlargement of it, and an example with infinite paths.

The proof of the NOT theorem perturbs the triangulation flow so that each flow line hits
only O(n) triangles, but for each original point, it adds O(

√
n) new points to be propagated,

giving the O(n2.5) bound. The “enemies” are certain spirals that cause flow lines to visit the
same triangles many times (see enlarged figure above). The proof uses a worst case estimate
that ' n such spirals occur and that each involves ' n triangles, but it seems impossible to
draw triangulations where this actually occurs. I am trying to quantify how “bad” a spiral
is in terms of how many new flow lines need to be added, and to show the “total badness”
is bounded, not growing with n. This would prove Conjecture 13.

To limit how many triangles a flow line hits, curves are carefully “bent” to make them
collide with other paths, reducing the number of paths until none remain. To show that
the perturbed flows lines still generate the vertices of a NOT, we can only allow very small
changes in path curvatures, i.e., there are constraints on a discrete second derivative. This
is very reminiscent of Pugh’s closing lemma in surface dynamics: every C1 vector field
has a small C1 perturbation with a closed orbit [93], [94], [95]. This is still open for C2

perturbations, and Dennis Sullivan suggested there might be a connection:

Question 17. Can a closing lemma help prove the O(n2) NOT-theorem? Can the NOT
argument help prove a C2-closing lemma (or suggest a counterexample)?

I plan to study the literature on continuous closing lemmas to see if the heuristic similarity
described above can be made mathematically precise. So far as I know, these triangle flows
have not been studied before, so essentially all reasonable questions are open and interesting.
• NOTs in 3 dimensions: Solving the conjectures above would essentially complete the
theory of optimal triangulation in R2, but the corresponding theory using tetrahedra in R3

(the really important case for applications) is wide open:

Question 18. Do polyhedra in R3 have non-obtuse tetrahedralizations of polynomial size?

Even finding an acute tetrahedralization (all dihedral angles < 90◦) of a cube in R3 was
open until recently (the smallest known example uses 1,370 pieces, [114]) and there is no
acute decomposition for the cube in R4, [78]. My work in 2-dimensional meshing uses
a thick/thin decomposition of a polygon (analogous to the thick/thin decomposition of a
hyperbolic manifold) to partition the polygon into two types of regions where Euclidean
and hyperbolic geometry respectively are used to create the mesh. Can we use analogous
ideas in R3? Can one create a 3-manifold out of a polyhedron, run a Ricci flow on it (as
in Perelman’s proof of Thurston’s geometrization conjecture) to decompose it into pieces
with geometric structure and then utilize the “natural” geometries on the different pieces to
define meshes? An intermediate problem between dimensions 2 and 3 is to find NOTs for
triangulated surfaces in R3.

Question 19. Does a polyhedral surface with n faces have a non-obtuse triangulation with
a polynomial number of triangles? With O(n2) triangles?

A polyhedral surface is flat except at the vertices, where there is concentrated curvature
due to the angle sums not equalling 2π. The basic idea of creating a flow from a triangulation
and counting “bad spirals” on the surface should be the same as before, but we have to
check the affect curvature has on our ability to bend curves. Almost certainly, a polynomial
complexity bound depending on curvature bounds is possible. Whether a uniform complexity
bound, independent of curvature, holds is less clear. If it does not, then solid regions in R3

bounded by such surfaces would give a negative answer to Question 18.



———————— 3. DYNAMIC AND RANDOM FRACTALS ————————

The dynamic fractals we consider are Julia sets of transcendental entire functions, i.e.,
non-polynomial entire functions. We let T denote this class of functions. As usual, the
Fatou set, F , is the maximal open set where the iterates of f form a normal family and
the Julia set, J , is its complement (and is always non-empty). While similar to polynomial
dynamics in many respects, transcendental dynamics is different in several ways: wandering
domains can exist, Fatou components of any finite or infinite multiplicity may occur, and
the escaping set I(f) = {z : f(z)→∞} plays a more prominent role.
• Rectifiable Julia sets: Recall that Hausdorff dimension is defined as Hdim(K) = inf{s :
inf{∑j r

s
j : K ⊂ ∪jD(xj, rj)} = 0}. In polynomial dynamics, the “exotic” examples have

dimension 2 or positive area, but in transcendental dynamics, “easy” examples have these
properties and the difficulty is constructing Julia sets with small dimension. In 1975, Baker
[8] proved that transcendental Julia sets always contain a non-trivial continuum, and hence
they have Hausdorff dimension at least 1. It was not until 2018 that I constructed the first
example attaining dimension 1, [27]. It has finite 1-dimensional spherical measure, but I
proved it is not a subset of any rectifiable curve on S2.

Question 20. Can a transcendental Julia set lie on a rectifiable curve on the sphere?

My “dim =1” example is the transcendental analog to Shishikura’s construction [103] of
polynomial Julia sets of dimension 2, and a rectifiable example would be analogous to Buff
and Cheritat’s construction [45] of a positive area polynomial Julia set. My 2018 example
has infinitely connected Fatou components; my idea is to adapt my quasiconformal folding
technique to build a similar example but with finitely connected Fatou components, which
will have rectifiable boundaries, and then prove these all lie on a single rectifiable curve.
• The Speiser class S: The Speiser class consists of transcendental functions f that have
a finite number of singular values (critical values or asymptotic values, i.e., limits of f along
curves tending to ∞). Rippon and Stallard [97] showed that Speiser class Julia sets must
have dimension > 1, and using my quasiconformal folding technique, Simon Albrecht and I
[2] constructed a sequence in S with Hdim(Jn)↘ 1. Is every value in (1, 2] taken?

Question 21. Is {Hdim(J (f)) : f ∈ S} = (1, 2]?

It would be surprising (but fascinating) if this failed. One possible approach is to try to
quasiconformally deform my examples with Albrecht to see if the perturbed Julia sets sweep
out an interval of dimensions. Each Speiser function f has a finite dimensional family of
quasiconformal deformations Mf = {g = ψ ◦ f ◦ ϕ} such that g is entire and and ψ, ϕ are
both QC. But the behavior of these moduli spaces is still quite mysterious. We know the
Hausdorff dimension of the Julia set changes continuously over Mf , so Question 21 would
follow from my result with Albrecht, and the following conjecture of Lasse Rempe.

Conjecture 22. If f ∈ S, then sup{Hdim(J (g)) : g ∈Mf} = 2.

This is an analog of Shishikura’s result [103] about dimensions of quadratic Julia sets
tending to 2 near generic points in the boundary of the Mandelbrot set (also to the fact that
Kleinian limit sets have dimension tending to 2 near most boundary points of Teichmüller
space [36]). Possibly Shishikura’s proof can be adapted to this case. Another possible attack
is to use a result of Bergweiler, Karpińska and Stallard [14] that gives a lower bound on the
dimension of the Julia set in terms of the growth rate of the function f . In [25] I showed
that the order of growth on an entire function need not be constant over Mf ; possibly a
similar example can be used to show Hdim(J ) approaches 2 strictly from below on some
moduli space (if not on all moduli spaces). Opposite to Conjecture 22 we can ask

Question 23. Is there an f ∈ S with inf{Hdim(J (g)) : g ∈Mf} = 1?



I suspect this is false. As noted above, Stallard showed that Hdim(J (g)) > 1 for any fixed
Speiser class function. To do this, she constructed a Sullivan-type measure on the Julia set
by taking a limit of point masses over inverse orbits of certain carefully chosen points. The
idea here is to follow her proof, but show that the necessary estimates hold with bounds
that are uniform over all of Mg, giving a lower dimension bound for Hdim(J) > 1 + ε over
the whole family, not just one function. Note that both the last two problems pre-suppose
that the dimension of the Julia set need not be constant on each moduli space, but even
this fundamental fact is unknown:

Question 24. If f ∈ S and g ∈Mf is Hdim(J (f)) = Hdim(J (g))?

Before my examples with Albrecht, every known Speiser function f gave constant dimension
2 on Mf , so our examples are the first where this question can even be tested.
• Werner’s conjecture: We now turn to some random fractals. Brownian motion has
been intensely studied for over a century, but some of its basic geometric properties remain
unknown. One of my favorite such problems was formulated by Wendelin Werner. Consider
the Brownian trace B2([0, 1]) ⊂ R2, i.e., the image of [0, 1] under 2-dimensional Brownian
motion. This is a compact random set with infinitely many complementary components.

Conjecture 25. Can any two complementary components be connected by a path that hits
the trace only finitely often?

Werner’s problem is illustrated by the figure at left, which
shows a random walk on a square grid, and the number of
steps from each complementary component to the unbounded
component is color coded: red is close to the outer component
and blue is far from it. A counterexample would correspond
to components with diameter bounded away from zero, but
arbitrarily many steps away from the unbounded component,
i.e., a “big blue” component. Numerical simulations indicate
that the component diameters decrease like a negative power

of the step distance to the unbounded component, supporting the conjecture. Can every
point of the Brownian trace can be surrounded by arbitrarily small closed curves that each
only hit the trace finitely often? This would imply that the topological Hausdorff dimension
is tHdim(B([0, 1])) = 1 (see [9]; tHdim(K) ≤ 1 + α if K has a neighborhood basis whose
elements all have boundaries of Hausdorff dimension ≤ α).
• Diffusion limited aggregation: DLA is defined by fixing a unit disk at the origin and
sending in a second unit disk moving by Brownian motion from infinity until it touches the

first disk. Successive disks are added in the same way (see the figure at
right; colors represent arrival time). The main problem is to determine
the almost sure growth rate α = lim supn

1
n

log diam(DLA(n)). Ob-
viously diam(DLA(n)) ≤ 2n, but Harry Kesten [74] improved this to
O(n2/3) almost surely; this remains the best known upper bound even
35 years later. The trivial lower bound is & √n (consider the area of
n disjoint unit disks), and shockingly, this is still the best known:

Conjecture 26. limn diam(DLA(n))/
√
n =∞ almost surely.

To prove this, we need to quantify that the “tips” of DLA have larger harmonic measure
than the trivial 1/n estimate. One way to do this is to show there are few such tips, e.g.,
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 the convex hull has few vertices (hence a vertex
with a “large” angle). In the figure at left, disks
are colored red if they were vertices of the convex
hull when added. Also shown is a plot of the
number of vertices in the convex hull as a function
of log n (averaged over 100 random trials). The
plot clearly looks linear as a function of log n.

Question 27. Is the number of convex hull vertices O(log n) almost surely? If this is true,
can we deduce Conjecture 26? Can we deduce a growth rate nα for some α > 1/2?

BROADER IMPACTS

• WP and physics: In [96], the authors state that “Weil-Petersson class boundary pa-
rameterizations provide the correct analytic setting for conformal field theory”. My paper
[29] also identifies WP curves as the boundaries of hyperbolic minimal surfaces with finite
renormalized area, a concept introduced by Graham and Witten and related to the quantum
entanglement and the AdS/CFT correspondence. Furthermore, WP curves are exactly the
curves with finite renormalized energy under an inverse cube law, linking them to electro-
statics in 4 dimensions, and they are connected to Schramm-Loewner curves in statistical
mechanics. How can these connections be explained from a physical point of view?
• WP and computer vision: My interest in WP curves was motivated by a conversation
with David Mumford related to his work on pattern recognition. In numerical computations,
the Hilbert structure of the Weil-Petersson class allows efficient algorithms for manipulating
and clustering shapes, but since the smooth functions are not closed in the WP metric,
equations with smooth data can still lead to non-smooth solutions. My work identifies the
exact degree of smoothness (Sobolev H3/2) that WP curves have, which allows numerical
methods to be designed appropriately. See the papers of Sharon and Mumford [101], Feiszli,
Kushnarev and Leonard [62], and Feiszli and Narayan [63].
• DLA and biology: DLA models the growth of certain biological phenomena such as
lichen colonies or cancer tumors. Question 27 provides a new way to compare this model to
experimental data. See [112] for these and further applications to soot deposit in engines,
mineral aggregation in rocks, and the propagation of electrical discharges, e.g., lighting bolts.
• Meshing and triangulation: All of the broader impacts discussed in the summary of
previous work also apply to the current proposal. Solutions to the meshing problems could
have a dramatic impact on various aspects of modeling surfaces and 3-dimensional bodies,
which are widely used in research and manufacturing. Aerospace engineer Joe F. Thompson,
head of a multi-institutional mesh generation effort called the National Grid Project, wrote
that “An essential element of the numerical solution of partial differential equations (PDEs)
on general regions is the construction of a grid (mesh) on which to represent the equations
in finite form . . . it can take orders of magnitude more man-hours to construct the grid than
it does to perform and analyze the PDE solution on the grid.” (quoted in the introduction
to [48]; they note that motion pictures are now the most economically significant consumers
of high quality meshing algorithms). Triangulations with good angle bounds improve the
efficiency of many numerical methods. For example, Vavasis [115] has shown that matrices
associated to discretizing certain differential equations have condition numbers that grow
exponentially with mesh size in general, but grow only linearly for acute triangulations. The
finite element method on a NOT leads to a matrix that is symmetric, positive definite and
negative off the diagonal, giving a linear system that is easier to solve [104]. Other practical
advantages of NOTs are described in [49] (maximum principles for discrete PDE’s), [12]



(Hamilton-Jacobi equations), [75], [100] (finding geodesics on a triangulated surface), [1],
[109], [113] (meshing space-time), [17], [104] (dual triangulations).
• Applications of QC maps: Numerical QC mapping is still in its infancy, but has
many potential benefits. For example, thinking of a human face a surface with marked
features (mouth, eyes,. . . ) it has been suggested that conformal invariants and Teichmüller
distance between such surfaces would be an effective, efficient way to do facial recognition [89]
(automatic face recognition one of the major problems of computer vision with applications
to enhancing individual privacy and national security). Some recent papers in machine
learning have utilized quasiconformality, e.g., see [47], [79], [85]. Among the tools are deep
neural nets that implement the measurable Riemann mapping theorem: solving the Beltrami
problem given a dilatation. Images, e.g, medical scans, can then be matched with images
from a library of images by minimizing the quasiconformal distortion needed to map one
onto the other. My investigations of the Weil-Petersson class and quasiconformal geometry
would support this type of work.
• Educational impact: In the summary of previous work, I described courses, lecture
notes, graduate and undergraduate projects related to my work, and the current proposal
has similar impacts on the infrastructure of research and education. In particular, I plan
to follow-up the 2017 graduate workshop on computational and random geometry with an-
other such workshop, and to teach another online graduate class on the connections between
hyperbolic and computational geometry and the applications to optimal meshing. Graduate
students working on problems related to this proposal receive training in aspects of both
pure and applied mathematics, participate in seminars in both departments, and become
more open to such collaborations; this improves the likelihood they will participate in inter-
disciplinary and academic/industrial collaborations and improves their ability to motivate
and train their own students in the future.

Moreover, the geometric and interdisciplinary nature of the problems in this proposal
suggest numerous projects that are accessible and appealing to undergraduates or even high
school students; such problems can motivate them to the further study of mathematics, or
at least give then a greater appreciation for the potential of mathematics in their own field.
A few problems related to the proposal that are suitable for undergraduate projects include:
• Discrete Werner’s conjecture: Run a random walk on a grid and compute the ad-
jacency graph of its complementary components. Investigate its diameter and other graph
theoretic properties as a function of n, the number of steps.
• Triangulations of random polygons: If we consider planar n-gons as points in R2n, my
paper [31] shows that polygons with optimal angle bound Φ(P ) = θ are at least codimension
1, except when θ is 72◦ or 4

5
· 90◦; these sets have non-empty interior in R2n. What is the

probability that a “random polygon” has one of these special optimal bounds?
• Simultaneous optimality: Use the criteria in [31] to characterize which polynomials
have a triangulation that attains both the optimal upper and optimal lower angle bounds
(there are polygons for which at most one can be attained by any single triangulation).
• Implement the triangulation algorithms. Implement the O(n2.5) NOT algorithm and
its variations for conforming Delaunay triangulations and Voronoi coverings. Numerically
study the “triangle flow” for triangulated surfaces, e.g., the Platonic solids.
• Critical points of harmonic measure: Compute limit sets of “small” quasi-Fuchsian
groups and look for a critical point of the harmonic measure function of one side. This could
give a “small” example of the 4-manifold as described in the summary of previous work.
• Draw transcendental Julia sets: Unlike polynomials, this requires “case-by-case”
tricks. Can one draw a good picture of multiply connected transcendental Fatou component?
• Draw minimal surfaces: Compute the hyperbolic minimal surface S corresponding to
a curve Γ. Compute the total curvature of S. Compute S when Γ is an SLE path.
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[78] E. Kopczyński, I. Pak, and P. Przytycki. Acute triangulations of polyhedra and RN . Com-
binatorica, 32(1):85–110, 2012.

[79] H. Law, G.P. Vhoi, K.C. Lam, and L.M. Lui. Quasiconformal model with cnn features for
large deformation image registration. Inverse Problems and Imaging, 16(4):1019–1046, 2022.

[80] G.F. Lawler. Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab.,
1:no. 2, approx. 20 pp. (electronic), 1996.

[81] C.L. Lawson. Software for C1 surface interpolation, pages ix+388. Academic Press [Harcourt
Brace Jovanovich Publishers], New York, 1977. Publication of the Mathematics Research
Center, No. 39.

[82] D. T. Lee and A. K. Lin. Generalized Delaunay triangulation for planar graphs. Discrete
Comput. Geom., 1(3):201–217, 1986.
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