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My recent work concerns conformal and quasiconformal mappings. The main results are sum-
marized below; preprints are at www.math.sunysb.edu/ "bishop/papers/papers.html.

e Conformal mapping in linear time: One of the major goals of my previous proposal was
accomplished by proving [24]: If Q is a simply connected n-gon, then in time O(n - plogp) we
can construct a (1 + €)-QC map from D — Q, where p = |loge|.

The linearity in n is clearly optimal and improves on methods in use, such as Toby Driscoll’s
SC-Toolbox which is O(n3). My representation of conformal maps involves a partition of D
into O(n) pieces and a p-term power series on each piece. Geometric convergence of the series
requires p ~ |loge| terms to give accuracy e. The time bound O(plogp) therefore allows
only O(1) operations per series (multiplications, Fast Fourier Transforms, ...). The proof is long
(about 100 pages) but contains various intermediate results which may be of independent interest
(e.g., a thick/thin decomposition of polygons, linear time construction of bending laminations,
piecewise Mobius approximations to conformal mappings, using the medial axis to organize data
for optimal use of the fast multipole method).

e Jacobians of quasiconformal mappings: In [20] I construct an A; weight on R? which is
not comparable to the Jacobian of any planar quasiconformal map, solving a problem of Stephen
Semmes. As a consequence, I obtain an Ahlfors 2-regular and locally linearly connected surface
in R3 which is not bi-Lipschitz equivalent to the plane, answering a question of Heinonen and
improving an example of Laakso [50]. In [23], I construct a set E C R? so that no weight that
blows up on FE is comparable to a K-QC Jacobian for K close to 1.

¢ Quadrilateral meshes with no small angles: The linear time Riemann mapping theorem
is strong enough to prove new results in computational geometry using conformal mappings. In
[26] T solve a problem of Marshall Bern and David Eppstein [6] by showing that every n-gon
has a mesh with O(n) quadrilaterals in which all (new) angles are bounded between 45 — ¢ and
135+ ¢, any € > 0. The mesh can be found in time O(n), improving an O(nlogn) method in
[6] for finding a quadrilateral mesh with an upper bound only on the angles.

e Medial axis and central sets: The medial axis of Q@ C R? is the set of z € Q with two
or more closest points on 9. This is a subset of the central set, the set of centers of maximal
disks in Q. The two sets agree for polygons, but differ in general (e.g., an ellipse contains
maximal disks tangent at only one point). In 1945 Erd6s [39] showed the medial axis always has
dimension 1 and in 1997 Fremlin [40] showed the central set has zero area. In [28], Hakobyan
and I show the gap exists by constructing a central set of dimension 2.

e A conjecture of Driscoll and Vavasis: In [34], Driscoll and Vavasis give an iterative
method for conformal mapping. Based on numerical experiments, they conjectured that their

method always gives a uniformly good starting point, in a precise sense, and that their iteration
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converges linearly to the correct answer. In [17] I show their starting point estimate is false as
stated, but can be modified to be true. The convergence of their method is still open. [17] also
contains a linear time algorithm for computing the iota-map for a polygon (see proposal).

e Distortion of disks: Part of Astala’s celebrated work on sharp estimates for QC mappings
is the estimate 3" diam(Dy)? ~ Y diam(f(Dy))? whenever f is a normalized QC mapping which
is conformal off the finite collection of disjoint closed disks {Dg}. In [1] Astala and his coauthors
ask if this is still true for 0 < d < 2, but in [25] I provide a counterexample.

e Dilations of dilatations: If 4 is the dilatation of a QC map f,, which is conformal outside
D and which maps 9D to a chord-arc curve, Cui and Zinsmeister [33] asked if the same must be
true for ¢t - p for all t € [0,1]. In [21] I disprove this by showing that dim(f;,(T)) > 1 is possible
for some t < 1.

e Conformal welding: A circle homeomorphism h is called a generalized conformal welding
on E C T (denoted h € GCW(E)) if h = g~ ! o f, where f and g are univalent maps from D, D*
to disjoint domains 2, 2*, and the composition exists for radial limits of f on E and g on h(E)
(this was invented by David Hamilton in [42]; see also [43], [44]). Moreover, h is a (standard)
conformal welding (denoted h € CW) if E = T and Q,Q* are the two sides of a closed Jordan
curve I'. Not every h is a conformal welding, but in [8] I prove that every h agrees with some
H € CW off a set E of arbitrarily small Lebesgue measure. Other results in [8] include: every h
is in GCW(T\ E1 U E») for some sets with cap(E1) = cap(h(F2)) = 0 (cap stands for logarithmic
capacity); if h is log-singular (i.e., T = Eq U E3 with cap(E1) = cap(h(E2)) =0 ) then h € CW
(this is quite different from the usual quasisymmetric (QS) condition); a new, short proof that
QS homeomorphisms are conformal weldings using Koebe’s circle domain theorem.

e Factoring conformal maps: In [13], [18] I show any conformal map f : D — Q can be
written as f = g o h where h is a 8-QC self-map of the disk and |¢'| > € is bounded away
from zero uniformly. Among the geometric consequences: any simply connected domain can be
mapped to the disk by a locally Lipschitz homeomorphism and any quasidisk can be mapped
to a disk by a Lipschitz homeomorphism of the plane.

e Miscellaneous: In [22] I disprove Rudin’s orthogonality conjecture by constructing a large
class of non-inner functions so that the sequence of powers f, f2, f3,... is orthogonal in H?
(Carl Sundberg independently disproved the conjecture). In [10] I show that a compact E C T
is a boundary interpolation set for conformal maps iff it has zero logarithmic capacity. In [11] I
show Bowen’s dichotomy holds for divergence type Fuchsian groups, i.e., a QC deformation of
such a group has a limit set which is either a circle or had dimension > 1, extending work of
Bowen [31], Sullivan [57] and Astala and Zinsmeister [2], [3], [4]. Further results on the failure
of the dichotomy for divergence groups are given in [12], [14]. Results on the failure of Ruelle’s
property (analytic dependence of dimension on parameters) are given in [9], [15], and further
results on dimensions of limit sets are given in [19] and [16]. [27] is a review of “Harmonic

Measure” by Garnett and Marshall and a survey of recent results in geometric function theory.



PROJECT DESCRIPTION

First we review fast conformal mapping and discuss related open questions. Then we move to
other connections between conformal analysis and computational geometry and end with some
problems about QC mappings and conformal welding. Problems of various difficulty will be

discussed; some seem close to solution, while others remain long term goals.
1. Fast conformal mapping

e The algorithm: Roughly, I give a quadratically convergent iteration and a starting point
from which it is guaranteed to converge. I will briefly describe some of the main ideas.

We start with the “iota-map” ¢ : 02 — 0. This is simplest when {2 is a finite unions of
disks. In that case, {2 is a union of one disk (which we may assume is D) and a finite number
of crescents. Each crescent has a foliation by circular arcs orthogonal to its boundaries and
¢ simply follows the foliation from 02 to 0. See Figure 1. For general domains, one can

approximate by disks and pass to a limit. For polygons, I give an explicit formula in [17].

FIGURE 1. A polygon, an approximating finite union of disks, and the foliated crescents.

Alternatively, given a domain written as a union of a disk and crescents, we can multiply the
angle of each crescent by a factor ¢ € [0,1] to get an “angle scaling family” of domains which
connects D = €y to 2 = Q4. Moreover, for 0 < s < t < 1, Q, and €, differ by an explicit
14+ O(]s — t|)-QC mapping. For s = 0,t = 1 this map is ¢ : 9Q — D, so we see it has a
uniformly K-QC extension to the interiors (we can take K = 8 by [18]). This follows from the
Sullivan-Epstein-Marden convex hull theorem [56], [36] in 3-dimensional hyperbolic geometry,
as explained in [13], [24]. Observing this connection between planar maps and 3-dimensional
hyperbolic geometry was the main new insight leading to the fast mapping theorem. Given any
e > 0, the angle scaling family allows us to build a chain from Q to D with at most O(1/e)
domains {Q4}, each of which is a (1 + €)-QC image of its predecessor. See Figure 2.
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FIGURE 2. An angle scaling chain from 2 to D




Given a finite set E C R, cover the hyperbolic convex hull of E by O(n) Whitney boxes and
“arches” and cover the rest of H by O(n) Carleson squares. An arch is a Carleson square with
a smaller Carleson square removed; these cover parts of the convex hull which are very “thin”.
See Figure 3. An e-representation of an n-gon 2 consists of n points £ C R, the associated
Carleson-Whitney decomposition of H, and an analytic map of each piece into {2 which sends
E to the vertices of 02, the components of R \ E to the edges of 09, and so that the maps
for adjacent pieces agree to within e (with respect to a certain metric on ). Smoothing an

e-representation with a partition of unity gives a (1 + O(€))-QC map F : H — Q.
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FIGURE 3. A Carleson-Whitney decomposition of H into O(n) pieces. There is
one arch on right which covers a thin part of the convex hull.

Our iteration takes an e-representation and approximately solves a Beltrami equation to find
map h : H — H whose Beltrami dilatation up = hz/h, satisfies up = pr + O(||ur||%). Then
F o h™! gives an O(e?)-representation of Q. Moreover, this works as long as € < ¢ for some
€o which is independent of n and 2. The Beltrami equation is solved using fast multipole
methods to evaluate the Beurling transform. To obtain time estimates O(plogp), p = |loge|,
independent of the geometry, the prevertices are organized in a tree structure using the medial
axis of a sawtooth domain associated to E. Similar methods should work in higher dimensions.

To construct the conformal map in linear time, first construct the angle scaling chain from
D to Q with “gaps” that have QC size < %60. Use the identity map on D as the starting
point and iterate towards the conformal map onto ;. Once we get an %eo—representation of
Q1, use it to iterate to an %eo—representation of Q9. Continue for O(1/eg) steps until we get
an eg-representation of ). Since ¢g is bounded below independent of €2, this only takes time
O(n). Then continue the iteration for {2 until we reach the desired accuracy e. The length of
the power series needed in our representations at each step of the iteration grows exponentially,
so the total work is dominated by the final step, O(n - |loge€| - log|loge|), as claimed.

Several of the steps already exist as code (computing the medial axis, computing angle scaling
families, computing Beurling transforms by fast multipole methods, ...), so I hope to find a
student or collaborator with the skills to pull these together and write an implementation of the
algorithm. Even if it turns out to be impractical to implement the method exactly, I expect that
some parts of it will be useful supplements to existing methods (e.g., using the angle scaling
family to lead any iterative method towards the correct solution). In this proposal, however, I

will only discuss more theoretical problems that remain open.
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e Complexity of conformal mapping: In the fast mapping theorem, the linearity in n can’t

be improved, but what about the dependence on €?
Problem 1. Is the current algorithm optimal, i.e., can the O(plogp) term be improved?

Since we represent the map using O(np) numbers (O(n) power series of length p), and the
current method uses only O(1) operations per series, improving this constant will require either
a faster method of doing Fast Fourier Transforms (FFT) or a different representation of the
maps that requires fewer numbers. The former might be possible since we are computing
an approximation and so only approximate FFT’s are needed. Can these be done faster?
To represent the maps with fewer numbers, consider that the Schwartz-Christoffel formula
represents a map onto an n-gon with 2n numbers: the angles and the prevertices. Can we
construct a faster method using it? The CRDT (= Cross Ratios and Delaunay Triangulation)
method of Driscoll and Vavasis uses this representation, as does Driscoll’s SC-Toolbox, but both
methods are asymptotically slower and neither is known to converge in all cases.

The current theorem assumes infinite precision arithmetic, and it would be useful to under-
stand the bit-complexity, i.e., given an n-gon with k-bit numbers as vertices, how much work is
needed to find all n conformal prevertices with k bits of accuracy? Arches in the decomposition
of H cause problems because they can combine numbers of vastly different scales. Let N be the

number of Whitney squares needed to cover all the arches.
Conjecture 2. The bit-complezity of finding the prevertices is O((n + N)klogk).

e More general domains: The current proof of the fast mapping theorem uses both poly-
gons and finite unions of disks, switching between them using approximation lemmas. This is
awkward both in theory and in practice. The class of circular arc polygons contains both types

of domains and is a more natural class for the proof (e.g. is closed under angle scaling).
Problem 3. Eztend the algorithm to circular arc polygons.

In general, the algorithm should extend to any class of domains where we can compute (or
estimate) the medial axis quickly and can explicitly “straighten” any boundary point (i.e., map
a neighborhood of any boundary point to a neighborhood of 0 in H by an explicit map or
fast approximation). Another problem is to find fast methods for mapping multiply connected

domain to canonical domains, e.g. Koebe domains (all boundary components points or circles).

Problem 4. Given a polygonal domain Q) with n vertices and k boundary components, can we
compute a (1 + €)-QC map to a Koebe domain in time C(e)k*n? C(e)kn? C(e)n?

This is interesting even for € ~ 1, i.e., find a uniformly K-QC map to a Koebe domain in
linear time. Assuming this, the main difficulty in Problem 4 is solving the Beltrami problem
with a map that sends the Koebe domain ) to another Koebe domain. This can be done exactly

by extending a dilatation supported on €2 to be invariant under the (infinite) reflection group
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generated by the bounding circles. In practice we need to truncate the extension. For an annulus
this gives good estimates, but higher connectivity leads to exponential growth of the reflection
group; can we approximate the invariant dilatation accurately but efficiently? Are other types
of canonical domains easier? Can the method for planar domains be modified to find maps onto
surfaces in R3 (important for various applications in computer graphics)? Finally, we mention
the important problem of doing all of this in higher dimensions. There are no non-Mobius

conformal maps in this case, but the following variations make sense:

Problem 5. Is there a linear time algorithm to solve the Dirichlet problem on a 3-dimensional

polyhedron with piecewise linear data with given accuracy?

Problem 6. Is there polynomial time algorithm to find a quasiconformal map of a 3-dimensional

polyhedron to a ball when one exists (or even to decide if one does exist).

This seems very difficult, except that David Hamilton has announced a characterization of

quasi-balls in higher dimensions [45]. Perhaps his results will be helpful here.
2. Meshes and triangulations

e Quadrilateral meshes: The fast conformal mapping theorem uses ideas from computational
geometry and, conversely, is strong enough to prove new results in computational geometry. In
the summary of previous work, I described how this approach solved a problem of Bern and
Eppstein by constructing quadrilateral meshes with angles between 45 — € and 135 + €. These
numbers are artifacts of the Whitney decomposition of H used in the proof. By introducing a

decomposition based on hyperbolic polygons and Fuchsian groups I expect to prove:
Conjecture 7. Any n-gon has a O(n) quadrilateral mesh with angles between 60 and 120.

Bern and Eppstein have proven that any quadrilateral mesh of a regular hexagon must have

an angle > 120 (Theorem 5 of [6]). Is the lower bound optimal as well? Does Conjecture 7 hold
with multiple boundary components? (A solution to Problem 4 might help.)
e The thick/thin decomposition: A key idea in the proof of the fast mapping theorem is the
decomposition of a polygon into thick and thin parts. This is analogous to the decomposition
of a Riemann surface into thick and thin parts based on the size of the injectivity radius. For
polygons, e-thin parts correspond to pairs of edges which have extremal distance < € in §2. For
adjacent edges (which have distance 0) we call this a parabolic thin part and for non-adjacent
edges a hyperbolic thin part, borrowing terminology from the case of surfaces. A polygon is
e-thick if it has no hyperbolic e-thin parts. See Figure 4 (dark=hyperbolic, light=parabolic).

For both surfaces and polygons the thin parts have a very simple structure and we can think
of the surface (or polygon) as consisting of interesting thick parts, attached to annoying, but
well understood thin parts. Is it possible to create a dictionary between hyperbolic surfaces
and polygons which extends the analogy of the thick and thin parts, e.g., what is the analog of

Mahler-Mumford-Bers compactness for polygons? Is it useful for applications to geometry?



FIGURE 4. A surface and polygon with hyperbolic and parabolic thin parts.

In the fast mapping algorithm, the argument described earlier is really only applied to the
thick parts; on the thin parts we have explicit formulas which approximate the map. For the
meshing problem, we decompose the polygon into thick and thin parts, find explicit meshes on
the thin parts, and use conformal mappings to push meshes from H to the thick part of Q. I
believe that many known results can be easily deduced using this approach, but it would be
more interesting to solve some open problems.

o Conforming Delaunay triangulations: Given a polygon I" with vertex set V' and edges E
we can either triangulate the interior of the polygon, or we can forget the edges, and triangulate
the convex hull of V. The latter case is said to “conform” to I' if the edges of the triangulation
cover all the edges E of I'. If the triangulation uses vertices in addition to points of V', these
are called Steiner points. See Figure 5. It is often easier, in practice, to deal with point sets

than polygons, so conforming triangulations are important for various applications.

FIGURE 5. A triangulation of a polygon; another with Steiner points; a con-
forming and non-conforming triangulation of the vertices.

A triangulation of V is called Delaunay if the open disk defined by the three vertices of each
triangle misses V. These always exist (and are essentially unique) and are important because
they optimize various properties of triangulations. The Delaunay triangulation of the vertices
of a polygon can always be made conforming by adding enough Steiner points to the edges.
How many new points are needed? In 1993 Edelsbrunner and Tan [35] showed that O(n?) extra

points suffice and sometimes ~ n?

are needed, but this gap has remained open. A well known
lemma (e.g., [5]) says a segment between two vertices is an edge of the Delaunay triangulation

iff it is Delaunay, i.e., is the chord of some open disk disjoint from V. Hence,
Problem 8. Can we subdivide the edges of an n-gon into O(n?) Delaunay sub-edges?

If O(n?) is too hard, what about O(n%), a < 3? A stronger condition is to require every edge
be the diameter (not just a chord) of a disk missing V. This is called a Gabriel edge.
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Problem 9. Can we subdivide the edges of an n-gon into O(n®) Gabriel sub-edges, a < 0o ?

I believe conformal maps and the thick/thin decomposition can help answer both questions.
Suppose I' is a n-gon and H is its convex hull. Then H \ I consists of O(n) polygons and for
each we compute the thick parts and thin parts (O(n) in total). Using conformal maps, we can
subdivide the boundaries of the thick parts so each edge is the base of a halfdisk in a thick part.
If such an edge bounds two adjacent thick parts then we are done. We can choose the thin parts
to be circular arc quadrilaterals (as in Figure 4), which are foliated by circular arcs orthogonal
to two opposite, straight edges. Thus the union of the thin parts, W, is a domain foliated by
piecewise circular paths. Consider the leaves of the foliation which terminate at vertices of a
thick part. These cut W into O(n) “tubes”. Each tube can be swept out by a disk of fixed
size, and this implies that adding vertices everywhere a tube side meets I' maintains the Gabriel
condition. If W is simply connected, then each of the O(n) tubes can meet at most O(n) thin
parts and hence at most O(n?) vertices are added, solving Problems 8 and 9.

Unfortunately, W can be multiply connected and the tubes can “spiral” hitting the same
thins parts over and over again. However, there are at most O(n) different spirals and if a spiral
hits £ = O(n) different thin parts, it is easy to “block” it with O(k?) points, i.e., we can add
points to T’ which end the tube and preserve the Delaunay condition. This gives a O(n?) bound
on the number of vertices needed, i.e., a new proof of the Edelsbrunner-Tan result. We could
improve O(n3) to O(n'*9) if we could block spirals with only O(k®) points. For example, if
the thin parts look like n parallel strips of equal width, then a blocking set can be built using
a finite approximation of an Appolonian packing and the number of points needed is O(n?),
where a ~ 1.3058 is the Minkowski dimension of the Apollonian residual set. This construction
is too technical to present in detail here, but I mention it to give an example of how different
ideas from analysis (dimension, circle packings, Kleinian limit sets) might find new applications.

If a spiral hits k thin parts and a tube wraps around the spiral at least vk times, there is an
alternate blocking method using O(k!-%) vertices, which preserves the Gabriel condition. This
implies a O(n®®) bound in Problem 9, if certain difficult technical points can be worked out.

e Non-obtuse triangulation: The conforming Delaunay triangulation problem is closely

related to another elementary sounding (but unsolved) problem:
Problem 10. Does an n-gon have a polynomial sized non-obtuse, conforming triangulation?

More precisely, does the convex hull of a n-gon I' have a triangulation with all angles < 90°
that conforms to I" and uses only O(n®) triangles for some a < co? Any non-obtuse triangulation
must be a Delaunay triangulation (e.g., Lemma 9 of [5]), so Problem 8 is a special case of this
one. In 1994 Bern, Mitchell and Ruppert [7] proved one can always triangulate the interior of a
n-gon with O(n) non-obtuse triangles. For the conforming problem, we could try to triangulate
one side first, but this adds Steiner points to the polygon which must be included when we

triangulate the second side. This, in turn, adds new points to be added into the triangulation
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of the first side. Can we eventually stop this “back-and-forth” process? My idea is to use the
thick/thin decomposition as with conforming triangulations. The spiral blocking that preserves
the Gabriel condition also gives a polynomial sized non-obtuse triangulation of the thin parts.

Thus the problem now is the thick parts. A special case would be to solve:

Problem 11. Suppose Q1 and Qs are disjoint thick polygons. Are there non-obtuse triangula-

tions which use the same Steiner points on 021 N s ?

If we weaken “non-obtuse” to “no angles > 90 + €” it suffices to solve following problem.
Suppose fi, fo are conformal maps of H onto the two polygons and let h = f5 Lo f1 (where
the composition is defined). Given finite sets So = h(S1), can we build Carleson-Whitney
decompositions for each (see Figure 3) so that any additional boundary vertices also correspond
under A? This is a discrete conformal welding problem. If A were quasisymmetric then it
should be straightforward to build the desired pair of decompositions. We don’t know h is
quasisymmetric in our case, but perhaps the thickness assumption is enough (it roughly says h
has bounded distortion at the scales of interest). We will return to conformal welding later, but

first we will discuss some more interactions of computational geometry and analysis.
3. BMO, chord-arc curves and the carpenter’s rule problem

A rectifiable curve T' C R? is called chord-arc if the arclength o satisfies o(x,y) = O(|z — y|)
for 2,y € I'. The arclength parameterization of such a curve has tangent of the form e*/(!) where
f € BMO (= Bounded Mean Oscillation, see e.g. [41]). The BMO norm induces a topology on

the space of chord-arc curves and it has been a long standing problem to prove
Conjecture 12. The space of chord-arc curves is connected in the BMO topology.

If so, any chord-arc path I' of length 1 can be “straightened” to a unit line segment, i.e., there
is a vy :[0,1]2 — R2 so that the map t — 7; = (-, ) is a continuous path in the BMO topology,
v1 is a line segment and 9 = I'. We call this motion of the curve expansive if all distances

increase, i.e., s < t implies |zs — ys| < |z — y:| where zs = v(u, s), ys = ¥(v, 8), u,v € [0,1].
Conjecture 13. A chord-arc curve can be straightened by an expansive motion.
Conjecture 14. We can take %|wt — | ~ (o(z0,90) — |zo — yo|) > 0,Vzo,yo € T'.

Since z,y € I start at distance |x — y| and end at distance o(z,y), Conjecture 14 just asks for
all distances between pairs of points to increase at their average rate.

Why should we expect the stronger versions of Conjecture 12 to hold? If T is a polygon and
our motion is through polygons, then BMO continuity implies that angles change continuously
and edge lengths are constant. Straightening a polygon in this way is the “carpenter’s rule”
problem. Recently, Connelly, Demaine and Rote [32], and independently Streinu [55], proved
there is always an expansive solution. So to prove Conjecture 13 we might try to approximate

by polygons, straighten them and pass to a limit. This requires two opposing estimates: a lower
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bound on how fast distances increase (to make sure the limiting motion actually straightens
the curve in finite time) and an upper bound (to make sure the motions of the polygons are
equicontinuous in the BMO topology). To see if this reasonable, we need to briefly review the
solution for polygons in [32], which is based on duality in linear programming.

Consider a polygonal curve I' as a graph. The edges of T" are called “bars” (whose length is
fixed) and we add edges called “struts” (whose length will be allowed to increase) between all

remaining non-adjacent vertices. Add new vertices wherever edges cross. See Figure 6.

FIGURE 6. Solid lines are bars, dashed lines are struts, open dots are new vertices.

Let p;(t) be the position of the ith vertex at time t and v;(t) = %p;i(t) its velocity. The
authors of [32] reduce to proving that given the p;’s, there are v;’s so that

1d

1 -2

(1) 2dt

with equality for bars and strict inequality for struts. The dual system of linear inequalities

(pi —pj)2 = (vj —v;) - (pj —pi) >0, for every edge (i, 7),

assigns non-negative variable w;; to each strut (called the stress) and requires that for each
vertex 1, Ej wij(p; —pi) = 0 (w is an “equilibrium stress”). The principle of complementary
slackness implies strict inequality holds for an edge in (1) iff any solution of the dual system
has w;; = 0 for that edge. Thus a strictly expansive infinitesimal motion exists if the only
equilibrium stress on the graph is the zero stress. Briefly, stresses correspond to the Laplacians
of piecewise linear functions on plane supported on the convex hull of the graph. The condition
w; ; > 0 implies this function is subharmonic. If there is a strut on the boundary of the convex
hull, this function takes a positive value, which violates the maximum principle. Thus either
the polygon is convex (i.e., a line segment), or a strictly expanding motion exists.

To make this work for chord-arc curves, we have to incorporate bounds on the rate at which

distances change, i.e., generalize (1) to a linear system of the form
(2) cij < (vj —vi) - (pj —pi) < Cij.

First, we would like ¢; ; ~ [p;(0)—p;(0)|-[o(pi(0),p;(0))—|pi(0)—p;(0)|], so the distances increase
quickly enough for the curve to straighten in bounded time. Second, a result of Semmes [54]
shows the motion is continuous in BMO if it extends to a quasiconformal motion of the plane
where the dilatation y;(z) satisfies a Carleson condition, i.e., [, B(ar) |u(2)|2dist(z,T) " tdzdy =
O(r). Define the “beta-numbers” Br(z,r) = infr sup,crnp(s,r) dist(z, L), where the infimum is
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over all lines L. These measure deviation from “flatness” and are a kind of curvature measure-

ment. For a chord-arc curve, Peter Jones’ “traveling salesman theorem” (TST) [49], implies

Q o leyi= [ [ pa

0 [zy]cT
and that the §’s satisfy a square Carleson condition. Thus the idea is to pass from a Carleson
condition on the f’s, to a Carleson condition on the bounds in the linear program, to a Carleson
condition on a QC extension of the motion. For snowflake type curves with small chord-arc
constant (where connectedness is already known) this argument works correctly.

The final step is show the generalized linear program has a solution, i.e., show a certain dual
system has only the zero solution. Skipping over the calculations, it comes down to showing
that a non-positive function of compact support with certain estimates on its Laplacian must
be the zero function (the estimates roughly say the positive part dominates the negative part
when we integrate against certain Carleson measures, so is a weak form of subharmonicity).

This seems quite plausible, but various (probably difficult) technical problems remain.
4. Distortion by quasiconformal maps

In 1993 Stephen Semmes proved that the Jacobian Jf of any quasiconformal map f is a strong
Ao weight, and asked in [53] if every A; weight must be comparable to a QC-Jacobian. In [20]
I construct a counterexample: an A; weight w which blows up on a set E, so that if f is QC
and Jy ~ w then f(E) contains a rectifiable curve y. For such a f, J;-1 would vanish on « and

f~1(v) would have zero length, i.e., be a point, which contradicts f being QC.

Problem 15. Is there a compact null set E C R? so that no function that blows up on E is a

QC-Jacobian? Can such a set have dimension < 2¢
Problem 16. Is there a null set so that every QC-image of it contains a rectifiable curve?

Does the standard Sierpinski carpet have a QC deformation with no rectifiable subarcs? In
[23] I build a set E so this holds for all K-QC images for K near 1, but not for all K. The set
E is a type of Sierpinski carpet and the nth generation “holes” are separated by annuli with
large conformal modulus. This implies that a path can be made to avoid a hole (and hence stay
in E) with only small extra length. We can use Peter Jones’s TST (as in (3)) and estimates
on the annuli to show the set contains rectifiable curves. The proof still works for small QC
deformations of E, but there are large QC deformations of the set which do not contain any
rectifiable arcs. To make this happen, the “holes” are placed in a special pattern called an “e-
forest” which can’t be avoided by long line segments. Thus our set can’t contain line segments
(in a quantified way). The opposite would be to have a set which contains many line segments,
e.g., a Kakeya set is a null set containing a unit line segment in every direction (e.g., [58]). Does
every QC image of a Kakeya set have a rectifiable subarc?

A metric space is locally linearly connected (LLC) if any ball of radius r can be contracted to

a point inside a ball of radius O(r). It is Ahlfors 2-regular if 2-dimensional Hausdorff measure
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satisfies mo(B(z,7)) ~ r2. A theorem of Bonk and Kliener [30] says that a surface which is LL.C

and Ahlfors 2-regular is a quasisymmetric (QS) image of the plane.

Problem 17. Find a condition which, in addition to LLC and Ahlfors 2-regular, implies a
surface in R™ is biLipschitz (BL) equivalent to the plane.

Although the A; weight w constructed in [20] is not the Jacobian of planar QC map, it is the
Jacobian of a QS map R? — S C R3 where S is LLC, Ahlfors 2-regular but not BL-equivalent
to R2. Also see [29]. Thus the proof that w is not a QC-Jacobian must use some property of
the plane not shared by S. When we examine the proof, the only step that breaks down is the
application of Peter Jones’ TST. Thus one answer to Problem 17 is to find a condition which
makes Jones” TST work on the surface. In the plane, given points z,y with |z —y| = 1 and
a disk D of radius €, we can easily make a curve from x to y which avoids D and has length
< 1+ 0(€?), but this is false for general surfaces. The amount of extra length needed for a path
to avoid a small ball is a measure of the curvature in some sense; we want a condition that says
this is small at “most places and most scales”. I suspect something of the form “curvature is a
Carleson measure” is the correct answer. Indeed, Jones’ TST implies biLipschitz images of R
(i.e., chord-arc curves) have just such a characterization, so, in some sense, Problem 17 seeks a
generalization of Jones’s TST from 1 to 2 dimensions.

There are several other well known problems that are related to these ideas. I mention two;
the first was stated by Semmes and Heinonen in [48] (Question 15), and the second conjectured
by Astala, Clop, Mateu, Orobity and Uriarte-Tuero in [1] (Conjecture 2.3).

Problem 18. Can a QS map from a surface to the plane send positive area to zero area?

Conjecture 19. Supposed € (1,2) and f is a K-QC map of R? to itself which is conformal off a
compact set E and normalized so f(z) = z+o(1) near co. Ifd € (1,2) then M(f(E)) ~ M%(E)

where M? denotes d-dimensional content. This is already known when d = 1,2.

In [25] I have already disproven a stronger version of Conjecture 19. If it is false, perhaps
a similar construction will work. Incidentally, the QC-Jacobian problem turns up in computer
science as well. A cartogram is a map in which areas represent some statistic but which other-
wise has small distortion (e.g., a map of the United States where states have area proportional
to population). This is essentially constructing a map with specified Jacobian and small QC
constant. There are several methods in the computer science literature for constructing car-
tograms. How do these behave with respect to QC constants? What happens when the data

approximates a non-QC-Jacobian w?
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5. Conformal welding

e The generalized Moore-Koebe conjecture: A decomposition C of a closed set K is
a collection of pairwise disjoint closed sets whose union is all of K. It is called upper semi-
continuous if a sequence of elements of C which converges in the Hausdorff metric must converge
to a subset of an element of C. If, in addition, K = C and all elements of C are continua which
don’t separate the plane, we call C a Moore decomposition after R.L. Moore. He proved in [51]
that quotienting the plane by such a decomposition (i.e. identify each set to a point) gives the
plane again. We say M is conformally equivalent to K if there is a bijection f : M — K such
that (1) f is conformal on the interior of the singletons and (2) if {E,} C M converges (in the
Hausdorff metric) to E € M then f(E,) — f(E) € K. A Koebe decomposition is one where

every set is either a disk or a point.
Problem 20. Is every Moore decomposition conformally equivalent to a Koebe decomposition?

In particular, only countable many elements would not be collapsed to points, so (in some
sense) there should only be countably many obstructions to any Moore decomposition being
conformal, i.e., conformally equivalent to R? (by Moore’s theorem it is always topologically
equivalent). Knowing which decompositions were conformal would be extremely helpful for
various problems, such as building Julia sets or Kleinian limit sets with specified combinatorics.
A positive answer to Problem 20 would also imply (recall GCW from summmary of pevious

work):
Conjecture 21. Every circle homeomorphism h € GCW(T \ E) for some countable set E.

I proved a weaker version of this in [8]: given any h there are sequences of conformal maps
{fn},{gn} so that lim, |f,(z) — gn(h(x))| — O except on a countable set. This almost gives
Conjecture 21, but when we pass to the limit, we lose control of the boundary values on a set
of logarithmic capacity zero, instead of a countable set. The basic idea of the proof is easy.
Build a n-connected domain by taking the union of {|z| < 1} U {|z| > 2} with n “channels”
that connect points zx € T to 2h(z;) € 2T. By Koebe’s circle theorem this domain can be
conformally mapped to the complement of n disks. Making the channels thinner gives limiting
maps onto two sides of a chain of n tangent disks. As n — oo, only finitely many disks can
remain larger than any given ¢, from which we can deduce the limit is zero except on a countable
set. The next step towards Conjecture 21 is to figure out how to choose the points {z}} so the
necessary limits exist except on a countable set.

Given a domain 2, the decomposition of €2 into singletons and 2¢ into its connected compo-
nents is a Moore decomposition of the plane, so a positive answer to Problem 20 also implies

Koebe’s conjecture:

Conjecture 22. Every domain is conformally equivalent to a circle domain.
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The best results on this so far are due to He and Schramm [46], [47]. In [8] a sketch is
given to show that Conjecture 21 implies any planar domain is conformally equivalent to one
whose complement has only countable many components which are not points. Thus conformal
welding problems are closely related to Koebe’s conjecture.

Conformal welding has many connections to computational problems. We have already seen
how it comes up naturally in the non-obtuse triangulation problem. In a different direction,
David Mumford has used conformal weldings as a “fingerprint” of the shape of a curve for use
in computer vision, [52]. Finally, as noted above, recovering a curve from its conformal welding
at n points on T is equivalent to mapping an n-connected O(n)-gon to a Koebe domain. Thus
the “computational complexity” of conformal welding is tightly connected to the problem of

conformal mapping of multiply connected domains, discussed earlier.
4. Educational and broader impact of the proposal

The principal broader impact of the proposal is to encourage interdisciplinary efforts within
pure mathematics and develop new interactions of classical analysis with applied mathematics
and computer science. We have already discussed connections between hyperbolic geometry,
conformal mappings, computational geometry and numerical analysis. Such connections not
only increase the number of ideas that can be used to attack a particular problem, but successful
examples encourage researchers to seek more connections. For example, my work on hyperbolic
geometry and conformal mappings is cited as motivation for some of the recent work of Epstein,
Marden and Markovic [37], [38] on convex hulls and hyperbolic 3-manifolds.

I have seen some interest in my results outside the “pure math” community. I have discussed
my initial conformal mappings results with Nick Trefethen who called them a “substantial con-
tribution” and with David Mumford who uses conformal mappings in his work on pattern recog-
nition and computer vision. Marshall Bern of the Xerox Palo Alto Research Center, suggested
several problems that might be related. One of these was the quadrilateral meshing problem
described in the summary of previous work. Moreover, both Bern and Mumford have agreed
to speak at a workshop I am hosting, with Steve Vavasis, in April 2007 at Stony Brook. This
will focus on the interactions of computer science and mathematics with an emphasis on the
connections between computational, hyperbolic and conformal geometry. Other invited speak-
ers include experts in meshing, computational topology, quasiconformal maps, circle packings,
numerical conformal mapping, complexity theory and even geography. This workshop is a direct
outgrowth of my work under previous NSF support and I hope will contribute to the solution
of some problems in this proposal as well as generating many new ones. In addition to bringing
computer scientists to the workshop, I have been invited to speak at various applied math and
computer science departments and to visit the theory group at Microsoft research.

Recently, I have taught a graduate course on numerical conformal mappings and hyper-
bolic geometry and will teach new ones that incorporate the ideas discussed in this proposal.

This teaches students to look for problems and ideas from a variety of sources and (I hope)
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encourages them to explore beyond their immediate expertise. Not only is this a benefit to
their individual careers, but, in the long term, will help to disseminate mathematical ideas to
non-mathematicians and to introduce mathematicians to new problems deserving their atten-
tion. Moreover, relating mathematical research to computational problems which are sometimes
easier to state or have more obvious applications can make it more accessible to experts and
non-experts alike. This is key to the dissemination of new ideas to other research communities,
motivating students to enter mathematics, providing accessible problems for undergraduate and
graduate research and communicating with non-technical audiences.

A former student, Karyn Lundberg, wrote her thesis on the sharpest estimate for boundary
convergence of a sequence of conformal maps (this is related to my attempts to prove Conjecture
21). She also wrote computer code to implement an algorithm of mine for computing conformal
weldings inspired by Koebe’s circle theorem. Another, Hrant Hakobyan, will finish this year
with a thesis on the distortion of Hausdorff dimension under QC mappings. Anirban Dutta is a
student in applied math I have been directing in an effort to implement the conformal mapping
algorithm into code. An undergraduate, J. Kim, wrote an honors thesis on the Schwartz-
Christoffel formula and Davis’ iterative method for computing conformal maps.

Many other problems related to the proposal could be suitable for graduate or even under-
graduate research problems. Here are a few examples:

e Implement the fast mapping algorithm.

e Implement the thick/thin decomposition for polygons.

e Implement the angle scaling families for polygons. Use it to “lead” other methods, such as
Driscoll’s SC-Toolbox to the correct answer in cases where it “gets stuck”.

e Implement the medial axis method for grouping data for use with fast multipole methods.
Does this show any practical improvement over current methods? Extend to higher dimensions.
e Numerically estimate the QC-extension constant of the iota-map for different polygons. The
best theoretical upper bound is K < 7.82, but largest known example is only about 2.1.

e A closely related problem is to search for counterexamples of Brennan’s conjecture. Estimate
LP norms of f’ for various snowflake domains. (K = 2 implies Brennan’s conjecture, [13]).

e Simple variations of the iota-map can give improved approximation to conformal maps. FEx-

periment with polygons to find “rules of thumb”

which give the best variation.

e Find the formula for the iota-map for piecewise circular domains (in terms of medial axis).
e Set up linear programs as described in the section on chord-arc curves and use existing soft-
ware to see if solutions exist. It so, plot the resulting expansive, BMO-continuous motions.

e Use computer graphics to draw the surface in R® which is not BL equivalent to the plane.

e Investigate existing programs for plotting cartograms. What happens when we give them

data which approximates something which can’t be a QC-Jacobian?
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