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Analysis of conformal and quasiconformal maps
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This section gives brief statements of the main results obtained; a more detailed discussion

with background will be given in the project description. Preprints giving complete

statements and proofs are available at: www.math.sunysb.edu/~bishop/papers.

Let E denote the class of entire functions and T ⊂ E be the transcendental functions

(non-polynomials). For f ∈ E , the singular set S(f) is the closure of its critical values

and finite asymptotic values. The Speiser class S ⊂ T denotes functions such that S(f) is

finite, and the Eremenko-Lyubich class B are those where S(f) is bounded. Let S∗ ⊂ S be

the functions with no finite asymptotic values and the two critical values ±1. Polynomials

with S(p) = {±1} are called generalized Chebyshev or Shabat polynomials.

• Critical points of Shabat polynomials [18]: I show any compact, connected set

K ⊂ R
2 can be approximated in the Hausdorff metric by the critical points of a Shabat

polynomial p. T = p−1([−1, 1]) is a finite tree, the “true form” of one of Grothendieck’s

dessins d’enfants, and this result shows such true forms are dense in all planar continua.

• The order conjecture [23]: I disprove Adam Epstein’s conjecture that two entire

functions f, g ∈ S that are quasiconformally equivalent (i.e., ψ ◦ f = g ◦ φ for some QC

maps ψ, φ) must have the same order of growth. f has 3 critical values, which is sharp.

• The area conjecture [20]: I disprove the conjecture of Eremenko and Lyubich [49]

that for f ∈ S,
∫
f−1(K)

(1 + |z|)−2dxdy < ∞ (finite logarithmic area) whenever K is a

compact set disjoint from S(f). In fact, area({z : |f(z)| > ǫ}) <∞ for all ǫ > 0.

• A wandering domain in B [20]: I construct f ∈ B whose Fatou set has a wandering

domain. In 1985 Eremenko-Lyubich [49] and Goldberg-Keen [54] extended Sullivan’s “no

wandering domains” theorem to S, but situation for B had remained open until now.

• The strong Eremenko conjecture fails in S [20]: I build a f ∈ S so that the

escaping set has no non-trivial path components, by adapting the argument in [78] for B.
• A Julia set of dimension 1 [24]: I construct f ∈ T whose Julia set J (f) has

Hausdorff and packing dimension 1 (and locally finite 1-measure). This has been an open

problem since 1975 when Noel Baker [5] proved that dim(J (f)) ≥ 1 for all f ∈ T .

A planar straight line graph (PSLG) is any finite union of segments and points; a

polygon is a special case when the segments meet end-to-end. Besides a polygon, a PSLG

could be a point cloud, a triangulation, a tree, . . . ; almost anything we can draw:

A conforming mesh for a PSLG fills the convex hull and has edges and vertices that cover

the whole PSLG. Below is a PSLG and a triangulation; we can add extra vertices (Steiner

points) to improve the shape of the triangles. Obtaining upper angle bounds is important

in many applications, e.g., the finite element method (see broader impact section).
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• Acute triangulation of PSLGs [21]: I show any PSLG with n vertices has a O(n2.5)

acute triangulation (all angles < 90◦). Giving any polynomial bound was a long standing

open problem in computational geometry (CG). n2 is the best known lower bound.

• Delaunay triangulations [21]: I also give a O(n2.5) bound for conforming Delaunay

triangulations of PSLGs, improving a O(n3) bound of Eldesbrunner and Tan [43] from

1993 (breaking the n3 barrier was also a well known open problem in CG).

• Refining triangulations [21]: Any triangulation of a simple n-gon has a O(n2) non-

obtuse refinement (angles ≤ 90◦), improving an O(n4) bound of Bern and Eppstein [12].

• Almost non-obtuse triangulations [21]: I prove every PSLG has a conforming

triangulation with O(n2/ǫ2) elements and all angles ≤ 90◦ + ǫ. This improves results of

S. Mitchell [69] when ǫ = 3
8
π = 67.5◦ and Tan [88] when ǫ = 7

30
π = 42◦.

• Optimal quadrilateral meshes for polygons [31]: I show any polygon has a O(n)

quadrilateral mesh with all angles ≤ 120◦ and all new angles ≥ 60◦. Both angle and time

bounds are sharp. The upper angle bound is due to Bern and Eppstein [13].

• Optimal quadrilateral meshes for PSLGs [22]: I prove any PSLG has a conforming

O(n2) quadrilateral mesh with all angles ≤ 120◦ and all new angles ≥ 60◦. This is optimal

for both angle bounds and complexity and is the first polynomial time algorithm for quad-

meshing PSLGs that gives both upper and lower angle bounds.

• QC dimension distortion [33]: Hrant Hakobyan and I show that if E has dimension

d and f : R2 → R
2 is QC, then at least one component of f(E × [0, 1]) has dimension

≤ 2/(d + 1) and we build examples to show this is sharp. We also show there is a 1-

dimensional set E ⊂ R and a QC map f so that f(E × [0, 1]) contains no rectifiable

sub-arcs. No uncountable example was previously known.

• New proof of Jones’ TST [34]: I gave a new proof of Peter Jones’ traveling salesman

theorem in R
2 characterizing subsets of rectifiable curves by using Crofton’s formula (this

computes the length of a set E from the number of intersections of E with random lines).

Jones’ β-numbers are interpreted as square roots of probabilities that a random line hits

the set at two well separated points.

• Conformal mapping in linear time [30]: I prove that if Ω is a simply connected

n-gon, then in time O(n · p log p) we can construct a (1 + ǫ)-quasiconformal map f : D =

{|z| < 1} → Ω, where p = | log ǫ|. This is the asymptotically fastest, globally convergent

conformal mapping method known, and is based on ideas from 3-dimensional hyperbolic

geometry, quasiconformal mappings and 2-dimensional computational geometry.

• The Ahlfors iteration [55]: My student, Chris Green, and I proved local quadratic

convergence of a numerical conformal mapping method that uses an approximate solution

of the Beltrami equation due to Ahlfors. This is the asymptotically fastest method that

is both provably convergent and simply enough to implement.
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PROJECT DESCRIPTION

We start with constructing holomorphic functions from combinatorial data, apply this

to the dynamics of entire functions, then move to interactions between geometric function

theory and computational geometry and finally to distortion properties of QC maps and

connections to rectifiability, traveling salesman theorems and minimal triangulations.

—————————— 1. Quasiconformal combinatorics —————————–

Quasiconformal (QC) homeomorphisms generalize conformal maps mapping infini-

tesimal circles to ellipses of bounded eccentricity (usually denoted K); if the map is

not 1-to-1, this condition defines a quasiregular (QR) function. K-QC maps satisfy

|µf | = |fz/fz| ≤ k < 1 where k = (K − 1)/(K + 1) and the measurable Riemann map-

ping theorem (MRMT) says that every such dilatation µ corresponds to some QC map

f . This implies that if g is quasiregular, then there is a QC map φ so that f = g ◦ φ is

holomorphic; many of our examples are built using this idea.

• Drawing dessins: Call a finite tree T ⊂ R
2 “conformally balanced” if every edge has

equal harmonic measure from ∞ and every Borel subset of every edge e has equal measure

from either side of e. (Harmonic measure is the first hitting probability of Brownian

motion started at ∞.) This might seem impossible to attain, but I prove in [18] that such

trees approximate any compact, connected K ⊂ R
2 in the Hausdorff metric, answering a

question of Alex Eremenko (the proof uses a quasiregular construction “fixed” by MRMT

as described above). Can we compute such trees explicitly?

If p is a Shabat polynomial (i.e., critical values = {±1}) then T = p−1([−1, 1]) is such a

tree and every finite, planar tree occurs (up to homeomorphisms of R2). This is a special

case of Belyi’s theorem giving a correspondence between Grothendieck’s dessins d’enfants

(finite graphs drawn on compact surfaces) and Belyi functions (meromorphic functions

ramified over ±1,∞). In this literature a conformally balanced tree is called the “true

form” of the tree. The Shabat polynomials for all trees with ≤ 9 edges are computed

in [62], where the author states “The complete study of trees with 10 edges is a difficult

work, and probably no one will do it in the foreseeable future”.

Problem 1. Efficiently approximate the true form of a given planar tree.

This is a conformal mapping and welding problem; Don Marshall has used his zipper

conformal mapping program to compute true forms of trees with Steffen Rohde in connec-

tion with certain random metrics on the 2-sphere known as “quantum gravity” (personal

communication). Perhaps my fast conformal mapping algorithms from [30], [55] or the

welding methods in [29] could also be used, or the rational approximation ideas in [83].

• Quasi-trees: A decomposition C of a set X is collection of disjoint closed sets whose

union is X. If f is a conformal map from D
∗ = {|z| > 1} to Ω = C \ K where K is a

dendrite (compact, connected and doesn’t divide the plane), then {f−1(z)}, z ∈ ∂K is a

conformal decomposition of T. Characterizing all conformal decompositions is probably

extremely difficult, but it may be reasonable to ask

Problem 2. Characterize decompositions where the Ω = f(D∗) is a John domain.
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A domain is John if any two points z, w can be joined an arc γ ⊂ Ω so dist(x, {z, w}) =
O(dist(x, ∂Ω)) for all x ∈ γ. Roughly speaking, John domains generalize quasidisks

by allowing non-Jordan boundaries. A known case of the problem is that K = ∂Ω is a

quasiarc iff C = {(x, h(x))} where h : T → T is quasisymmetric (adjacent intervals of equal

length map to intervals of comparable length). Another known case is when T is divided

into 2n equal intervals and these are identified pairwise by orientation reversing isometries;

this corresponds to collapsing the circle to a conformally balanced tree. Problem 1 asks for

a way to compute such a collapsing. Problem 2 asks for a reformulation of quasisymmetry

from homeomorphisms to decompositions, i.e., a condition that insures the corresponding

tree bounds a John domain (with estimates). This is interesting for conformal dynamics,

where the decomposition corresponding to a Julia set or Kleinian limit set is often known.

• Dessins d’adolescents: For f ∈ S∗, T = f−1([−1, 1]) is an unbounded, locally finite

tree (we will call these S∗-trees). There is a holomorphic τ from Ω = C \ T to the

right half-plane Hr, that is conformal on each connected component of Ω and satisfies

f = cosh ◦τ (cosh is the covering map from Hr to U = C \ [−1, 1]). Arc-length measure

on ∂Hr = iR pulls back to a measure (τ -length) on the boundary of each component;

every side of T gets τ -length π and every subset gets equal measure from both sides (this

is the S∗ version of conformally balanced trees).

Question 3. Which combinatorial trees occur as S∗-trees? Give one that doesn’t.

Suppose we have a particular embedding of a tree T ⊂ R
2 and want to build f ∈ S∗ so

f−1([−1, 1]) approximates T . Set Ω = C \ T and define τ : Ω → Hr to be a conformal

map from each component, sending ∞ to itself. Then cosh ◦τ is holomorphic on Ω, but

it is unlikely to be continuous across T . But if T has reasonable geometry (e.g, bounded

degree, C2 arcs as edges, . . . ) and if all τ -lengths are bounded away from zero, then

a method I call “quasiconformal folding” [20] builds a tree T ′ containing T and a QC

map τ from each component of Ω′ = C \ T ′ to Hr so that g = cosh ◦τ is quasiregular

in each component and continuous across T ′. By the measurable Riemann mapping

theorem there is a QC map φ so that f = g ◦ φ is entire. It is easy to check f ∈ S∗ and

f−1([−1, 1]) = φ−1(T ′) ≈ T (often φ very close to the identity).

These infinite graphs correspond to functions constructed in [20], [23]; a counterexample

to the order conjecture, a function with rapidly spiraling tracts, and a wandering domain

in B. They illustrate a key point of QC-folding: to build a function f in S or B just

draw a tree T and bound (from below) the τ -lengths of it edges (usually easy by standard

estimates). It is a simple machine to use (not so simple to build).

• Folding a pair of pants: A dynamical application of QC-folding was suggested

by Adam Epstein and Lasse Rempe. For a compact surfaces X, suppose W ⊂ X is

connected, open and has no punctures. Epstein [44] defines a finite type map f : W → X
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as a holomorphic function such that S(f) is finite, and he showed that many fundamental

results of rational dynamics extend to this setting. In [20] I use QC-folding to construct

a “pair-of-pants” (a sphere with three disks removed) that has a finite type map into

any hyperbolic X (including surfaces that contain W ). These are the first “non-trivial”

examples of finite type dynamical systems for genus ≥ 2.

Conjecture 4. Every pair-of-pants has a finite type map into any hyperbolic surface.

QC-folding gives a finite type quasiregular g on any W , but when we use the measur-

able Riemann mapping theorem to make it holomorphic, the conformal structure on W

changes; does every possible structure occur? An analogous question fails on compact

surfaces; on any compact surface there is a quasiregular g ramified over only three points,

but correcting the conformal structure only gives countably many distinct Riemann sur-

faces. This holds since Belyi’s theorem [11] says a meromorphic function ramified over

three points (a Belyi function) corresponds to a finite graph embedded in the surface and

there are only countably many choices for the combinatorics of this graph. However,

Conjecture 5. Every non-compact Riemann surface has a Belyi function.

Adam Epstein, Alex Eremenko, Lasse Rempe and I have verified this for all 4-punctured

spheres; already a continuum of distinct surfaces. Belyi functions now correspond to

uncountably many infinite trees, but some delicate estimates are still needed.

—————————— 2. Applications to entire functions ——————————

• On trees and growth: A natural measure of the growth of f ∈ E is its order:

ρ(f) = lim sup
z→∞

log log |f(z)|
log |z| .(1)

The natural parameter spaces of entire functions (at least for dynamics) are the quasi-

conformally equivalent functions: we say f, F are equivalent (written f ∼ F ) if there are

QC maps φ, ψ of the plane so that ψ ◦ f = F ◦φ. Eremenko and Lyubich [49] proved that

if f ∈ S has n singular values, then M(f) = {F : F ∼ f} is a n+2 complex dimensional

manifold. Adam Epstein asked if the order is constant on each such manifold, but in [23],

I build an example where ρ is unbounded on M(f).

Problem 6. What are the possible ranges of ρ on M(f), f ∈ S? Is it either a point or

unbounded? Can it be all of (0,∞)? Can a minimum or maximum be attained?

Part of Epstein’s motivation in formulating his order conjecture was the even more ambi-

tious question of computing ρ(f) from combinatorial data associated to f . In particular,

Problem 7. If f ∈ S∗, compute ρ(f) from the combinatorics of T .

When S(f) has more than two points, we can connect these points by a finite tree T ′ and

consider T = f−1(T ′). The counterexample to the order conjecture shows that ρ(f) is

not determined by the combinatorics of T , but can we compute the range {ρ(g) : g ∼ f}
from the combinatorics of T? Can we decide if ρ is constant on M(f)? What if T is

“simple enough”, e.g., one infinite ray with bounded size branches attached?
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• Wandering domains that stay close to home: Just as for polynomials, the Fatou

set F(f) of f ∈ T is the maximal open set where the iterates {fn} of f form a normal

family; its complement is the Julia set J (f). One of the most celebrated results in rational

dynamics is Dennis Sullivan’s “no wandering domains” theorem [87]: every component of

the Fatou set is eventually periodic. This was generalized to S by Eremenko and Lyubich

[49], and by Goldberg and Keen [54], but wandering domains can occur for f ∈ T (Baker,

[6]). All known examples have unbounded orbits, and Eremenko and Lyubich [49] asked

Question 8. Is there a wandering component for T that has a bounded orbit? Can a

wandering orbit converge to a point?

One way to answer Question 8 negatively might be find a new proof of Sullivan’s

theorem where compactness of the orbit replaces the finiteness of singular set; indeed, any

alternate proof of Sullivan’s theorem would be interesting and helpful. The wandering

orbit I construct for B in [19] uses infinitely many critical points to “compress” the

components; hence the orbit must be unbounded. Can we eliminate this? Kisaka and

Shishikura [61] constructed a wandering orbit for f ∈ T that does not contain any critical

points; can their example be replicated in B using QC-folding? In a different direction, a

famous conjecture of Baker asks

Conjecture 9. If f has order ρ(f) < 1/2, then all wandering components are bounded.

Actually, Baker’s original conjecture concerns all Fatou components, but was answered

for pre-periodic components by Zheng [94]. Baker’s conjecture is open even if ρ(f) =

0, although it is known for functions of very slow growth [57], [77] and under various

regularity assumptions on the growth (see Hinkkanen’s excellent 2008 survey [56]).

• The most normal entire function: Baker proved in 1975 that for f ∈ T , J (f)

contains connected components and hence dim(J ) ≥ 1. McMullen [67] gave examples

where the Julia set has dimension 2 (even positive area) and Stallard [84], [85] showed

that any dimension in (1, 2] could be attained by some f ∈ B. Is this also true for S? So

far, QC-folding has been very effective at reproducing examples from B (or even T ) in S,
so I expect this will be possible too. In [24] I show that the Julia set of

f(z) = p(z)
∏

k

(1− 1

2
(
z

Rk

)2
k

)(2)

has Hausdorff and packing dimension 1; in fact, J (f) has locally finite 1-measure. Here

Rk ր ∞ is a carefully chosen sequence and p is a polynomial with J (p) of small di-

mension. (I first discovered the “right” geometry using QC-folding, and this led to the

formula above.) This is the first known f ∈ T with dim(J ) = 1 or Pdim(J ) < 2.

Problem 10. Show Pdim(J (f)) can attain every value in [1, 2] for f ∈ T .

One way to get 1 < Pdim(J ) < 2 might be to replace the polynomial p in (2) by one such

that 1 < dim(J (p)) < 2. If we QC deform p so that dim(J (p)) sweeps out all dimensions

between 1 and 2, does Pdim(J (f)) also continuously sweep out these values? Do there

exist f ∈ T giving every possible pair 1 ≤ dim(J (f)) ≤ Pdim(J (f)) ≤ 2?
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Question 11. Is there an f ∈ T with dim(J (f)) = 1 and ρ(f) > 0? With ρ(f) = ∞?

The function in (2) has order 0 (and grows as slowly as we like, if Rk grows rapidly

enough). I expect that positive order examples can be constructed by modifying the

terms used in (2). The kth term in (2) is a rescaling of T2(z
2k) where T2(z) = 2z2 − 1 is

the Chebyshev polynomial of degree 2, and certain geometric properties of Shabat poly-

nomials are used in the proof. Replacing T2 by carefully selected, high degree Shabat

polynomials (using my approximation theorem in [18]), should give positive order exam-

ples. These examples would have wandering domains and also have very irregular growth,

so might be helpful in resolving Baker’s conjecture too.

We saw that the order ρ can differ for QC-equivalent functions. What about dim(J )?

Question 12. If f, g ∈ S are QC equivalent is dim(J (f)) = dim(J (g))?

Stallard has shown this fails in B (even for affinely equivalent functions); can we “QC-fold”

her examples into S? The same question is open even in B for the escaping set

I(f) = {z : fk(z) → ∞ as k → ∞}.

Question 13 ([76]). If f, g ∈ B are QC-equivalent is dim(I(f)) = dim(I(g))?

————— 3. Computational geometry and conformal analysis —————

I first describe some problems in computational geometry that were solved using ideas

from analysis, as well as some meshing problems that are still open, e.g., sharp bounds for

NOTs (= non-obtuse triangulations; all angles ≤ 90◦). I will then turn to some problems

in analysis where CG methods may help.

• NOT theory (not knot theory): My fast conformal mapping algorithm from [30]

puts the Riemann mapping theorem into the available toolkit for proving complexity

results in computational geometry. I used it in [31] to give a linear time algorithm for

meshing simple polygons by quadrilaterals with optimal angle bounds (all angles ≤ 120◦;

all new angles ≥ 60◦; original angles < 60◦ are left alone). One of the key ideas for

both fast mapping and optimal meshing is a thick-thin decomposition of a polygon that

is exactly analogous to the thick and thin parts of a Riemann surface. Thin parts of a

polygon correspond to pairs of sides which have extremal distance ≤ ǫ inside the polygon.

The leftmost figure below shows the thick (white) and thin (shaded) parts of a polygon.

The thins parts have simple shapes and are meshed “by hand”; the thick parts are handled

by transferred a mesh from the unit disk by a conformal map. The figure shows a partition

of the disk and how different shapes in the partition can be quad-meshed. Thus the

basic idea is that the thick/thin decomposition divides the polygon into “Euclidean” and

“hyperbolic” pieces and we mesh each piece using the relevant geometry.
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Recently I have extended the optimal meshing results from polygons to planar straight

line graphs (a PSLG is any finite union of points and segments; see the results from prior

support). Using my fast conformal mapping algorithm, I showed in [22] that any PSLG

has a O(n2) quad-mesh with sharp angle bounds 60◦ and 120◦ (same as for polygons).

Cutting each quadrilateral by a diagonal, we get a O(n2) triangulation with all angles

≤ 120◦, improving known bounds of 187.5◦, Mitchell [69], and 162◦, Tan [88]. The O(n2)

is sharp; some examples require this many triangles. I show in [21] that any bound 90◦+ǫ

is possible, but my proof gives a constant in O(n2) that blows up as ǫ → 0. A famous

open problem in computational geometry asks if we can avoid this, i.e.,

Conjecture 14. Every PSLG has a O(n2) non-obtuse triangulation (angles ≤ 90◦).

No polynomial time algorithm constructing NOTs for PSLGs was known until I recently

gave an O(n2.5) method in [21]. A NOT can always be converted to an acute triangulation

(angles < 90◦) with a comparable number of triangles, [65],[93], but no uniform angle

bound < 90◦ is possible (consider a 1×R rectangle with R large).

My proof of the O(n2.5) NOT-theorem goes as follows (see the picture below). (1) Add

extra edges until the PSLG becomes a triangulation. (2) Decompose each triangle into

three sectors (the thin parts, white) and a central region (the thick part, shaded). (3)

The thin parts are foliated by circular arcs concentric with the vertex and we propagate

the vertices of each thick part along the foliation paths until we hit another thick part

or hit the convex hull boundary. (4) These paths divide the edges into subsegments that

are each the diameter of disk that misses all the original vertices of the PSLG as well as

all the newly generated intersections. This set is called a Gabriel set for the PSLG and

known circle packing techniques can build a NOT from a Gabriel set [15].

If the triangles form a tree then each propagation path visits each edge at most once;

hence O(n2) points are generated, giving a O(n2) NOT. But for general triangulations,

propagation paths can hit the same edge arbitrarily often. I add n1.5 extra points to the

PSLG and give an intricate construction to perturb the propagation paths so that they

still generate Gabriel points, but so that each path terminates by running into another

path after at most O(n) steps; this gives a O(n2.5) NOT. The proof adds n1/2 extra points

for each of O(n) possible obstructions, but a more careful analysis may show that not

every obstruction needs the maximal number of extra points.

Dennis Sullivan noted the perturbations in the NOT-proof are reminiscent of Pugh’s

closing lemma: every C1 vector field has a small perturbation with a closed orbit [73],[74],

[75]. This is open for C2 vector fields. Dennis asked if this similarity could be made exact:

Question 15. Can a closing lemma help prove the O(n2) NOT-theorem? Can the NOT

argument help prove a closing lemma?
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• More NOTty problems: Non-obtuse triangulation of a PSLG requires& n2 triangles

in the worst case, but most applications won’t involve the worst case, so every time I give

the NOT talk for an applied audience, I get asked:

Question 16. Is there an algorithm that produces an O(N) sized NOT, where N is the

minimal number needed for that particular PSLG?

The corresponding theory in R
3 (the really interesting case) is wide open, although there

are a multitude of examples, definitions, heuristics and software.

Question 17. Do polyhedra in R
3 have nonobtuse tetrahedralizations of polynomial size?

Is this true with any angle bound < 180◦? Even finding an acute tetrahedralization of a

cube in R
3 was an open problem until recently (the smallest known example uses 1,370

pieces [91]) and is impossible in R
4, [63]. The breakthrough in the 2-dimensional case was

to introduce hyperbolic geometry into an apparently purely Euclidean problem. Can we

use analogous ideas in R
3? One idea is to create a 3-manifold out of a polyhedron, run a

Ricci flow on it (as in the proof of Thurston’s geometrization conjecture) to decompose

it into pieces with geometric structure and then utilize the geometry to find meshes.

• How sharp is Smirnov? Next we consider some attacks on analysis problems us-

ing computational geometry. In [81] Stas Smirnov proved the conjecture of Astala that

dim(f(R)) ≤ 1+k2 for any quasiconformal map f with dilatation |µf | = |fz̄/fz| ≤ k. Also

see [72]. Sharpness is open, although Astala, Rohde and Schramm used a holomorphic

motion of snowflakes to show d ≥ 1 + (.69)k2 is possible (personal communication).

Consider two combinatorially equivalent triangulations of the regions below. The piece-

wise linear map between corresponding triangles is QC and fixes the outer boundary.

Iterating the construction in the shaded squares, we obtain a QCmap sending the diagonal

to a fractal curve. The maximal dilatation k for the map and the dimension d of the curve

are both easy to compute, so every pair of triangulations gives a lower bound. Can the

optimal estimate can be approximated by these examples? This should be similar to

“fractal approximation” arguments in [17], [38], [59], [66].

Problem 18. Use available optimization software (e.g. CPLEX) to minimize 1 + k2 − d.

Either we will get near sharp examples or some insight into what is preventing sharpness;

either outcome would be interesting. Smirnov’s proof shows that the dilatation of an

optimal QC map satisfies the anti-symmetry condition µ(z) = −µ(z). Can this criterion

be utilized in our search? If we define “anti-symmetric” triangulations in an appropriate

way, does it suffice to search such examples?
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• How strong is Brennan? Brennan’s famous conjecture [37] asks

Conjecture 19. If f : Ω → D is conformal, then f ′ ∈ Lp(Ω, dxdy) for all p ∈ [2, 4).

This is related to a number of other important problems; see [9], [16], [39]. Must f ′ be in

weak L4 (strong Brennan conjecture)? I observed in [26] that this is implied by Astala’s

celebrated result on area distortion of QC maps [4], if the following is true (stronger

Brennan conjecture):

Conjecture 20. If Ω is simply connected, there is a 2-QC, locally Lipschitz f : Ω → D.

I showed in [25] that there is always a K-QC, locally Lipschitz map ι : Ω → D with K

independent of the domain. This is Thurston’s “iota map”; it is the natural isometry

between the boundary of the convex hull of Ωc in the hyperbolic upper half-space and

the unit disk (this surface S ⊂ R
3
+ is called the “dome” of Ω, ∂S = ∂Ω and iota is

the conformal map of the dome to the disk). See [45], [46], [47]. The iota map plays

a fundamental role as the initial guess for the fast conformal mapping algorithm in [30]

and is used to compute thick-thin decompositions of polygons in linear time. It is fast to

compute because it has an alternate definition using ideas from computational geometry.

The medial axis of a domain consists of the centers of all internal disks that hit the

boundary at least twice (see left below). Fixing one such disk and flowing orthogonally

to the boundaries of others (see right below) gives a map from ∂Ω to a circle. The flow

preserves certain cross ratios, and using this, we can compute the image of all n vertices

in time O(n). Thus iota gives a “fast but rough” version of the Riemann map.

The iota map has a locally Lipschitz extension to the interior with QC-constant ≤ 7.82

for all domains [27], but > 2.1 for some examples [48]; thus iota does not quite solve

Conjecture 20, but other maps may work. Can we efficiently compute the QC-constant

of iota for a given domain? If w = {w1, . . . , wn}, z = {z1, . . . , zn} are n-tuples of distinct

points on T (considered modulo Möbius transformations),

Problem 21. Compute dQC(z,w) = inf{logK : ∃ K-QC h : D → D, h(z) = w.}.

We know the general Teichmüller form of the extremal map, so it should be possible to

approximate K by some sort of Newton’s iteration on the space of holomorphic quadratic

differentials. We already have efficient methods to map a polygon to the disk both

conformally and by the iota map. An efficient computation of dQC would allow us to

try to optimize polygons for the worst K; perhaps even lead us to the shape of Brennan

counterexample, if one exists. Moreover, there are variants of iota that give better QC-

bounds on particular examples; can we search for one that satisfies Conjecture 20?
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• Can a carpenter straighten a chord-arc curve? A rectifiable curve Γ ⊂ R
2 is

called chord-arc if the arclength σ between x, y ∈ Γ satisfies σ(x, y) ≤M |x− y| for some

M <∞. The arclength parameterization satisfies γ′0(t) = eif(t) where f ∈ BMO, see e.g.

[53]. A famous and long standing problem asks if

Conjecture 22. The space of chord-arc curves is connected in the BMO topology.

If so, any chord-arc path Γ can be “straightened” to a line segment, i.e., there is a

γ : [0, 1]2 → R
2 so that the map t→ γt = γ(·, t) is continuous in the BMO topology, γ1 is

a line segment and γ0 = Γ. We call γ expansive if all distances increase, i.e., s < t implies

|γ(u, s) − γ(v, s)| ≤ |γ(u, t) − γ(v, t)|, ∀u, v ∈ [0, 1]. Such a motion cannot increase the

chord-arc constant M , so is a natural type of motion to consider.

Conjecture 23. A chord-arc path can be straightened by an expansive motion.

This is a continuous version of the “carpenter’s rule” problem in computation geometry:

straighten a polygonal arc without creating self-intersections. An expansive solution was

obtained by Connelly, Demaine and Rote [41], and independently by Streinu [86]. The

solution in [41] is based on linear programming; given the current position, a set of linear

equalities and inequalities determines what motions give a valid motion. Using duality,

the authors prove a solution exists unless the arc is already straight (interestingly, the

proof reduces to the maximum principle for subharmonic functions). We might prove

Conjecture 23 by approximating by polygons and passing to a limit, but we need estimates

on how fast points move: a lower bound to make sure the limiting motion actually

straightens the curve in finite time, and an upper bound to make sure the motions are

equicontinuous in the BMO topology. Does a solution exists with these extra constraints?

Can we test it numerically? Is the speed bounded in terms of the chord-arc constant?

——————————— 4. Quasiconformal distortion ———————————

A quasiconformal map is absolutely continuous on almost all lines, so a QC image of

[0, 1]× y will be rectifiable for a.e. y, but it is well known that a single segment can have

a fractal image (e.g., the von Koch snowflake is a quasicircle). Can every component of

[0, 1] × Y have its dimension increased if Y is “big”? How does this depend on Y ? We

now consider these questions and related problems about rectifiable sets.

• Simultaneous fractalization: In [33] Hrant Hakobyan and I prove that if f is QC

on R
n, Y ∈ R

n−1 and d = dim(Y ), then (compare to [7])

inf
y∈Y

dim(f([0, 1]× {y})) ≤ n

d+ 1
,(3)

and we give sharp examples in the plane (n = 2). Thus uncountably many parallel

segments can be made into “fractals” by a single map. We prove (3) as a special case of

inf
y∈Y

dim(f(E × {y}) ≤ dim(E) · dim(f(E × Y ))/dim(E × Y ).(4)

Problem 24. Is (3) sharp for n > 2? Is (4) sharp for general sets E?.
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Equation (4) considers subsets of hyperplanes and translates them in the orthogonal

direction. What about general sets and arbitrary translates? The proof of (4) uses the

Fuglede d-modulus of a set of measures {νλ} with respect to a base measure µ. This is

defined as modd({νλ}, µ) = infρ{
∫
ρddµ :

∫
ρdνλ ≥ 1 ∀λ}, and generalizes conformal

modulus. Hakobyan proved that if E ⊂ R
2 has dimension d, and f is QC then

mod2/d({E + y : dim(f(E + y)) > dim(E)}, dxdy) = 0.

In other words, the dimension of almost every translate is not increased, in the sense of

modulus. What about in the sense of Lebesgue measure?

Conjecture 25. area({y : dim(f(E + y)) > dim(E)} = 0. Is this true for <?

What about the size of the exceptional set? The dependence on the QC-constant of f?

More general linear transformations? An endless supply of questions remains untouched.

• QC maps destroying rectifiability: If n = 2 and dim(Y ) = 1, then (3) says

f(Y ×[0, 1]) has a component of dimension 1; must it be rectifiable? No. In [33] Hakobyan

and I prove that f(Y × [0, 1]) can be purely un-rectifiable (no rectifiable subarcs). No

uncountable example with this property was previously known (for countable sets, see

[64]). In fact, positive h-measure examples exist for any h so that limt→0 h(t)/t = ∞. My

interest in these examples is motivated by:

Conjecture 26. Every zero area set X ⊂ R
2 has a purely un-rectifiable QC image.

Roughly, this says there is a QC map whose Jacobian blows up on any null set; thus this

question is closely connected to the well studied problem of characterizing Jacobians of

QC maps (see [36]). The work with Hakobyan eliminates many sets X = Y × [0, 1] as

possible counterexamples, but it would very interesting to eliminate all of them:

Conjecture 27. If Y has zero length, Y × [0, 1] has a purely un-rectifiable QC image.

The construction in [33] covers Y × [0, 1] by thin tubes and uses a QC map to bend

the tubes at infinitely many scales. However, the tubes must be “well separated”, and

hence Y must be porous at infinitely many scales. If I could remove this condition, then

it seems likely that Conjecture 26 might follow using a result of Alberti, Csörnyei and

Preiss [2], that any null set E has a “Lipschitz product structure”. More precisely, for any

ǫ > 0, E = Ex ∪ Ey where Ex can be covered by “horizontal tubes” T (fi, δi) = {(x, y) :
|y − fi(x)| < δi} where

∑
i δi < ǫ and {fi} are 1-Lipschitz. Ey is covered by analogous

vertical tubes. Constructing a QC map that bends these tubes at infinitely many scales

should prove Conjecture 26. The proof in [2] is combinatorial argument about partially

ordered sets, and provides an elegant application of combinatorial ideas to analysis.

• QC maps preserving rectifiability: Conjecture 26 fails for small QC maps; there is

a null set E and a K > 1 so that every K-QC image of E contains a rectifiable arc [32].

Such a set is used to build a surface S ⊂ R
3 that is a quasisymmetric (QS) image of R2

but not a biLipschitz image [28]. (QS maps generalize QC maps, but we omit the precise

definition; BiLipschitz maps preserve distance up to a bounded multiplicative factor).
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Problem 28. Characterize metric spaces that are biLipschitz equivalent to the plane.

Bonk and Kleiner [35] characterized QS images of R2; Problem 28 asks what additional

condition implies their QS parameterization can be improved to biLipschitz.

The surface S in [28] contains an infinite length curve γ that maps to finite length

under any QS map to R
2; clearly there is no such biLipschitz map. The length of the

image is estimated using Peter Jones’ traveling salesman theorem (TST) [58]; this gives a

characterization of rectifiable curves in the plane in terms of “β-numbers” that measure

local deviation from a straight line. Roughly speaking, the surface S fails to be a biLips-

chitz plane because the TST fails on S. Is there a version of TST for biLipschitz images

of R2? Does it characterize biLipschitz images?

Crofton’s formula says that the length of γ ⊂ R
2 is 1

2

∫
#(γ ∩ L)drdθ, where L is the

line {z : Re(ze−iθ) = r} and drdθ is invariant under isometries of R2. I recently showed

that Jones’ TST in R
2 follows easily from Crofton’s formula and some simple estimates

about dyadic squares (similar to those in Okikiolu’s proof of TST [71]). Is there a version

of Crofton’s formula valid for biLipschitz images of R2? If so, does this characterize such

images? I am studying these problems with Raanan Schul and Mathew Badger (experts

on TST and geometric measure theory here at Stony Brook).

• Can a finite set be infinitely hard to triangulate? As usual, a triangulation of

a finite set V is a maximal set of disjoint open segments with endpoints in V . Some

triangulation of V attains the minimal total length (or “weight”), denoted MWT(V ), but

we can sometimes decrease MWT(V ) by adding vertices (Steiner points), e.g.,

Let MWT(V, n) = inf{MWT(W ) : V ⊂ W,#(W \ V ) ≤ n}. A long standing problem in

computer science asks if a finite number of Steiner points suffices, i.e.,

Problem 29. Is infnMWT(V, n) always attained? Is MWT(V, n) eventually constant?

Connecting points of V is easier: the smallest length is attained by a Steiner tree with

at most #(V ) − 2 extra points. Jones’ TST approximates this minimum to within a

bounded factor, but finding the minimum is NP-hard [52] (but it can be approximated in

polynomial time [3], [68]). Finding a minimal triangulation (even without Steiner points)

is NP-hard by [70] and Problem 29 asks whether a solution even exists when Steiner points

are allowed. I gave a set V where MWT(V ) > MWT(V, 1) = MWT(V, n), n ≥ 2 but the

infimum is never attained, so the answer to the first question above is “no”. However, my

example contains three co-linear points so the question becomes: is the infimum attained

for points in general position? If MWT(V, n) is not eventually constant, and we pass to a

minimizing sequence of triangulations, can we use geometric measure theory to describe

the limit? To prove that it is actually a finite triangulation? There is a large literature

on rectifiable sets that might be applied here, and such a solution would be a remarkable

application of “infinite” analysis methods to a “finite” geometry problem.
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—————— 5. Educational and broader impact of the proposal ——————

Optimal meshing has a number of practical applications. Acute and non-obtuse triangu-

lations make some numerical methods work more efficiently, e.g.,

• Maximum principles hold for various discrete PDE’s on NOTs, [40].

• Condition numbers for matrices associated with general triangulations grow exponen-

tially with the size of the mesh, but only linearly for NOTs, [92].

• The finite element method on a NOT leads to matrix that is symmetric, positive defi-

nite and negative off the diagonal, allowing faster numerical linear algebra [82].

• First order Hamilton-Jacobi equations ut + H(∇u) = f(x) are modeled in [10] using

an update that works better with an acute triangulation.

• The Fast Marching Method in [60], [80] for finding geodesics on a triangulated surface

is most efficient if the underlying triangulation is acute.

• Meshing space-time using the tent pitcher algorithm of [1], [89], [90] is guaranteed to

work for an acute initial triangulation (general cases require extra work).

• Nearest neighbor computer learning uses NOTs, [79].

Other applications are given in [10], [14], [82]. This proposal is closely related to my work

on numerical conformal mapping (not explicitly discussed due to lack of space). Con-

formal mapping is currently the fastest way to solve certain problems in 2-dimensional

potential theory, see [42] and its references. Conformal maps, the iota map and the medial

axis are used in David Mumford’s work on pattern recognition and computer vision.

A more general impact of the proposal is its interdisciplinary character, connecting

classical analysis, hyperbolic geometry, computational geometry and numerical analy-

sis. These problems can serve as a bridge between researchers with common interests

but different backgrounds. For example, my paper on fast conformal mapping [30] was

specifically written to be accessible to both mathematicians and computer scientists and

appeared in a premier computer science journal. The iota map and its connections to

conformal mapping (introduced in [26], [27], [30], [31]) have already started to appear in

the work of some applied mathematicians (e.g., [8], [50], [51]). I spoke on this work at the

2010 Fall Workshop on Computational Geometry, and on NOTs at a keynote address for

the 2012 Symposium on Computational Geometry (SoCG). I also organized a workshop

at SoCG on the interactions between computational geometry and analysis. This was

a sequel to a similar workshop Steve Vavasis and I hosted at Stony Brook in 2007. I

maintain websites for both (including videos from the 2007 workshop).

The problems described in the proposal generally have simple statements, a signifi-

cant geometric and computational component and interesting applications. This makes

them attractive to students and I have supervised 4 Ph.D. dissertations on related topics:

Zsuzanne Gonye (geodesics in hyperbolic manifolds), Karyn Lundberg (boundary conver-

gence of conformal maps), Hrant Hakobyan (dimension distortion under QC maps) and

Chris Green (numerical conformal mapping). These account for four of a total of ten

PhD’s in analysis at Stony Brook over the last ten years. Many of the problems discussed

in the proposal could be used for graduate or undergraduate research projects, e.g.,
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• Search for near sharp examples in Smirnov’s 1 + k2 theorem.

• Numerically estimating the speed in the carpenter’s rule motion.

• Draw the transcendental Julia set of dimension 1.

• Draw a Julia set for a pair-of-pants finite type map.

• Approximate the true form of a planar tree. This is the honors thesis of Kevin

Sackel, an undergraduate math/physics major I am advising.

• Computing optimal QC distance between n-tuples: This is currently being

investigated by Mayank Goswami, a graduate student in applied math.

• Search for “improvements” to the iota map.

• Conformal maps via random walks: using a trick to allow certain random walks

that step past the boundary we can estimate harmonic measure very quickly. This method

was used in 2011 by Ahmed Rafiqi (then an undergrad; now in grad school at Cornell)

to calculate Schwarz-Christoffel parameters for simply connected polygonal domains and

conformal modulus for polygonal annuli.

• Peano maps on snowflakes: The figures below were generated by convolving 1/z

by point masses at the vertices of successive generations of the von Koch snowflake. The

limit is a Peano map of the snowflake onto a set with interior. An undergrad, Daniel

Levine, is numerically investigating these pictures and the push-forward measure.

• The Brownian trace is purely unrectifiable: The trace of 2-dimensional Brownian

motion is conjectured to contain no rectifiable arc, even no arcs of dimension 1+ ǫ. Draw

a N -long random walk on a square lattice and compute the minimal distance D (along

the visited sites) between points chosen about distance
√
N apart. If D ≃ N often, this

is evidence that Brownian motion contains rectifiable paths.

• Implementing the NOT-algorithm The full polynomial algorithm for finding NOTs

of PSLGs is probably too complex to implement, but the special case of refining any

polygon triangulation to a non-obtuse one should be easy to code. Use the implementation

to study how far the worst case running time is from the “average” behavior.

• Conformal mapping: Davis’s method and CRDT are simple iterations used in prac-

tice to find the parameters in the Schwarz-Christoffel formula, but neither is proven to

converge. For pentagons, we can interpret the iterations as acting on R
2. Study their

geometry and prove they converge in this special case.

• Prause’s “2-sided” conjecture: If f1, f2 are conformal maps from two sides of

a Jordan curve γ to the disk, and if µ is a measure on γ, as a result of joint work

with Kari Astala and Stas Smirnov, Istvan Prause conjectured that (dim(µ) − 1)2 ≤
(dim(f1(µ)) − 1)(dim(f2(µ)) − 1). Test this numerically for some fractal curves using

numerical conformal maps or simulated random walks.
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[3] Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems. J. ACM, 45(5):753–782, 1998.

[4] K. Astala. Area distortion of quasiconformal mappings. Acta Math., 173(1):37–60, 1994.
[5] I. N. Baker. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math.,

1(2):277–283, 1975.
[6] I. N. Baker. An entire function which has wandering domains. J. Austral. Math. Soc. Ser. A,

22(2):173–176, 1976.
[7] Z.M. Balogh, R. Monti, and J. Tyson. Frequency of Sobolev and quasiconformal dimension distortion.

to appear in J. Math. Pures Appl.
[8] L. Banjai. Revisiting the crowding phenomenon in Schwarz-Christoffel mapping. SIAM J. Sci. Com-

put., 30(2):618–636, 2008.
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