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1. Introduction

This paper is a companion to [11] which gives twenty equivalent definitions of the

Weil-Petersson class of closed Jordan curves. The definitions given in that paper

mostly involve smoothness properties of the curve Γ or curvature properties of a

surface in hyperbolic space that has Γ as its asymptotic boundary. In both these

cases, the definitions extend to curves in R
n and are proven equivalent in that setting.

In this paper, we deal with the definitions that are purely 2-dimensional such as

those involving properties of the conformal map onto the domain bounded by Γ, the

conformal welding corresponding to Γ and the complex dilatation of quasiconformal

reflections across Γ. To state our results precisely, we need to recall a few definitions.

A quasicircle is the image of the unit circle T = {|z| = 1} under a quasiconfor-

mal mapping f of the plane, e.g., a homeomorphism of the plane that is conformal

outside the unit disk D, and whose dilatation µ = fz/fz belongs to B
∞
1 , the open

unit ball in L∞(D). The collection of planar quasicircles corresponds to universal

Teichmüller space T (1) and the usual metric is defined in terms of ‖µ‖∞. Motivated

by problems arising in string theory (e.g. [14], [15]), Takhtajan and Teo [51] defined

a Weil-Petersson metric on universal Teichmüler space T (1) that makes it into a

Hilbert manifold. With this topology, T (1) has uncountably many connected compo-

nents, but one of these components is exactly the closure of the smooth curves; this

component is called the Weil-Petersson class and is denoted T0(1).

Suppose Γ is a closed curve in the plane and let f be a conformal map from the

unit disk D = {z : |z| < 1} to Ω, the bounded complementary component of Γ. If f

is conformal on D, then f ′ is never zero, so Φ = log f ′ is a well defined holomorphic

function on D. Recall that the Dirichlet class is the Hilbert space of holomorphic

functions F on the unit disk such that |F (0)|2 +
∫
D
|F ′(z)|2dxdy < ∞. We will define

a curve Γ to be in the Weil-Petersson class if and only if the conformal map f : D → Ω

is such that log f ′ is in the Dirichlet class. Theorem 1.12 of the Takhtajan and Teo

paper [51] shows that this is equivalent to the definition described above.

Saying log f ′ is in the Dirichlet class means that

∫

D

|(log f ′)′|2dxdy =

∫

D

∣∣∣∣
f ′′

f ′

∣∣∣∣
2

dxdy < ∞.(1.1)
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This can also be written as
∫

D

|(log f ′(z))′|2(1− |z|2)2dAρ(z) < ∞(1.2)

where dAρ is the hyperbolic area on D and the integrand is now invariant under

pre-compositions by Möbius transformations of the disk.

The space H1/2(T) ⊂ L2(T) is defined by the finiteness of the seminorm

D(f) =

∫∫

D

|∇u(z)|2dxdy =
1

8π

∫ 2π

0

∫ 2π

0

∣∣∣∣
f(eis)− f(eit)

sin 1
2
(s− t)

∣∣∣∣
2

dsdt

≃
∫

T

∫

T

|f(z)− f(w)|2
|z − w|2 |dz||dw|.

where u is the harmonic extension of f to D. The equality of the first and second

integrals is called the Douglas formula, after Jesse Douglas who introduced it in his

solution of the Plateau problem [20]. See also Theorem 2.5 of [4] (for a proof of the

Douglas formula) and [44] (for more information about the Dirichlet space). See [1]

and [19] for additional background on fractional Sobolev spaces.

It follows from these definitions that for a conformal map f , log f ′(z) is in the

Dirichlet class on D if and only if the radial limits log |f ′| and arg(f ′) are in H1/2(T).

Since arg(f ′) can be unbounded, it is, perhaps, surprising that this is equivalent to

f ′/|f ′| ∈ H1/2:

Theorem 1.1. Γ = f(T) is Weil-Petersson if and only if it is chord-arc and f ′/|f ′| ∈
H1/2(T).

This is essentially Theorem 5 in [25], by Gallardo-Gutiérrez, González, Pérez-

González, Pommerenke and Rättyä. One direction is easy. It is well known that

Weil-Petersson curves must be chord-arc (e.g., see Section 2 of [11]) and if log f ′ =

log |f ′| + i arg f ′ is in the Dirichlet class, then arg f ′ ∈ H1/2(T). Using |eix − eiy| ≤
|x− y| and the Douglas formula we get

∫

T

∫

T

∣∣∣∣
ei arg f

′(x) − ei arg f
′(y)

x− y

∣∣∣∣
2

dxdy ≤
∫

T

∫

T

∣∣∣∣
arg f ′(x)− arg f ′(y)

x− y

∣∣∣∣
2

dxdy < ∞.

Thus exp(i arg f ′) ∈ H1/2(T). The converse direction seems harder. As noted above,

one proof is given in [25]; we give another in Section 8 of this paper; a much less

direct proof is given in [11].



FUNCTION THEORETIC CHARACTERIZATIONS OF WEIL-PETERSSON CURVES 3

If is standard fact (e.g., see Lemma 10.2) that if F is holomorphic function on D

then

|F (0)|2 +
∫

D

|F ′(z)|2dxdy < ∞

if and only if

|F (0)|2 + |F ′(0)|2 +
∫

D

|F ′′(z)|2(1− |z|2)2dxdy < ∞.

Applying this to F = log f ′, we see that (1.1) could be replaced by the condition

∫

D

∣∣∣∣∣

(
f ′′′

f ′

)
−
(
f ′′

f ′

)2
∣∣∣∣∣

2

(1− |z|2)2dxdy < ∞.(1.3)

This integrand is reminiscent of the Schwarzian derivative of f given by

S(f) =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.(1.4)

For a Möbius transformation sending D to a half-plane, the Schwarzian is constant

zero, but the expression in (1.3) blows up to infinity at a boundary point. However,

for conformal maps into bounded quasidisks, the integrals of these two quantities are

simultaneously finite or infinite. Cui [18] proved:

Theorem 1.2. Γ is Weil-Petersson iff it is a quasicircle and Γ = f(T), where f is

conformal on D and satisfies
∫

D

|S(f)(z)|2(1− |z|2)2dxdy < ∞.(1.5)

See also Theorem II.1.12 of Takhtajan and Teo’s book [51] and Theorem 1 of [39]

by Pérez-González and Rättyä. As with (1.2), we can rewrite (1.5) as
∫

D

|S(f)(z)|2(1− |z|2)4dAρ(z) < ∞.(1.6)

If f is univalent on D then

sup
z∈D

|S(f)(z)|(1− |z|2)2 ≤ 6.(1.7)

See Chapter II of [30] for this and other properties of the Schwarzian. If f is holo-

morphic on the disk and satisfies (1.7) with 6 replaced by 2, then f is injective, i.e., a

conformal map. If 2 is replaced by a value t < 2, then f also has a K-quasiconformal
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extension to the plane, where K depends only on t. This is due to Ahlfors and Weill

[2], who gave a formula for the extension and its dilatation

f(w) = f(z) +
(1− |z|2)f ′(z)

z − 1
2
(1− |z|2)(f ′′(z)/f ′(z))

(1.8)

µ(w) = −1

2
(1− |z|2)2S(f)(z)(1.9)

where w ∈ D
∗ and z = 1/w ∈ D. See also Section 4 of [17], Formula (3.33) of [36]

and or Equation (9) of [42].

Theorem 1.3. Γ is Weil-Petersson if and only if Γ = f(T) where f is a quasi-

conformal map of the plane that is conformal on D
∗ and whose dilatation µ on D

satisfies
∫

D

|µ(z)|2
(1− |z|2)2dxdy =

∫

D

|µ(z)|2dAρ < ∞.(1.10)

This is due to Guizhen Cui; see Theorem 2 of [18].

Another variation on this theme is to consider the map R(z) = f(1/f−1(z)). This

is an orientation reversing quasiconformal map of the sphere to itself that fixes Γ

pointwise, swaps the complementary components of Γ, and whose dilatation satisfies
∫

Ω∪Ω∗

|µ(z)|2dAρ(z) < ∞,(1.11)

where dAρ is hyperbolic area on each of the domains Ω,Ω∗.

Corollary 1.4. Γ is Weil-Petersson if and only if it is the fixed point set of a qua-

siconformal involution of the sphere whose complex dilatation µ is in L2 with respect

to the hyperbolic metric on the complement of Γ.

A circle homeomorphism ϕ : T → T is called a conformal welding if ϕ = f−1 ◦ g
where f, g are conformal maps from the two sides of the unit circle to the two sides

of a closed Jordan curve Γ. There are many weldings associated to each Γ, but they

all differ from each other by compositions with Möbius transformations of T. Not

every circle homeomorphism is a conformal welding, but weldings are dense in the

homeomorphisms in various senses; see [10].

A circle homeomorphism is called M -quasisymmetric if it maps adjacent arcs in

T of the same length to arcs whose length differ by a factor of at most M ; we
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call ϕ quasisymmetric if it is M -quasisymmetric for some M . The quasisymmetric

maps are exactly the circle homeomorphisms that can be continuously extended to

quasiconformal self-maps of the disk, and are also exactly the conformal weldings of

quasicircles. See [3], [10]. Weil-Petersson weldings were first characterized by Yuliang

Shen [48]. He proved:

Theorem 1.5. Γ is Weil-Petersson if and only if logϕ′ ∈ H1/2(T).

To see necessity, observe that log f ′ is in the Dirichlet class on D if and only if its

radial boundary values satisfy log f ′ ∈ H1/2(T). Thus log f ′ in the Dirichlet space

implies log f ′ ∈ H1/2(T). Similarly for the conformal map g from {|z| > 1} to the

region outside Γ. There are several ways to see this, e.g., Theorem 1.7 below clearly

implies Weil-Petersson curves are invariant under inversion through points not on the

curve, so g can be written as f for the inverted curve followed by the inversion. Then

we have logϕ′(x) = − log f ′(ϕ(x))+log g′(x). Beurling and Ahlfors [8] provedH1/2(T)

is invariant under pre-compositions with quasisymmetric circle homeomorphisms, so

log f ′ ◦ ϕ ∈ H1/2(T) and hence logϕ′ ∈ H1/2(T). Thus Shen’s condition is necessary

for Γ to be Weil-Peterson.

We will give a new proof of sufficiency by showing that Shen’s condition implies

the following more geometric condition on ϕ. If I ⊂ T is an arc, let m(I) denote its

midpoint. For a homeomorphism ϕ : T → T define

qs(ϕ, I) =
|ϕ(m(I))−m(ϕ(I))|

ℓ(ϕ(I))
.

Theorem 1.6. Γ is Weil-Petersson if and only if ϕ satisfies
∑

I

qs2(ϕ, I) ≤ C < ∞,(1.12)

where the sum is over any dyadic decomposition of T, and C is independent of the

choice of decomposition.

A dyadic interval I in R is one of the form (2−nj, 2−n(j + 1)]. Dyadic intervals on

T are defined in an analogous manner by repeated bisection, starting from some base

point, usually chosen to be 1 ∈ T. A dyadic square in R
2 is the product of 2 dyadic

intervals of the same length. This length is called the side length of Q and is denoted

ℓ(Q). Note that diam(Q) =
√
2ℓ(Q). For a positive number λ > 0, we let λQ denote



6 CHRISTOPHER J. BISHOP

the cube concentric with Q but with diameter λdiam(Q), e.g., 3Q is the “triple” of

Q, a union of Q and 8 adjacent copies of itself. We let Q↑ denote the parent of Q;

the unique dyadic cube containing Q and having twice the side length. Q is one of

the 4 children of Q↑.

Given a set E ⊂ R
n and a dyadic cube Q, define Peter Jones’s β-number as

β(Q) = βE(Q) =
1

diam(Q)
inf
L

sup{dist(z, L) : z ∈ 3Q ∩ E},

where the infimum is over all lines L that hit 3Q. Peter Jones invented the β-numbers

as part of his traveling salesman theorem [28]. One consequence of his theorem is

that for a Jordan curve Γ,

ℓ(Γ) ≃ diam(Γ) +
∑

Q

βΓ(Q)2diam(Q),(1.13)

where the sum is over all dyadic cubes Q in R
n. The following result shows that

Weil-Petersson curves satisfy a strong form of rectifiability.

Theorem 1.7. Γ is Weil-Petersson if and only if
∑

Q

βΓ(Q)2 < ∞,(1.14)

where the sum is over all dyadic cubes.

All the results described so far can be summarized as follows:

Theorem 1.8. With notation as above, the following are equivalent for a closed

Jordan curve Γ in the plane:

(1) µ(z) ∈ L2(dAρ),

(2) S(f)(z)(1− |z|2)2 ∈ L2(dAρ),

(3) (log f ′(z))′(1− |z|2) ∈ L2(dAρ),

(4) f ′/|f ′| ∈ H1/2(T),

(5) logϕ′ ∈ H1/2(T),

(6)
∑

I qs(ϕ, I)
2 < ∞,

(7)
∑

Q β2
Γ(Q) < ∞.

Conditions (1)-(3), (5) were previously known to be equivalent; Conditions (4), (6)

and (7) are new. The implications (3) ⇒ (5) and (3) ⇒ (4) were already discussed

above. In the remainder of the paper we will prove the new implications (5) ⇒ (6)
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⇒ (1), (3) ⇒ (7) ⇒ (1), (4) ⇒ (3), and sketch new proofs of the known implications

(1) ⇒ (2) ⇒ (3), Together, these prove the equivalence of Conditions (1)-(7).

The definition of the Weil-Petersson metric by Takhtajan and Teo [51] was moti-

vated by problems coming from string theory. Furthermore, one of the characteriza-

tions given in [11] involves minimal surfaces in hyperbolic 3-space that have Γ as an

asymptotic boundary: Γ is Weil-Petersson iff such a surface S has finite total cur-

vature. An equivalent formulation is that S has finite renormalized area, a concept

with has strong motivations arising from string theory and quantum entanglement,

e.g., [34], [45], [50]. See the introduction of [5] for further details and references. Also

see [41], where the authors argue that Weil-Petersson curves are the correct setting

for 2-dimensional conformal field theory.

Other results in [11] describe the Weil-Petersson class as the curves with arclength

parameterization in H3/2(T), finite Möbius energy (a concept arising in knot theory),

and also characterize them as curves whose length is well approximated by inscribed

polygons in a precise sense. The Weil-Petersson class also arises in computer vision:

see the papers of Sharon and Mumford [46], Feiszli, Kushnarev and Leonard [23], and

Feiszli and Narayan [24]. Indeed, the problem of geometrically characterizing Weil-

Petersson curves was originally suggested to me by David Mumford in December of

2017. Further connections of the Weil-Petersson class to Brownian motion, Loewner

energy and Schramm-Loewner Evolutions (SLE) are described in [43], [47], [52], [53],

[54], [55]. In fact, my initial results on the Weil-Petersson class were directly moti-

vated by a lecture on these connections given by Yilin Wang at an IPAM workshop

in January of 2019.

Dragomir Šarić pointed out that the condition in Theorem 1.6 can be rewritten

as
∑

K qs(ϕ,K)2 < ∞ where the sum is over all intervals K that are unions of

all pairs adjacent dyadic intervals of the same length. This sum contains the sum

over the usual dyadic family, and so it suffices to bound the sum over any dyadic

family (regardless of base point). I also thank Kari Astala, Martin Chuaqui Tim

Mesikepp, Raanan Schul, Leon Takhtajan, Dror Varolin, Rongwei Yang and Michel

Zinsmeister for helpful comments on this paper. I especially thank Jack Burkart

and Maŕıa Jose González for detailed readings or various early drafts and providing

many helpful comments and corrections. Two anonymous referees carefully read the
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manuscript and provided numerous corrections and suggestions, both mathematical

and grammatical. I greatly appreciate the effort they put into improving the paper.

Finally, we recall some standard notation. Given two quantities A,B that both

depend on a parameter, we write A . B if there is a constant C so that A ≤ CB

holds independent of the parameter. We write A & B if B . A, and we write A ≃ B

if both A . B and A & B hold. The notation A . B means the same as the “big-Oh”

notation A = O(B).

2. Analogous results

Before starting the proof of Theorem 1.8, I would like to point out that it is

completely analogous to other known results when the Dirichlet space is replaced by

other spaces of analytic functions on the unit disk. See Table 1. Each column (after

the first) of the table represents a theorem: the top entry is the name of a function

space X so that log f ′ ∈ X , and the lower rows give various conditions related to f

that are equivalent to log f ;∈ X. The description of these conditions is given in the

first column: log f ′(z)(1 − |z|2), S(f)(1 − |z|2)2, the dilatation µ of a QC extension

of f , the conformal welding homeomorphism ϕ, and Γ = f(T). Theorem 1.8 of this

paper is the rightmost column of the table, and the main new contribution of this

paper is the bottom entry of this column.

Here are the definitions needed to interpret Table 1. We let B0 denote the little

Bloch class of holomorphic functions on D such that

B0 = {f : sup
z∈D

|f ′(z)|(1− |z|2) → 0 as |z| → 1}

or, more concisely, |f ′(z)|(1 − |z|2) ∈ C0(D) (continuous functions that tend to zero

at the boundary). A Carleson measure on D is a non-negative measure µ so that

µ(D(x, r)) ≤ Cr,

for some fixed C < ∞ and all x ∈ T, r > 0. We define a certain class of functions

that give Carleson measures as

CM(D) = {f : |f |2(1− |z|2)−1dxdy is a Carleson measure },

and CM0(D) ⊂ CM(D) are the functions so that

1

r

∫

D∩D(x,r)

|f |2(1− |z|2)−1dxdy → 0,
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log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

ϕ = g−1 ◦ f symmetric
strongly

quasisymmetric
logϕ′ ∈ VMO logϕ′ ∈ H1/2

Γ = f(T)
asymptotically

conformal
Bishop-Jones
condition

asymptotically
smooth

∑
β2 < ∞

Table 1. Each column represents a theorem: each row consists of
different conditions that can be placed on a quantity associated to a
conformal map f : D → Ω that is equivalent to log f ;′ ∈ X, where X
is the space named at the top of the column. The conditions and they
grow more stringent as we move left-to-right in the table. The proofs of
the equivalences in the center three columns come from many sources
including: [6], [7], [13], [18], [21], [22], [33], [40], [49].

as r → 0. The space BMOA (bounded mean oscillation) on the unit circle has several

equivalent definitions (see Chapter VI of Garnett’s book [26]); a convenient one to

use here is that f ∈ BMO if its harmonic extension u to D satisfies |∇u(z)|(1−|z|2) ∈
CM(D). BMOA is the subspace of functions such that the harmonic extension u is

holomorphic. We say a function f ∈ BMOA is in VMOA if |f ′|(1− |z|2) ∈ CM0(D).

The space L2(dAρ) is defined as

A2(D) = {f :

∫

D

|f(z)|2dAρ(z) =

∫

D

|f(z)|2(1− |z|2)−2dxdy < ∞}.

For a circle homeomorphism φ, symmetric means φ(I)/φ(J) → 1, for adjacent inter-

vals with |I| = |J | → 0, and φ is strongly quasisymmetric if for there are δ, ǫ > 0 such

that |E| ≤ δ|I| implies |φ(E)| ≤ ǫ|I| for every measurable E ⊂ I, and arc I ⊂ T.

The geometric conditions in the bottom row of Table 1 are perhaps the hardest to

state and understand. Given an arc γ with endpoints z, w, let L be the line through

z and w and let β(γ) = maxz∈γ dist(z, L)/|z−w|. A curve Γ is called asymptotically

conformal if β(γ) → 0 as diam(γ) → 0, and a rectifiable curve is called asymptotically

smooth if ∆(γ) = ℓ(γ)− crd(γ) = o(crd(γ)) as diam(γ) → 0. Asymptotically smooth

curves are rectifiable by definition, but asymptotically conformal curves need not be,

e.g., one can construct a variant of the the usual snowflake curve in which the triangle
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heights tend to zero at smaller generations, but do not give a rectifiable curve. The

most awkward condition to state is the Bishop-Jones condition [13]: this says that

there is a M < ∞ so that for each z ∈ Ω = R
2 \ Γ there is a subdomain Uz bounded

by a M -chord-arc curve, so that z ∈ Uz ⊂ Ω and such that

dist(z, ∂Uz) ≃ ℓ(∂Uz) ≃ ℓ(∂Uz ∩ Γ).

The paper [37] by Pau and Peláez describes another possible column of Table 1 cor-

responding to Qp spaces and, no doubt, further such results remain to be discovered.

3. β-numbers and multi-resolution families

Before starting the proof of Theorem 1.8, we recall some facts about β-numbers and

multi-resolution families. Recall that a standard dyadic interval in R is an interval

of the form [k2−n, (k+1)2−n) for integers k, n. Below we will also consider translates

of the standard dyadic family by a constant, usually ±1/3. The standard dyadic

intervals on the circle T are images of the dyadic intervals on R under the map

x → exp(2πix). This family can be rotated to form other dyadic families on the

circle.

A multi-resolution family in a metric space X is a collection of bounded sets {Xj}
in X such that there is are N,M < ∞ so that

(1) For each r > 0, the sets with diameter between r and Mr cover X,

(2) each bounded subset of X hits at most N of the sets Xk with diam(X)/M ≤
diam(Xk) ≤ Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one Xj

with diam(Xj) ≤ Mdiam(X).

Dyadic intervals on T or R are not a multi-resolution family, e.g., X = [−1, 1] ⊂ R is

not contained in any dyadic interval, violating (3). However, the family of triples of

all dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we add

all translates of dyadic intervals by ±1/3, we get a multi-resolution family (this is

sometimes called the “1
3
-trick”, [35]). The analogous construction for dyadic squares

in R
2 is to take all translates by elements of {−1

3
, 0, 1

3
}2.

The following simple lemma shows that in many computations, the choice of a

particular multi-resolution family is not important.
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Lemma 3.1. Suppose {Xj}, {Yk} are two multi-resolution families on a space X

and that α is a function mapping subsets of X to [0,∞) that satisfies α(E) . α(F ),

whenever E ⊂ F and diam(F ) . diam(E). Then
∑

j

α(Xj) ≃
∑

k

α(Yk).

Proof. By Condition (3) above, each Xj is contained in some set Yk(j) of comparable

diameter. Hence α(Xj) . α(Yk(j)) by assumption. Each Yk is contained in a com-

parably sized Xm, and Xm can contain at most a bounded number of comparably

sized subsets Xj . Thus each Yk is only chosen boundedly often as a Yk(j). Thus
∑

j α(Xj) .
∑

k α(Yk). The opposite direction follows by reversing the roles of the

two families. �

If we have a multi-resolution family on the unit circle then its image under a

conformal map of the unit disk to quasidisk gives a multi-resolution family on the

bounding quasicircle. This fact is Lemma 9.9 in Tim Mesikepp’s thesis [32].

It will be convenient to consider several equivalent formulations of condition (1.14)

involving Jones’s β-numbers. For x ∈ R
2 and t > 0, define

βΓ(x, t) =
1

t
inf
L
max{dist(z, L) : z ∈ Γ, |x− z| ≤ t},

where the infimum is over all lines hitting the disk D = D(x, t) and let β̃Γ(x, t) be

the same, but where the infimum is only taken over lines L hitting x. Although β

(and its variations) depend on Γ, this set is usually clear from context and we will

often drop it from our notation, i.e., we simply write β in place of βΓ.

Since β̃ is defined as the infimum over a smaller collection of lines than β, clearly

β(x, t) ≤ β̃(x, t) and it is not hard to prove that β̃(x, t) ≤ 2β(x, t) if x ∈ Γ. Given a

Jordan arc γ with endpoints z, w we let

β(γ) =
max{dist(z, L) : z ∈ γ}

|z − w| ,

where L is the line passing through z and w. The following “well known” fact says

that the various formulations of the β-numbers are equivalent.

Lemma 3.2. [Lemma B.2, [12]] If Γ is a closed Jordan curve or a Jordan arc in R
n

such that (1.14) holds, then Γ is a chord-arc curve. Moreover, (1.14) holds if and
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only if any of the following conditions holds:
∫ ∞

0

∫∫

Rn

β2(x, t)
dxdt

tn+1
< ∞,(3.1)

∫ ∞

0

∫

Γ

β̃2(x, t)
dsdt

t2
< ∞,(3.2)

∑

j

β2(Γj) < ∞,(3.3)

where dx is volume measure on R
n, ds is arclength measure on Γ, and the sum in

(3.3) is over a multi-resolution family {Γj} for Γ. Convergence or divergence in (3.1)

and (3.2) is not changed if
∫∞

0
is replaced by

∫M

0
for any M > 0.

4. Theorem 1.8: (3) ⇒ (7)

We start with some standard definitions that we will use throughout the renainder

of this paper. Given an arc I ⊂ T = ∂D of length |I| less than 1, we define the

corresponding Carleson square QI as

QI = {z ∈ D : z/|z| ∈ I, 1− |z| < |I|}.

We define the “top half” of QI as

WI = T (QI) = {z ∈ D : z/|z| ∈ I, |I|/2 < 1− |z| < |I|}.

When I ranges over the dyadic subintervals of T these sets (together with a single disk

around the origin) form a Whitney decomposition W of D, i.e., collection of closed

sets W with disjoint interiors that cover D and satisfy diam(W ) ≃ dist(W, ∂D).

For each element W ∈ W , let

η(W ) = max
z∈W

|(log f ′)′|(1− |z|2) = max
z∈W

|f
′′

f ′
|(1− |z|2).

Standard results, e.g., Theorem VII.2.1 of [27], imply that η(W ) ≤ 6 for all W ∈ W
and any conformal f . Each element W ∈ W has hyperbolic area comparable to 1,

and Euclidean area comparable to (1− |z|2)2 for any z ∈ W . Hence

∫ ∣∣∣∣
f ′′

f ′

∣∣∣∣
2

dxdy =
∑

W

∫

W

∣∣∣∣
f ′′

f ′

∣∣∣∣
2

dxdy .
∑

W

η(W )2.
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Let u(z) = f ′′(z)/f ′(z) and let Bz = D(z, (1 − |z|)/2). Since u is a holomorphic

function, the mean value property and the Cauchy-Schwarz inequality imply

|u(z)|2 ≤
(

1

area(Bz)

∣∣∣∣
∫

Bz

u(z)dxdy

∣∣∣∣
)2

≤ 1

area(Bz)

∫

Bz

|u(z)|2dxdy.

Thus the maximum of |u|2 over W is bounded above by the integral of |u|2 over the

union of W and a bounded number of adjacent Whitney boxes (enough to cover the

set ∪z∈WBz). Each Whitney box is only used a bounded number of times, so we see

that (3) of Theorem 1.8 is equivalent to

∑

W∈W

η(W )2 < ∞.(4.1)

The next step closely follows a calculation from Pommerenke’s paper [40]. Pom-

merenke’s result implies that if η(W ) ≤ ǫ for all Whitney boxes inside 2QI , then

f(I) is a quasi-arc with small constant. Clearly (4.1) implies that this holds for all

sufficiently small Carleson boxes, say smaller than some r > 0. The conformal map

f restricted to such a Carleson square Q2I has a K-quasiconformal extension to the

reflection across 2I, with K close to 1. Hence a simple consequence of Mori’s theorem

(Theorem III.C of [3]) is that if J ⊂ I is a sub-arc, then

diam(f(J))

diam(f(I))
≤ C

(
diam(J)

diam(I)

)α

,(4.2)

for some C = C(α) < ∞, and where we may take α < 1 as close to 1 as we wish, if

r is small enough. For our purposes, it will suffice to take α = 3/4 (any value > 1/2

would work). Henceforth, we assume r has been chosen so that (4.2) holds for all

arcs of length less than r.

For z, w ∈ D, let ρ(z, w) denote the hyperbolic distance between z and w. Note

that Whitney squares are approximately unit size in the hyperbolic metric: each

has uniformly bounded hyperbolic diameter and contains a hyperbolic ball of radius

bounded uniformly away from zero. Suppose z0 ∈ W = T (QI) ∈ W , and suppose

z ∈ 2QI . Let W = W0, . . . ,WN be the list of Whitney squares hit by the hyperbolic

geodesic γ from z0 to z; note that N = N(z) ≃ 1 + ρ(z0, z) and that the boxes can

be ordered so that W0 = W , k ≃ 1 + ρ(W0,Wk), and (taking Euclidean diameters)

diam(Wk) ≃ diam(W0) exp(−ρ(W0,Wk)).(4.3)
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Moreover, we can choose points zk ∈ γ ∩Wk that are ordered by increasing distance

from z0. See Figure 1.

0W

z0

1W

2W

zM

z

z

1

2

γ

Figure 1. The chain of Whitney boxes connecting z0 to zM . The
hyperbolic geodesic from z0 to z is denoted γ

By a linear rescaling of f we may assume f ′(z0) = 1, without changing the values of

(log f ′)′ and hence without changing the η’s. It is convenient to truncate the sequence

of Whitney boxes in some cases. Define M ≤ N to be the first index where

M∑

k=0

η(Wk) ≥ 1,(4.4)

or set M = N if there is no such index. If M = N , let zM = z; otherwise let zM

be some point in γ ∩ WM . Note that by our assumptions either zM = z or, as a

consequence of (4.2,

|f(zM)− f(z)| . diam(f(W0))

(
diam(WM)

diam(W0)

)α

. diam(f(W0)) · exp(−αρ(WM ,W0)).

If zM 6= z then (4.4) holds, so

|f(zM)− f(z)| . diam(f(W0))

(
M∑

k=0

η(Wk)

)
exp(−αρ(WM ,W0))

. diam(f(W0))

(
M∑

k=0

η(Wk) exp(−αρ(Wk,W0))

)
.
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Similarly, either zM = z or

|zM − z| . diam(WM)

. diam(W0) exp(−ρ(WM ,W0))

. diam(W0)

(
M∑

k=0

η(Wk)

)
exp(−αρ(WM ,W0))

. diam(W0)

(
M∑

k=0

η(Wk) exp(−αρ(Wk,W0))

)
.

Pommerenke’s estimate (see his proof of (i) ⇒ (ii) in Theorem 1 on page 201 of [40]),

says that if zn ∈ γ ∩Wn,

| log f ′(zn)| ≤
∫ z

z0

∣∣∣∣
f ′′(t)

f ′(t)

∣∣∣∣ |dz| ≤
n−1∑

k=0

∫ zk+1

zk

η(Wk)

diam(Wk)
|dz| .

n−1∑

k=0

η(Wk).

Thus

|f ′(zn)− 1| ≤ exp

(
C

n−1∑

k=0

η(Wk)

)
− 1.

Integrating, and using ex − 1 . x for x ∈ [0, 1],

|[f(zM)− f(z0))]− [zM − z0]| .

∫ zM

z0

[
exp(C

M∑

k=0

η(Wk))− 1

]
|dz|

.

M−1∑

k=0

∫ zk+1

zk

[
k−1∑

j=0

η(Wj)

]
|dz|

.

M−1∑

k=0

diam(Wk)

[
k−1∑

j=0

η(Wj)

]

.

M−1∑

j=0

η(Wj)
M−1∑

k=j+1

diam(Wk)

.

M−1∑

j=0

η(Wj)diam(Wj).

The last inequality uses that fact that the {diam(Wk)} decreases approximately geo-

metrically (the geodesic Γ can hit more than one Whitney box of the same size, but

only boundedly many, so the sequence of sizes is O(λk) for some λ < 1). Hence the

sum above is dominated by a multiple of its largest term. Using (4.3) and the fact
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that α < 1, we see that

(f(zM)− f(z0))− (zM − z0) = O

(
diam(W0)

M∑

k=0

η(Wk) exp(−αρ(W0,Wk))

)
.

Thus by adding f(z)− f(z) and z − z to both sides and rearranging we get

f(z)− f(z0) = (z − z0) +O

(
M∑

k=0

η(Wk)diam(Wk)

)
+ (f(z)− f(zM)) + (z − zM)

= (z − z0) +O

(
diam(W0)

M∑

k=0

η(Wk) exp(−αρ(W0,Wk))

)
.

The last equation holds since we have previously shown that each of the last three

terms in the first line is dominated by the sum in the second line above, and that

|z − zM | ≃ |z − z0| ≃ diam(W0). This equation says that f restricted to I is linear

with a small error, hence f(I) will be close to a line segment with small error. More

precisely, since f has a quasiconformal extension to the plane, and we have normalized

so f ′(z0) = 1, we have diam(f(I)) ≃ |I| and

β(γ) . sup
z∈I

M(z)∑

k=0

η(Wk) exp(−αρ(W,Wk))).

In particular, for each W = T (QI) ∈ W that is small enough, we can choose a point

z0 ∈ W , a boundary point z ∈ 2I, the geodesic segment γW connecting z0 to z, and

the chain of adjacent Whitney boxes C(W ) hitting γW , so that the corresponding

sum is within a factor of 2 of the supremum over all points z ∈ 2I. Next choose s so

that 1 < s < 2α = 3/2. Then summing over all sufficiently small Whitney boxes in

D and using the Cauchy-Schwarz inequality gives

∑

W :diam(W )<r

β2(γW ) .
∑

W




∑

W ′∈C(W )

η(W ′) exp(−αρ(W,W ′)))




2

.
∑

W




∑

W ′∈C(W )

η2(W ′) exp(−sρ(W,W ′)))


×




∑

W ′∈C(W )

exp((s− 2α)ρ(W,W ′)))


 .
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Since s − 2α < 0 and the distances between W and W ′ grow linearly, the sum in

the second term of the product is a geometric sum, and hence converges to a number

bounded independent of W . Thus if IW ⊂ T denotes the base interval of W and

σW = f(IW ),
∑

W :diam(W )<r

β2(σW ) .
∑

W ′

η2(W ′)
∑

W :W ′∈C(W )

exp(−sρ(W,W ′))

Since s > 1, the second sum above is bounded. Hence we obtain
∑

W

β2(σW ) .
∑

W ′

η2(W ′).

The collection {IW} is not itself a multi-resolution family for T, but a finite family of

rotations of D gives such a family (the 1
3
-trick) and the proof above applies equally

well to each family. Thus the β2-sum is finite over some multi-resolution family of

arcs for Γ, and hence (3) implies (1.7) using Lemma 3.2.

5. Theorem 1.8: (7) ⇒ (1)

Suppose Ω ⊂ R
2 is open and x ∈ Ω. Then there is a maximal closed dyadic square

Q containing x so that diam(Q) ≤ 1
2
dist(Q, ∂Ω). The collection of such squares

covers Ω and have pairwise disjoint interiors and is called Whitney decomposition of

Ω using dyadic squares.

Assume (7) holds in Theorem 1.8. Since
∑

Q β2
Γ(Q) < ∞, only finitely many of the

β’s can be larger than 1/1000. Let U(ǫ) denote the ǫ-neighborhood of Γ, and choose

ǫ0 so small that U(ǫ0) only contains dyadic Whitney squares Q with βΓ(Q) < 1/1000.

Form a triangulation of Ω by connecting the center of each square to the vertices on

its boundary. Note that neighboring triangles have comparable diameters and that

all angles are bounded uniformly above 0 and below π.

We will define a reflection across Γ that is defined on a neighborhood of Γ and

is piecewise affine on the above triangles. Let Sk be the collection of squares Q in

the Whitney decomposition so that ℓ(Q) = 2−k and let S = ∪k>k0Sk where k0 is

chosen so that the elements of S are all contained in U(ǫ0/100). Order the elements

of {Qj}∞1 = S so that side lengths are non-increasing. For each Qj choose a dyadic

square Q′
j of comparable size that hits Γ and so that 3Q′

j contains Qj. Note that

Q′
j ⊂ U , so βΓ(Q

′
j) is small. To begin, choose a line Lj that minimizes the definition
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of βΓ(Q
′
j). Reflect all four vertices of Q1 across L1. In general, reflect each vertex v

of Qj across Lj to a point v∗ in Ω∗, if it was not already reflected by belonging to

some Qk with k < j. See Figure 2.

T

v*

v

T*

Γ

Figure 2. Each vertex on one side of Γ is reflected across a line ap-
proximating Γ. Since different vertices may use different lines the cor-
responding triangles become distorted, but since the lines come within
O(β) of each other and have angles differing by O(β), the triangles are
related by an affine map that is quasiconformal with dilatation O(β).

The main point is that each vertex v belongs a uniformly bounded number of QJ ’s

and the different possible reflections v∗ of v corresponding to these different squares

all lie within distance βj · dist(v,Γ) of each other, where Qj is any of the Whitney

squares having v as a corner and βj = βΓ(Q
′
j). This occurs because all the lines

we might use have directions that differ by at most O(βj), and they all pass within

O(βjℓ(Q
′
j)) of some point in Q′

j. We now define affine maps on each element of our

triangulation that lies inside U(ǫ0/1000) by sending each vertex to its reflection v∗.

Suppose T is a triangle associated to Qj. Then diam(T ) ≃ dist(T,Γ). The reflected

vertices of T form a triangle T ∗ that is within O(βj) of being congruent to T . Thus

the following simple result applies:

Lemma 5.1. Suppose T = (v1, v2, v3) is a planar triangle of diameter 1 and that

the three interior angles are bounded uniformly away from 0 and π. Suppose T ′

is another triangle whose vertices (v′1, v
′
2, v

′
3) are each within ǫ of the corresponding
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vertex of T the affine map that extends vj → v′j, j = 1, 2, 3 is quasiconformal with

complex dilatation bounded by O(ǫ).

Proof. One way to check this is by an explicit computation: the affine map that

sends {0, 1, a} to {0, 1, b} with a, b in the upper half-plane is z → αz + βz̄ where

α = (b − ā)/(ā − a) and β = 1 − α. From this one sees that the complex dilatation

is the constant µ = β/α = (a − b))/(b − ā) = tanh(ρ(a, b)), where ρ denotes the

hyperbolic metric on H
2. �

Extending the map between vertices linearly, we get an affine map from T to T ∗

that is quasiconformal with dilatation bounded O(βj). Putting together the different

triangles we get a piecewise affine map.

The homeomorphism R constructed above on a neighborhood of U of Γ ⊂ R
2

is clearly quasiconformal on U \ Γ. Since Γ is a quasicircle, it is removable for

quasiconformal homeomorphisms and hence our map is quasiconformal on all of U ,

i.e., we have defined a quasiconformal reflection across Γ on a neighborhood U of Γ.

Each triangle T has hyperbolic area ≃ 1, so
∫

T

|µ(z)|2dAρ(z) = O(β2
Γ(Q)),

for some dyadic square Q with diam(Q) ≃ dist(Q, T ) ≃ diam(T ). Therefore
∫

U

|µ(z)|2dAρ(z) = O

(
∑

Q

β2
Γ(Q)

)

since each Q occurs for only boundedly many T . We now extend this map diffeomor-

phically (and hence quasiconformally) to the rest of Ω to obtain a reflection satisfying

(1.11).

6. Theorem 1.8: (5) ⇒ (6)

We start with some notation and prove a series of preliminary lemmas. Suppose ϕ

is a circle homeomorphism that is absolutely continuous and such that both ϕ′ and

log |ϕ′| are in L1(T). Let U be the harmonic extension of |ϕ′| from T to D. Let u

be the harmonic extension of log |ϕ′| from T to D. As before, let I ⊂ T be an arc,

Q = QI = {z : z/|z| ∈ I, 1− ℓ(I) ≤ z < 1} ⊂ D be the Carleson square with base I,

T (I) = T (QI) = {z ∈ QI : z ≤ 1− ℓ(I)/2}
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is the top half of Q, zI is the center of the top edge of T (I). Let T ∗(Q) be the union

of T (Q′) for all Q′ so that T (Q′) touches T (Q), i.e., this is approximately a unit

hyperbolic neighborhood of T (Q).

Let uI =
∫
I
uds/ℓ(I) be the average of u over I. For u harmonic on D, Q a dyadic

Carleson square and 0 ≤ α ≤ 1 define (the sum is over dyadic Carleson subsquares

of 3Q)

ǫ(u,Q, α) =

(
∑

Q′⊂3Q

∫

T (Q′)

|∇u|2
(
ℓ(Q′)

ℓ(Q)

)1−α

dxdy.

)1/2

Note that α < α′ implies ǫ(u,Q, α) ≤ ǫ(u,Q, α′). In what follows, the constant in

inequalities of the form . ǫ(u,Q, α), may depend on α (but for our proof, we will

only need one value, say α = 1/2).

Suppose W ⊂ W ′ ⊂ D are domains so that if Q, Q′ are Carleson squares so that

Q ⊂ W and Q′ ⊂ 3Q, then T (Q′) ⊂ W ′. For our application, we will simply take

W = {z : 7
8
< |z| < 1} and W ′ = D.

Lemma 6.1.
∑

Q⊂W ǫ2(u,Q, α) .
∫
W ′

|∇u|2dxdy < ∞.

Proof. Note that

∑

Q⊂W

ǫ2(u,Q, α) =
∑

Q⊂W

∑

Q′:Q′⊂3Q

∫

T (Q′)

|∇u|2
(
ℓ(Q′)

ℓ(Q)

)1−α

dxdy

≤
(
∑

Q′⊂W ′

∫

T (Q′)

|∇u|2dxdy
)(

∑

Q:Q′⊂3QI

(
ℓ(Q′)

ℓ(I)

)1−α
)

.

∫

W ′

|∇u|2dxdy,

since the second sum (the one over Q) is dominated by a geometric series whose

largest term is ≃ 1. �

Recall that u is the Poisson integral of log |ϕ′|. If Q is a Carleson square with base

I and top edge E, then the averages of u over I and E will be denoted uI and u∗
I

respectively. Our first goal is to prove

|u(zI)− uI |2 . ǫ(u,Q, 0)2 ≤ ǫ(u,Q, α)2.(6.1)

We will do this in two steps.
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Lemma 6.2. With notation as above,

|u(zI)− u∗
I |2 .

∫

T ∗(Q)

|∇u|2 ℓ(Q
′)

ℓ(I)
dxdy.(6.2)

Proof. If u is harmonic, then the vector field |∇u has a natural interpretation as a

holomorphic function, and thus it satisfies the mean value property. So for z ∈ T (Q),

the Cauchy-Schwarz inequality implies

|∇u(z)| ≤
∫

B

|∇u| dzdy

area(B)
≤
(∫

B

|∇u|2 dzdy

area(B)

)1/2

≤ 1

ℓ(I)

(∫

B

|∇u|2dzdy
)1/2

,

where B is a ball of radius (1− |z|)/2 around z. Thus

max
z,w∈T (Q)

|u(z)− u(w)| ≤ max
z∈T (Q)

|∇u(z)|diam(T (Q)) .

(∫

T ∗(Q)

|∇u|2dzdy
)1/2

,(6.3)

where T ∗(Q) is the union of all top halves of dyadic Carleson cubes touching T (Q).

Hence the difference between u(zI) and u∗
I , is bounded by the right side of (6.2). �

Since Q′ ⊂ T ∗(Q) implies ℓ(Q) ≃ ℓ(I), and since T ∗(Q) ⊂ 3Q, we see that (6.2)

implies

|u(zI)− u∗
I |2 .

∫

T ∗(Q)

|∇u|2 ℓ(Q
′)

ℓ(I)
dxdy ≤ ǫ(u,Q, 0)2.(6.4)

Lemma 6.3. With notation as above,

|uI − u∗
I |2 . ǫ(u,Q, 0)2.(6.5)

Proof. The difference of averages uI −u∗
I can computed by applying Green’s theorem

∫∫

Q

u∆v − v∆udxdy =

∫

∂Q

u
∂v

∂n
− v

∂u

∂n
ds

on Q with the functions u and v = log 1/|z|. Both interior terms vanish by harmonic-

ity. The boundary integral along I equals uIℓ(I), the boundary integral along the

top edge E of Q gives −u∗
Iℓ(I) plus a term bounded by

ℓ(I)

∫

J

|∇u|ds . ℓ(I)

(∫

T ∗(Q)

|∇u|2dzdy
)1/2

,

which is less than the right side of (6.5) times ℓ(I).

The normal derivative of v over the radial sides of Q is zero, so the integrals

over these sides of Q can be bounded using (6.3) and the Cauchy-Schwarz inequality
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(break each radial side of Q into intervals by intersecting with top halfs of dyadic

sub-squares):
∫ 1−|zI |

0

|∇u|rdr .
∑

Q′:Q′∩∂Q 6=∅

ℓ(Q′)

(∫

T ∗(Q′)

|∇u|2dzdy
)1/2

.

(
∑

Q′

ℓ(Q′)

)1/2(∑

Q′

∫

T ∗(Q′)

|∇u|2ℓ(Q′)dzdy

)1/2

.
√

ℓ(I)

(
∑

Q′

∫

T ∗(Q′)

|∇u|2ℓ(Q′)dzdy

)1/2

where the sum is over cubes Q′ ⊂ 3QI that hit the sides of QI ; this sum is dominated

by the sum over all Q′ ⊂ 3QI , so this proves (6.5). �

Lemma 6.4. Assume u(zI) = 0. With notation as above
∫

I

(exp((α/2)u2)− 1)
ds

ℓ(I)
. ǫ2(u,QI , α).

Proof. This estimate is essentially Theorem 1 of [38], which itself is a simpler version

of results in [9], [16] and [31]. First note that for u in the Dirichlet class and z ∈ Q,

the Cauchy-Schwarz inequality implies

|u(z)− u(zI)| .
(∫

Q

|∇u|2dxdy
)1/2

(
1 +

√
log

|I|
1− |z|

)
.

One can prove this by integrating |∇u| over the line segment from zI to I, applying the

Cauchy-Schwarz inequality and the fact that ∇u satisfies the mean value inequality.

Hence if the Dirichlet integral of u over Q is small enough, and z ∈ Q = QI then

|u(z)| = |u(z)− u(zI)| ≤ 1 +

√
log

1− |zI |
1− |z| .

This holds for all small enough squares. Set W (z) = exp(α
2
u(z)2)− 1. Then explicit

calculation shows

|∇W |2 . |∇u(z)|2 · |u(z)|2 exp(α|u(z)|2)

. |∇u(z)|2 ·
(
1 + log

|I|
1− |z|

)
· (1− |z|)−α/2

. |∇u(z)|2 · (1− |z|)−α,
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and

∆W = 2α|u′|2(1 + (α/2)|u|2) exp(α
2
|u|2).

satisfies a similar estimate.

Now apply Green’s theorem with u = log 1/|z| and v = W . The boundary integral

along I, the base of Q, is what we want to bound. The estimate given above for ∆W

shows the interior integral is bounded by a multiple of

∑

Q′⊂Q

∫

T (Q′)

|∇u(z)|2
(
ℓ(Q′)

ℓ(Q)

)1−α

dxdy . ǫ2(u,Q, α),

as desired. The boundary integrals are similarly handled by the Cauchy-Schwarz

inequality and the estimate for |∇W | given above. �

Corollary 6.5. Assume u(zI) = 0. With notation as above,
∫

I

[exp(u(s))− 1]
ds

ℓ(I)
. ǫ(u,Q, α).

Proof. By the Cauchy-Schwarz inequality
∫

I

[exp(u(s))− 1]
ds

ℓ(I)
≤

(∫

I

(exp(u(s))− 1)2

exp(αu2(s)/2)− 1

ds

ℓ(I)

)1/2

×
(∫

I

(exp(αu2(s)/2)− 1)
ds

ℓ(I)

)1/2

Note that (ex−1)2/(eαx
2/2−1) is bounded on R by some constant C(α): the numerator

and denominator of the fraction are both ≃ x2 near = 0 and the ratio tends to zero as

x ր ∞. Thus the first integral is bounded depending only on α. Lemma 6.4 implies

second integral is bounded by ǫ(u,Q, α). �

Recall that U is the harmonic extension of |ϕ′|. Thus, very roughly, we expect

logU ≈ u. We make this precise as follows. Let UI be the average of U over I (hence

also the average of |ϕ′| over I, i.e., it equals ℓ(ϕ(I))/ℓ(I))).

Lemma 6.6. For any 0 < α < 1, 0 ≤ log(UI)− uI . ǫ(u,Q, α).

Proof. The first inequality is Jensen’s inequality: since log x is concave down, there

is an affine function such that log x ≤ L(x) for all x > 0, with equality at x = UI ,

and hence

logUI = L(

∫

I

|ϕ′|ds/ℓ(I)) =
∫

I

L(|ϕ′|) ds

ℓ(I)
≥
∫

I

log |ϕ′| ds
ℓ(I)

= uI .
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To prove the second inequality, note that multiplying ϕ′ by a constant C changes both

logUI and uI by the same additive constant logC, so their difference is unchanged.

Hence we may assume uI = 0 and UI ≥ 0. Then using log x ≤ x− 1,

log(UI) = log

∫

I

|ϕ′(s)| ds
ℓ(I)

= log

∫

I

exp(u(s))
ds

ℓ(I)
≤
∫

I

[exp(u(s))− 1]
ds

ℓ(I)
.

The last term is bounded by ǫ(u,Q, α) by Corollary 6.5. �

Lemma 6.7. With notation as above,

|ℓ(ϕ(J))− exp(u(zI))ℓ(J)| . ℓ(ϕ(I)) · ǫ(u,Q, α)

where J is either the left or right half of I.

Proof. Note that since ϕ′ is absolutely continuous,

ℓ(ϕ(J)) =

∫

J

|ϕ′|ds =
∫

J

exp(u(s))ds,

| ℓ(ϕ(J))

exp(u(zI))ℓ(J)
− 1| = |

∫

J

[exp(u(s)− u(zI))− 1]
ds

ℓ(J)
| . ǫ(u,Q, α)

by Corollary 6.5. Thus

|ℓ(ϕ(J))− exp(u(zI))ℓ(J)| . exp(u(zI))ℓ(J)ǫ(u,Q, α)

Note that by Jensen’s inequality (as in Lemma 6.6) u(zI) ≤ logUI , so

exp(u(zI))ℓ(J) ≤
1

2
UI · ℓ(I) =

ℓ(ϕ(I))

2ℓ(I)
ℓ(I) =

1

2
ℓ(ϕ(I)). �(6.6)

Lemma 6.8. If J is either the left or right half of I, then

|ℓ(ϕ(J))− 1

2
ℓ(ϕ(I))| . ℓ(ϕ(I)) · ǫ(u,Q, α).

Proof. Observe that

|ℓ(ϕ(J))− 1

2
ℓ(ϕ(I))| ≤ |ℓ(ϕ(J))− exp(u(zI))ℓ(J)|+ | exp(u(zI))ℓ(J)−

1

2
ℓ(ϕ(I))|

= |ℓ(ϕ(J))− exp(u(zI))ℓ(J)|+ ℓ(J)| exp(u(zI))− UI |

The first term in the last line is bounded using Lemma 6.7. The second term is

bounded using the fact that x ≤ y implies ey − ex ≤ ey(y − x) (since the derivative
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of et is less than ey on [x, y]):

| exp(u(zI))− UI | = | exp(u(zI))− exp(log(UI))|
= UI |u(zI)− log(UI)|
. UI · ǫ(u,Q, α).

Since UI = ℓ(ϕ(I))/ℓ(I) by definition, we get

ℓ(J)| exp(u(zI))− UI | ≤ ℓ(J)
ℓ(ϕ(I))

ℓ(I)
|u(zI)− log(UI)| ≤

1

2
ℓ(ϕ(I))ǫ(u,Q, α). �

Proof of (5) ⇒ (6). Assume log |ϕ′| ∈ H1/2(T) ⊂ VMO ⊂ L1; hence ϕ′ is also in L1

by the John-Nirenberg theorem (or one can use sharper results for H1/2 in [9], [16],

[29], [31]). Hence the harmonic extension u of this function satisfies
∫
D
|∇u|2dxdy <

∞. Note that

|ϕ(m(I))−m(ϕ(I))| ≤ max
J

|ℓ(ϕ(J))− 1

2
ℓ(ϕ(I))|,

where the maximum is taken over J being the left or right half of I. Thus by the

preceding lemmas,

qs2(ϕ, I) =

∣∣∣∣
ϕ(m(I))−m(ϕ(I))

ℓ(ϕ(I))

∣∣∣∣
2

≤ ǫ2(u,QI , α),

where Q is the Carleson square with base I. Summing over all dyadic intervals I is

finite by Lemma 6.1. �

7. Theorem 1.8: (6) ⇒ (1)

For each dyadic interval I ⊂ T with ℓ(I) ≤ π/4, triangulate T (Q) using its four

corners and the center of its lower edge as vertices. This gives a triangulation of an

annulus {r < |z| < 1} as shown in Figure 3. Given a circle homeomorphism ϕ and an

interval I with left endpointx, we can map each vertex x(1−ℓ(I)) to ϕ(x)(1−ℓ(ϕ(I))

and we extend this to a piecewise linear map of the triangulation, just as we did in

Section 5. If the distortion is small enough (less than some fixed constant), the image

triangle has the same orientation as the original, and the affine map of each triangle

onto its corresponding image defines a homeomorphism of the annulus.

We want to show the quasiconformal distortion µ of these affine maps is bounded

in terms of the quasisymmetric distortion of the boundary map φ. See Figure 4. Let

D be a dyadic decomposition of T, I ∈ D a dyadic interval, and J the adjacent dyadic
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Figure 3. Triangulating the top half of each dyadic Carleson square
gives a triangulation of the upper half-plane. The vertices can be
mapped based on the boundary map, and the resulting image trian-
gulation gives a piecewise linear quasiconformal map with the given
boundary values (at least near the boundary where the quasisymmet-
ric constant is small).

interval of the same length counterclockwise from I. From elementary geometry, it

is easy to see that the dilations of the three affine maps corresponding to the dyadic

interval I are bounded by a constant times the maximum of the terms qs(ϕ,K) where

K is ranges over I, J and I ∪ J . By assumption I and J come from the same dyadic

decomposition D of T. If I ∪ J were also an interval from this decomposition, then

the |µ| would be bounded in terms of three terms for the form qs(ϕ,K) summed

over this decomposition, and we would be done: the integral of |µ|2 with respect to

hyperbolic area could be bounded by O(
∑

qs(ϕ,K)2).

I J

I1 I2 J1

I J

1I 2I J1

Figure 4. Here I ′ = ϕ(I), and similarly for the other intervals. If
K = I∪J is a dyadic interval, then µ can be bounded directly in terms
of qs(ϕ, I), qs(ϕ, J), qs(ϕ(I ∪ J)). In general, I ∪ J is not in the same
dyadic family as I and J , so we have to estimate the last term using a
sum over the multi-resolution family obtained by the “1

3
-trick”.
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In general, however, I∪J need not be an interval from D, the dyadic decomposition

containing I and J (i.e., I and J are adjacent, but don’t have a common parent).

However, by considering all translates of dyadic intervals by ±1/3, we get a multi-

resolution family T (recall the “1
3
-trick”), so there is element of this family K that

contains I ∪ J and has comparable size. We claim that qs(ϕ, I ∪ J) can be bounded

using a sum over intervals in T .

Lemma 7.1. Suppose ϕ : [0, 1] → [0, 1] is an increasing homeomorphism and 0 ≤
x ≤ 1. Then

|x− ϕ(x)| ≤
∞∑

n=0

qs(ϕ, In)|ϕ(In)|,

where In is the dyadic interval of length 2−n containing x. If x is the endpoint of a

dyadic interval I, we need only sum over intervals strictly larger than I.

Proof. This is obvious if x ∈ {0, 1} since these points map to themselves. The lemma

is also clear for x = 1/2, and we only need to take the n = 0 term of the sum. In

general, assume the inequality holds for both endpoints of a dyadic interval IN of

length 2−N , where the bounding sum is only over larger dyadic intervals I0 ⊃ I2 . . .

containing IN . If y is the midpoint of I and z the midpoint of ϕ(I), then by definition

|ϕ(y)− z| ≤ qs(ϕ, I)|ϕ(I)|.

Moreover, by the induction hypothesis, the endpoints of ϕ(I) are within

N−1∑

n=0

qs(ϕ, In)|ϕ(In)|,

of the endpoints of I. Thus z is within the same distance of y. Thus

|ϕ(y)− y| ≤ |ϕ(y)− z|+ |z − y| ≤
N∑

n=0

qs(ϕ, In)|ϕ(In)|.

This proves the lemma for dyadic rationals and the general case follows since ϕ is

continuous. �

This lemma implies that qs(ϕ, I ∪ J)ℓ(I ∪ J) can be bounded in terms of a sum of

the form
∑

K∈C(I) qs(ϕ,K)|K|, where C(I) is the collection of intervals from the multi-

resolution family T that contain an endpoint of I or J and have length . |I∪J |. Since
ϕ : T → T is quasisymmetric, it is also Hölder continuous, so there is a 0 < λ < 1
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so that every dyadic interval I of length 2−n maps to an interval of length at most

λn. The collection C(I) has only a bounded number of intervals of each length 2−n|I|
and the image lengths also decay geometrically so

∑

K∈C(I)

|ϕ(K)| . |ϕ(I)|

Thus, by Cauchy-Schwarz, the sum of the dilatations over all triangles in our infinite

triangulation of the disk is bounded by

∑
|µ(T )|2 .

∑

I∈D



∑

K∈C(I)

qs(ϕ,K)
|ϕ(K)|
|ϕ(I)|




2

.
∑

I∈D

∑

K∈C(I)

qs(ϕ,K)2
|ϕ(K)|
|ϕ(I)|

=
∑

K∈T

qs(ϕ,K)2
∑

I∈D,K∈C(I)

|ϕ(K)|
|ϕ(I)|

.
∑

K∈T

qs(ϕ,K)2.

The last line holds because for a fixed K the sum over I decays geometrical (there are

a bounded number of I’s in each generation associated to K, and their image lengths

increase geometrically with the generation). Thus the dilatations are square summa-

ble over the set of triangles. Since each triangle has uniformly bounded hyperbolic

area, we see that (6) implies (1) in Theorem 1.8.

8. Theorem 1.8: (4) ⇒ (3)

First, some notation. For a point z ∈ D, |z| > 1/2, let Iz ⊂ T be the arc centered

at z/|z| with length 2(1 − |z|). For M > 0, M · I denotes the concentric arc with

length M |I|.
Let u(z) = exp(i arg f ′(z)) and let g = u|T denote its boundary values. The

function u is a mapping of the unit disk into the unit circle. Let v(z) be the harmonic

function on D with the same boundary values, i.e., v is the Poisson extension of g.

Then v maps D into itself, and we claim this map is proper, i.e., points near T map

to points near T. To prove this, note that by the John-Nirenberg theorem (e.g.,
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Theorem VI.2.1 of [26]) since g ∈ H1/2 ⊂ VMO, for any M < ∞ and δ, ǫ > 0 we have

|{x ∈ MIz : |g(x)− v(z)| > δ} ≤ ǫ|Iz|

for all sufficiently short arcs I ⊂ T. Since g(x) only takes values in the unit circle,

this implies |v(z)| > 1−δ if |z| is close enough to 1. In particular, there is an annulus

Ar = {r < |z] < 1} where |v(z)| > 3/4.

Next we claim that |u(z)−v(z)| ≤ 1/4 for z close enough to T. Since g(x) is close to

constant on most ofMIz, the image ofMIz under f is a sub-arc γ of Γ = f(T), and on

this sub-arc the tangent directions are close to the constant value τ = izg(z)/|zg(z)|
except on a small fraction of its length. Here we are using the fact that for chord-

arc curves, harmonic measure and length are A∞-equivalent, e.g., small harmonic

measure implies small length in a quantitative way. See Section VII.4 of [27]. This

implies γ is o(diam(γ)) close to a line segment in direction τ in the Hausdorff metric.

Since Γ is chord-arc and diam(γ) ≫ dist(f(z),Γ) if M is large, this implies

dist(f(z),Γ \ γ) & diam(γ) ≫ dist(f(z),Γ).

Thus near z, f approximates a linear map and u(z) is as close to g(z) as we wish, if

z is close enough to T. Thus |u− v| ≤ 1/4 on Ar if r is close enough to 1.

Thus v is a continuous map from Ar into {|z| > 3/4} that stays within 1/4 of u.

Along any simple path in Ar to a boundary point on T we can lift v to a map V into

the vertical strip {x+ iy : − log 2 < x < 0} via the logarithm, and so that V (z) stays

close to i arg f ′(z). This implies the lift is well defined on the whole annulus, because

different possible lifts differ by at least 2πi and two different values can’t both be

close to the single value of i arg f ′.

V has a radial limit wherever g does, and this limit L satisfies exp(iL) = g(x).

Since |L − arg f ′(x)| ≤ 1/4, we deduce that L = arg f ′(x). Since g has radial limits

almost everywhere, so does V . Moreover, the gradient of V at z is comparable to the

gradient of v at z (locally V is the composition of v with a branch of the logarithm,

and the latter map has derivative close to 1 in the annulus). Thus
∫

Ar

|∇V |2dxdy .

∫

D

|∇v|2dxdy < ∞

since v is in the Dirichlet class (recall that it’s boundary values g = exp(i arg f ′) ∈
H1/2(T) by assumption). By smoothing off V along the inner boundary of Ar we can
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create a smooth function Ṽ on D that has bounded Dirichlet integral and boundary

values arg f ′ almost everywhere. This proves arg f ′ ∈ H1/2 by the Sobolev trace

theorem. (One can also use Dirichlet’s principle that the existence of such a V

implies the harmonic extension of arg f ′ also has finite Dirichlet integral; everything

can be justified in an elementary manner by replacing f(z) by f(rz), 0 < r < 1 and

taking limits as r ր 1.) This completes the proof of (4) ⇒ (3).

Figure 5. The snowflake (and an enlargement) stopped on certain
horizontal segments. Here exp(i arg f ′) = 1 a.e., but arg f ′ 6∈ H1/2.

We note that the chord-arc assumption in Theorem 1.1 is necessary; assuming Γ

is a quasicircle is not enough. Suppose Γ is given by the usual construction of the

von Koch snowflake, but stopping on every segment that is horizontal and points to

the right (in the usual counterclockwise orientation of the curve). See Figure 5. In

the limiting curve these horizontal segments have full harmonic measure, so if f is a

conformal map from H
2, then arg f ′ is a multiple of 2π on each, so exp(i arg f ′) = 1

almost everywhere. It is not hard to prove Γ has infinite length, so it is not WP.

9. Theorem 1.8: (1) ⇒ (2)

As noted in the introduction, this implication of Theorem 1.8 is known; we merely

sketch the proof Astala and Zinsmeister for completeness. Assume Γ = f(T) where

f is quasiconformal on the plane, conformal on D
∗ and has dilatation µ supported in

D. In [6], Astala and Zinsmeister use the identity
∫∫

D

fz(z)dxdy =
π

6
lim
w→∞

w4S(f)(w),
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a change of variables, and the Cauchy-Schwarz inequality to deduce

|S(f)(z)|2(|z|2 − 1)2 .

∫∫

D

|w − z|−4|µ(w)|2dudv.

Integrating this with respect z, and reversing the order of integration gives∫∫

D

|S(f)(z)|2(1− |z|2)2dxdy .

∫∫

D

|µ(w)|2(1− |w|2)−2dudv.

10. Theorem 1.8: (2) ⇒ (3)

This implication is also known, but we give an alternate proof using ideas from

[13]. The following is Lemma 3.4 of [13].

Lemma 10.1. Given ǫ > 0, n ∈ N, there are C = C(ǫ) > 0 and δ = δ(ǫ, n) > 0 so

that the following holds. Suppose Q is a Carleson square and |S(f)(z)| ≤ δ(1−|z|2)−2,

for all z ∈ T (Q). Then there is a hyperbolic geodesic γ so that every z ∈ Q with

1− |z| ≥ 2−nℓ(Q) and |(log f ′(z))′| = |f ′′z()/f ′(z)| ≥ ε/(1− |z|2) satisfies d3
H
(z, γ) ≤

C. Moreover, for every η > 0 there is a δ > 0 so that if γ0 is a sub-arc of γ connecting

z0 ∈ T (Q) to z1 ∈ Q ∩ {z : 1 − |z| = 2−nℓ(Q)}, then |f ′(z1)| ≥ 22n(1−η)|f ′(z0)|. (In

other words, f ′ grows almost as fast as (1− |z|)−2 along γ.)

The first step is to use this lemma to show that if Γ is a quasicircle we may assume

that

|f ′′(z)/f ′(z)| ≤ ǫ/(1− |z|2)(10.1)

for z ∈ Q. Note that if (1.5) holds, we must have |S(f)(z)|(1− |z|2)2 → 0, as |z| ր 1

(we can apply the mean value theorem to S(f)). Hence for any δ > 0, the hypothesis

of Lemma 10.1 holds for all sufficiently small Carleson squares. Suppose z0, z1 are as

in the lemma. The Koebe 1
4
-theorem implies that there is an arc J ⊂ T containing

the base I of Q and whose image has chord length comparable to |f ′(z0)|(1 − |z0|)
(choose one endpoint of J from each component of 3I \I). Similarly, there is a subarc

γ1 ⊂ γ0 with chord length (and hence diameter) comparable to

|f ′(z1)|(1− |z1|) ≥ |f ′(z0)|
(
1− |z0|
1− |z1|

)2(1−η)

(1− |z1|)

= |f ′(z0)|(1− |z0|)
(
1− |z0|
1− |z1|

)1−2η

= |f ′(z0)|(1− |z0|)2n(1−2η).
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If η < 1/2 then this tends to infinity with n, and this implies that Γ is not a quasicircle,

contrary to assumption. Therefore, if Q is small enough (10.1) holds. Given this,

we can now follow the proof of Lemma 1 in the paper of Astala and Zinsmeister [6].

First we recall another standard estimate. Set F = log f ′.

Lemma 10.2. If F is holomorphic on D then
∫∫

D
|F ′(z)|2dxdy < ∞, if and only if

I :=

∫∫

D

|F ′′(z)|2(1− |z|2)2dxdy < ∞.

Proof. Assume F has the power series expansion F (z) =
∑∞

n=0 bnz
n. Then a simple

computation in polar coordinates leads to
∫∫

D

|F ′(z)|2dxdy = 2π
∞∑

n=1

n2|bn|2
∫ 1

0

r2n−1dr =
∞∑

n=1

(πn)|bn|2,

and hence

I =

∫∫

D

|F ′′(z)|2(1− |z|2)2dxdy

= 2π
∞∑

n=1

n2(n− 1)2|bn|2
∫ 1

0

r2n−4(1− 2r2 + r4)rdr

= 2π
∞∑

n=1

n2(n− 1)2|bn|2(
1

2n− 2
− 2

2n
+

1

2n+ 2
)

=
∞∑

n=1

2π
n(n− 1)

n+ 1
|bn|2 ≃

∞∑

n=2

πn|bn|2

Thus both infinite series (and hence both integrals) diverge or converge together. �

Next we must show I is finite. Using (1.3) and (1.4) we see that

F ′′(z) = S(f)(z)− 1

2

(
f ′′(z)

f ′(z)

)2

= S(f)(z)− 1

2
(F ′(z))2,

and hence

I =

∫∫

D

|F ′′(z)|2(1− |z|2)2dxdy ≤
∫∫

D

|S(f)(z)|2(1− |z|2)2dxdy

+
1

4

∫∫

D

|F ′(z)|4(1− |z|2)2dxdy

+

∫∫

D

|S(f)(z)|2|F ′(z)|2(1− |z|2)2dxdy

= I1 +
1

4
I2 + I3.
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Note that since |xy| ≤ (x2 + y2)/2, we get

|S(f)(z)||F ′(z)|2 ≤ 1

2
|ǫF ′(z)|4 + 1

2
|S(f)(z)|2

and hence I3 ≤ 1
2
I1 +

1
2
I2. Therefore

I ≤ 3

2
I1 +

3

4
I2.(10.2)

Now we use our assumption that |F ′(z)|(1 − |z|2) ≤ ǫ is small on the annulus A =

{z : r < |z| < 1}. This implies

I2 =

∫

A

|F ′(z)|4(1− |z|2)2dxdy ≤ ǫ2
∫

A

|F ′(z)|2dxdy ≤ ǫ2MI.

If ǫ is small enough, then I2 ≤ I, and then (10.2) becomes I ≤ 3
2
I1+

3
4
I, which implies

I ≤ 6I1 < ∞. This proves F = log f ′ is in the Dirichlet class.
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