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Abstract. We show that any compact, connected set K in the plane can be
approximated by the critical points of a polynomial with only two critical values.
Equivalently, K can be approximated in the Hausdorff metric by a true tree in the
sense of Grothendieck’s dessins d’enfants.
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1. Introduction

Polynomials with only two critical values are called generalized Chebyshev poly-

nomials or Shabat polynomials. If p is such a polynomial of degree n with critical

values ±1, then it is not hard to see that T = p−1([−1, 1]) is a finite planar tree

with n edges. We call a tree of this form a “true tree” or the “true form” of the

combinatorial tree T . The true form is unique up to Euclidean similarities, and every

finite planar tree can be represented in this way (we will prove these well known facts

later).

Thus a true tree can have the combinatorics of any planar tree. Can it attain any

“shape”? Move precisely, given a continuum (i.e., a compact, connected set) in the

plane, can we find a true tree that approximates it? The Hausdorff distance between

two sets is the minimum ǫ > 0 so that each set is contained in an ǫ-neighborhood of

the other. In this note we prove:

Theorem 1.1. For any compact, connected set K ⊂ C and any ǫ > 0 there is a

polynomial p(z) with critical values exactly ±1 so that T = p−1([−1, 1]) approximates

K to within ǫ in the Hausdorff metric. In other words, true trees are dense in all

planar continua.

True trees are a special case of Grothendieck’s theory of dessins d’enfants in which a

finite graph drawn on a compact topological surface X induces a conformal structure

on the surface and a Belyi map to the Riemann sphere (i.e., a meromorphic map

branched over three points). In the case of a tree drawn on the plane, the compact

surface is the Riemann sphere and the Belyi map is a polynomial with two finite

critical values (∞ is the third branch point). These maps have close connections

to algebraic number theory and Galois theory, although we will not deal with those

topics here. There is an extensive literature on dessins d’enfants, true trees and Belyi

functions, e.g., see [7], [8], [9], [12] and their references.

Our approach to proving Theorem 1.1 is based on interpreting true trees in terms of

conformal maps. We will describe this alternate formulation and reduce the theorem

to a more geometric sounding statement.

Suppose T is a finite tree in the plane with n edges. Then the complement Ω of T

is the image of a conformal map f from D
∗ = {|z| > 1} to Ω with f(∞) = ∞. We say
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that T is “conformally balanced” if every open edge of the tree is the image under f

of two disjoint arcs of length π/n on ∂D∗, and f(z) = f(w) implies f ′(z) = f ′(w) for

almost every z, w ∈ T.

Another formulation of the same condition is to consider harmonic measure with

respect to∞ on T (i.e., the first hitting distribution of Brownian motion on the sphere

started at ∞ and run until it hits T ). On each edge of the tree, harmonic measure

naturally decomposes as the sum of two measures, one corresponding to each side of

the edge. The tree is conformally balanced if (1) every edge has the same harmonic

measure, and (2) when we decompose harmonic measure on each edge into measures

corresponding to the two sides, these two measures are identical. Note that we mean

that these measures give the same mass to every measurable subset of the edge, not

merely that the whole edge gets equal harmonic measure from both sides.

Conformally balanced trees are exactly the same as the true trees described above,

so Theorem 1.1 is equivalent to:

Theorem 1.2. For any compact, connected set K and any ǫ > 0 there is a confor-

mally balanced tree T that is within ǫ of K in the Hausdorff metric.

Suppose T is a conformally balanced tree and let f be a conformal map from

D
∗ = {|z| > 1} to Ω = C \ T , preserving ∞ and such that 1 ∈ T = {|z| = 1} = ∂D∗

maps to a vertex. Let g(z) = 1

2
(z+z−1). This is called the Joukowsky map and is the

conformal map from D
∗ to U = C \ [−1, 1] that fixes −1, 1,∞. Each edge of T has

two preimages under f of length π/d on T. Under the map z → zd each interval is

mapped to either the upper or lower half-circle and pairs of intervals corresponding to

the same edge of the tree map to opposite half-circles. Points that are mapped by f

to the same point are also identified by g. Thus the map g((f−1(z))d) defines a d-to-1

holomorphic map from the complement of the tree to the complement of [−1, 1]. This

map extends continuously to the whole plane and hence is a d-to-1 entire function

(see Lemma 2.4) and hence is a polynomial. The critical points of p are the vertices

of degree > 1 of the tree, the only critical values are −1 and 1 and the tree itself is

p−1([−1, 1]). Thus Theorem 1.2 implies Theorem 1.1. See Figure 1.

Theorems 1.1 and 1.2 were conjectured by Alex Eremenko. I thank him for the

enlightening discussion of these problems during his visit to Stony Brook in March

2011. I thank Lasse Rempe for his comments on an earlier draft of this note. I also
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Figure 1. For any tree T , the composition of the conformal map
from Ω = C \ T to {|z| > 1}, followed by zd, followed by 1

2
(z + 1

z
) is

d-to-1 and holomorphic off T . T is conformally balanced (i.e., is a true
tree) iff this map extends continuously across T and hence defines a
polynomial with critical values in {−1, 1}.

thank the referee for a careful reading of the manuscript and numerous corrections

and suggestions for improving the paper.

Kevin Pilgrim has observed that the results in this paper, combined with his argu-

ments in [11], prove that Julia sets of post-critically finite polynomials are dense in

all planar continua. The details will appear in [3]. A related result was given using

completely different methods by Kathryn Lindsey and William Thurston in [10].

Don Marshall and Steffen Rohde have recently adapted Marshall’s conformal map-

ping program zipper, to approximate the true form of a given planar tree. The

program can handle examples with tens of thousands of edges and is highly accurate.

The paper [2] contains a generalization of Theorem 1.1 from polynomials to entire

functions. That paper gives a construction of entire functions with two critical points,

so that f−1([−1, 1]) approximates a given infinite tree T in the plane satisfying certain
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assumptions. Section 15 of [2] describes how Theorem 1.1 can be deduces from the

more intricate construction in that paper.

If we require the harmonic measures for the two sides of a tree edge to be identical,

but don’t require all edges to have the same harmonic measure, we get what is called

a minimal continuum. These sets arise as the continua of minimal capacity that

connect a given finite set. Minimal continua are studied by Herbert Stahl in [13]; this

authoritative paper contains extensive history and references for the topic. I thank

Alex Eremenko for pointing out the connection between balanced trees and minimal

continua to me.

2. Basic properties of conformally balanced trees

In this paper, a finite plane tree T will be a connected compact set in C that does

not separate the plane and is a union of a finite collection of closed Jordan arcs, any

two of which are either disjoint or have exactly one endpoint in common. The edges

of the tree are the interiors of these arcs and the vertices are the endpoints. We shall

say that two finite trees in the plane are equivalent if there is homeomorphism of the

plane that takes one to the other. Note that this is more restrictive than saying there

is a homeomorphism from one tree to the other since such a map can swap branches

in a way that a planar homeomorphism cannot. See Figure 2.

Figure 2. Two planar trees that are homeomorphic but not equiv-
alent (there is no homeomoprhism of the plane mapping one to the
other).

A planar tree is locally connected, so a conformal map from D
∗ to Ω = C \ T ,

extends continuously to T. We shall always assume that such a map fixes ∞.

Let Rn ⊂ T be the set of nth roots of unity. A finite tree with n edges is conformally

balanced if there is a conformal map f : D∗ → Ω = C \ T so that each component of

T\R2n is mapped 1-1 onto an edge of the tree and if I, J are two distinct components
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that map to the same edge, then f−1 ◦ f defines a length preserving, orientation

reversing map from one component to the other. This expresses precisely the idea

that every edge has the same harmonic measure and that harmonic measure on each

edge is the sum of harmonic measures corresponding to each side separately, and that

these two measures are identical.

An orientation preserving homeomorphism φ of the plane to itself is called quasi-

conformal (or QC for short) if it is absolutely continuous on almost all vertical and

horizontal lines and satisfies |fz| ≤ k|fz| almost everywhere for some k < 1. Such a

map is also called K-quasiconformal where K = (k+ 1)/(k− 1) measures the eccen-

tricity of image ellipses of infinitesimal circles under f . The smallest such K is called

the quasiconstant of f . The collection of K-quasiconformal maps for a fixed K form

a compact family with respect to uniform convergence on compact sets (assuming the

maps are normalized to fix ∞ and two finite points). See Alhfors’ book [1] for this

and other properties of such maps. The function µ = fz/fz is called the dilatation of

the map f and the size of |µ| measures how far f is from conformal; if µ = 0 on an

open set, then f is conformal on that set. There is a composition law for dilatations

that implies that if f and g have the same dilatation on an open set, then f−1 ◦ g
is conformal on that set. If f has zero dilatation on the whole plane, then f is a

conformal linear map, i.e., f(z) = az + b. A well known quantitative version of this

fact is:

Lemma 2.1. Given K < ∞ and ǫ > 0 there is a δ > 0 so the following holds. If

ψ is a K-quasiconformal map of the plane fixing 0, 1,∞ and if its dilatation is zero

except on a measure δ subset of D, then |f(z)− z| < ǫ for every z ∈ D.

Proof. One can give more precise estimates, but this version is simply a compactness

argument. If δ ց 0, then the maps must converge on compact sets to a conformal

map fixing 0, 1,∞, i.e., the identity. �

The measurable Riemann mapping theorem says that given any measurable µ on

the plane with ‖µ‖∞ < 1, there is a quasiconformal map f with dilatation µ. This is

the key result about quasiconformal maps that we need, as illustrated by the following

definition and lemma.
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A tree T is QC-balanced if there is a quasiconformal mapping φ : D∗ → Ω so

that components of T \ R2n are mapped to edges of T and when two components

are mapped to the same edge, φ−1 ◦ φ is length preserving and orientation reversing

between the components (this is the same the definition of conformally balanced,

except that we have replaced the conformal map by a quasiconformal map).

Lemma 2.2. Suppose T is a QC-balanced tree. Then there is a quasiconformal map

of the plane to itself sending T to a conformally balanced tree.

Proof. Let φ : D∗ → Ω be the QC map in the definition of QC-balanced and let µ be

the dilatation of φ−1 on Ω. By the measurable Riemann mapping theorem there is a

quasiconformal ψ on the plane with the same dilatation and thus ψ ◦ φ is conformal.

Hence ψ(T ) is conformally balanced. �

This shows that we can construct a conformally balanced tree by first constructing

a QC-balanced tree and “fixing it” with a QC map.

Lemma 2.3. Every finite tree in the plane can be mapped to a conformally balanced

tree by a homeomorphism of the plane.

Proof. Every planar tree is equivalent to one with straight segments for edges and

such a tree is clearly equivalent to one with smooth edges meeting with equal angles

at each vertex (i.e., at a degree three vertex the edges meet at angle 120◦). For such

a tree the harmonic measures for two sides of any edge decay at the same rate at

each endpoints (the decay rate may be different at the two endpoints of an edge if

the endpoints have different degrees) and this means the harmonic measures for the

two sides of an edge are within a bounded factor of each other (depending on the tree

and the edge).

Let E be the preimages of the vertices under f . If T has n edges, there are 2n

points in E. The 2n components of T \ E are paired by the relation of mapping

to the same edge of T . Suppose I, J is such a pair. Then f−1 ◦ f : I → J defines

a biLipschitz map between such a pair of corresponding arcs I, J . In what follows,

f−1 ◦ f will always refer this this type of map (between different intervals), rather

than the identity from an interval to itself.

Let L : J → I be the map that multiplies length by a factor of |I|/|J | and reverses

orientation. Define L on I to be the inverse of this map. Then g = L ◦ f−1 ◦ f
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maps I to I, preserves orientation and is biLipschitz. Define g : J → J to be the

identity. Then define g and L on every other pair of edge-arcs in the same way.

The result is a biLipschitz, orientation preserving map of the circle to itself so that

f(g(x)) = f(L(x)) for every x ∈ T. Note that g can be extended to a quasiconformal

self-map φ of D∗. Let F = g(E). Then there is a quasiconformal self-map h of D∗

that maps E to R2n (roots of unity) and |h′| is constant on each complementary arc.

Consider the map Φ = f ◦ g−1 ◦ h−1. It is quasiconformal on D
∗, maps T onto T ,

and sends R2n to the vertices. If two arcs of T \ R2n are mapped to the same edge,

then Φ−1 ◦Φ is length preserving. Hence T is QC-balanced and thus has a QC image

that is conformally balanced. �

Lemma 2.4. A conformally balanced tree with n edges is of the form T = p−1([−1, 1])

for some polynomial p that has exactly two critical values at {−1, 1}. The vertices of

degree > 1 of T are exactly the critical points of p and the degree equals the order of

the zero of p′ plus 1. The edges of T are analytic curves.

Proof. The proof is essentially given in the introduction. The only step that was not

justified there was the statement that g(f(z)d)) “extends continuously to the whole

plane and hence is entire and hence a polynomial”. This requires some proof.

We have already seen that a conformally balanced tree T is the planar quasicon-

formal image of a finite tree with smooth edges such that all angles at vertices are

non-zero. This means the complement of T is a John domain and hence is removable

for W 1,2 mappings (one derivative in L2; a QC map raised to a power is in this class

locally). See [5], [6]. Thus if g(f(z)d) is a continuous function that is holomorphic

off T , then it is entire. This finishes the proof sketched in the introduction. �

Lemma 2.5. Two equivalent conformally balanced trees are the same up to a con-

formal linear map.

Proof. If two conformally balanced trees have the same topology, then there is a

conformal map between their complements that extends continuously to the whole

plane. Since the edges of balanced tree must be analytic, they are removable for

conformal maps, so the map conformal everywhere and hence linear. �

Corollary 2.6. Every finite planar tree is equivalent to a conformally balanced tree

that is unique up to linear maps.
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In particular, the number of conformally balanced trees with n vertices (up to

linear equivalence) is the same as the number of plane trees with n vertices (up

to topological equivalence). The latter can be counted using Pólya’s enumeration

method as in [4], [14].

3. The construction on T

The proof of Theorem 1.2 consists of constructing a tree T approximating K,

pre-composing the conformal map f : D∗ → Ω = C \ T by a QC self-map φ of D

and finally post-composing f by a QC map ψ of Ω onto Ω′ = C \ T ′ where T ′ is a

QC-balanced tree containing T and is close to it in the Hausdorff metric. The QC

map ψ ◦ f ◦ φ associated to T ′ will have uniformly bounded dilation and the support

of the dilatation will have as small area as we wish, so invoking the measurable

Riemann mapping theorem and Lemma 2.1 gives a conformally balanced tree that

approximates K.

In this section we construct T and the pre-composition map φ of D∗. The tree T ′

and the QC map ψ : Ω → Ω′ will be constructed in the next section.

Suppose K is a compact connected set. Choose a large integer D and let C be the

collection of dyadic square of size 2−D that hit K. The corners and edges of these

squares form a finite graph in the plane and we take a spanning tree for this graph.

Then add segments of length 1

4
2−D to any vertices of degree < 4 so that every vertex

in the resulting tree T has degree 1 or 4, every edge is still vertical or horizontal and

every edge has length either 2−D or 2−D−2. See Figure 3. The tree T approximates

K to within 2−D+1 in the Hausdorff metric.

Figure 3. A continua is covered by dyadic boxes and an approxi-
mated tree is formed from the boxes’ edges. Some extra segments are
added to make every degree 1 or 4 and every edge have length 2−D or
2−D−2.
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Why did we add the extra segments to make every degree 1 or 4? This is more of a

convenience than a necessity. The condition insures that for any edge, the harmonic

measures for the two sides have the same behavior as we approach an endpoint, i.e.,
dω1

dω2

is bounded above and below on the whole edge (in fact, this function extends to

be analytic on a neighborhood of the edge). The precise version of this fact that we

will use is:

Lemma 3.1. Suppose e is an open edge of T , f : D∗ → Ω is a conformal map onto

the exterior of T and I, J ⊂ T are the two components of f−1(e). The map g = f−1◦f
defined from I to J has an extension to a conformal map from a neighborhood ΩI of

I to a neighborhood ΩJ of J . Moreover,

dist(I, ∂ΩI) ≥ C1|I|,

for some absolute C1 > 0. The same estimate holds for J and ΩJ . Also,

C−1

2 ≤ |g′| |I||J | ≤ C2

on I for some absolute C2 <∞.

Proof. This is just an application of the Schwarz reflection principle. We first consider

the case when the endpoints of e both have degree 4, as in Figure 4. Let e′ be the

edge e with perpendicular segments of length 1

4
|e| added at either end, so as to bound

three sides of a rectangle R, whose preimage under f is an open set Ω+

I in D
∗ with I

in its boundary. This open set, together with its boundary I ′ on T and its reflection

across T will be the set ΩI .

Map Ω+

I to R by f , follow by a reflection across e to another rectangle, map this

to a set Ω+

J by f−1 and reflect this across T to the set Ω−

J . Let ΩJ be the union of

Ω+

J ,Ω
−

J and the interior (in T) of their common boundary J ′.

This composition is made up of two conformal maps and two reflections, so is a

conformal map Ω+

I → Ω−

J and sends I ′ to J ′, so by the Schwarz reflection principle,

it extends to be a conformal map from ΩI to ΩJ .

Clearly the harmonic measure of e in Ω = C \ T from any point of the opposite

side of R is bounded uniformly away from one, so the same is true of I in D
∗ from

any point of ∂ΩI ∩ D
∗. This implies ∂ΩI is at least distance C1|I| from I for some
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absolute C1. The same applies to J and ΩJ . The Koebe 1

4
-theorem now implies that

g has derivative comparable to |J |/|I| on I, again with absolute constants.

f

e
e

I

f −1

reflect

reflect

R

J 

J I

Figure 4. Proof that g = f−1 ◦ f has a conformal extension to a
neighborhood of I if the image connects two vertices of degree 4.

If e has one vertex of degree 1 and the other of degree 4, the argument is very

similar. In this case, the intervals I and J are adjacent and we take R as shown in

Figure 5. Its preimage under f is the light gray region above the circle which we will

denote Ω+

IJ and the darker region below the circle is its reflection Ω−

IJ . As before,

the composition of the four maps is conformal between these domains, and hence

it has a conformal extension from the obvious domain ΩIJ to itself. The remaining

conclusions follow just as before.

Ω IJ
+

Ω IJ
−

R

Figure 5. Proof that g = f−1 ◦ f has a conformal extension to a
neighborhood of I if the image connects a degree 1 and degree 4 vertex.

�
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So the restriction of the mapping g = f−1 ◦ f to any component of T \ E has a

conformal extension to a uniformly larger neighborhood (recall E are the preimages

under f of the vertices of T ), although the map itself may have jump discontinuities

at the points of E. This is not quite the same as “piecewise analytic” since this

term usually includes continuity at the endpoints. We want to approximate g by a

piecewise linear map on each component of T \ E by adding more points into the

gaps between E and linearly interpolating the values of g between these points.

Lemma 3.2. Suppose g is as above. Then there is a quasiconformal map φ of D∗

to itself, and a finite set F ⊂ T so that φ(F ) contains E and so that φ−1 ◦ g ◦ φ is

piecewise linear on each component of T \ F . The quasiconstant of φ is uniformly

bounded and the dilatation µ of φ can be chosen to be supported in any neighborhood

of T that we want (depending on our choice of F ). We let I denote the connected

components of T\F . The length of each interval in I may be chosen to be of the form

2π2−n for some integer n (possibly different n’s for different intervals), the lengths

of adjacent intervals are within a factor of 2 of each other and every interval has the

same length as at least one of its two neighbors. If two intervals in I are adjacent

and their common endpoint is mapped by f to a vertex of T , then they have the same

length.

Proof. Consider a pair I, J of components of T \E that map to the same edge of T .

Subdivide I and on each subinterval, let φ be defined as g followed by the linear map

from J = g(I) back to I that inverts g at the endpoints. On the interval J = g(I),

φ is defined to be the identity. Since g is smooth, φ is biLipschitz with constant as

close to 1 as we want if the subdivision of I is fine enough. We can therefore extend

it to a quasiconformal map of the Carleson region

QI = {z ∈ D
∗ : z/|z| ∈ I, |z| − 1 < |I|},

to itself that is the identity on ∂QI \ I. Define φ on the rest of D∗ as the identity and

define it in D by reflection. This map has the desired piecewise linear property, but

we still need to adjust the sizes of the intervals.

To make adjacent intervals have comparable length with a factor of 2, we simply

split the larger in 2 equal pieces whenever this fails; the shortest interval will never
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be split and a shorter interval will never be produced, so the process ends after a

finite number of steps.

To make notation easier, we normalize arclength on the circle to be 1. To make sure

that the normalized interval lengths are powers of 2, cover the circle by disjoint dyadic

intervals which are at most 1/4 as long as any of the intervals from the collection

that they hit, and that are maximal with respect to this property. Such a dyadic

interval has at least 1

8
th of the length of the shortest interval it hits and is contained

in the union of this interval and one of its neighbors, which is at most twice as long.

Thus each of our dyadic intervals has length between 1

4
and 1

16
times the length of

any interval in our collection that it intersects.

If we replace each interval I in I by the union I ′ of dyadic intervals in D which

are contained in I or contain I’s left endpoint, the new interval I ′ has comparable

length and is a union of between 4 and 16 dyadic intervals. By splitting some of the

dyadic intervals in two, we can insure it is always a union of 16 dyadic intervals.

If necessary, we can repeat the “split the larger neighbor” argument to insure

adjacent intervals have lengths within a factor of 2 of each other. We end by splitting

every interval into four equal subintervals to make sure every interval has at least one

equal sized neighbor. If I and J are both adjacent to a point mapping to a vertex,

but are not of equal length, then one is exactly twice as long as the other. Subdivide

the longer one and the adjacent interval of the same length. Then the two segments

adjacent to the vertex preimage are equal and all the intervals still satisfy all the

other requirements. This final collection is the desired collection I. �

4. The construction on T

In this section, we define a tree T ′ containing T and a series of quasiconformal

maps

C \ T = Ω → Ω0 → Ω1 → Ω2 → Ω3 → Ω4 = C \ T ′.

If we denote the composition by ψ then our construction will have the property

that T ′ is a QC-balanced tree via the map ψ ◦ f ◦ φ : D
∗ → C \ T ′. Moreover,

the dilatation of this map will be uniformly bounded and the support of its dilation

is mapped into as small a neighborhood of T as we wish (equivalently, the inverse

map, which automatically has the same quasiconstant, has dilatation supported in
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an arbitrarily small neighborhood of T ). Thus using Lemmas 2.1 and 2.2 will yield a

conformally balanced tree that approximates T , and hence K.

To simplify, we will rescale T to correspond to a unit grid (i.e., take D = 0).

In order to draw simpler pictures, we want to avoid the corners in T created by the

vertices of degree 4. The first map ψ0 : Ω → Ω0 ⊂ Ω simply pulls the domain way

from these corners in a uniformly QC way. Choose 0 < δ ≪ 1 to be a small power of

2 (how small will be determined during the course of the construction) and for each

degree 4 vertex in T remove the four δ× δ subsquares of Ω that have this vertex as a

corner. This gives Ω0. Let Ω
′ be Ω with slits of length

√
2δ bisecting each corner of Ω

removed (these are diagonals of the squares we just removed). There is a uniformly

quasiconformal map ψ0 : Ω
′ → Ω0 that is affine on each edge and equals the identity

outside a δ-neighborhood of T . See Figure 6. (Note that ψ0 is not quasiconformal

on Ω because it is not continuous along the slits defining Ω′, but we will finish the

construction by composing with ψ−1

0 to “fill in” the corners and the composed map

will have a continuous, quasiconformal extension to all of Ω.)

ψ
0

Figure 6. The map ψ0 : Ω → Ω0. It pulls the domain away from the corners.

Now we define Ω1 as the set of points z ∈ Ω0 such that

dist(z, T ) > δ or dist(z, T ) >
√
2dist(z, V1),

where V1 is the finite set of degree 1 vertices of T . Thus Ω1 is a polygon where most

of the edges are parallel to edges of T , except in a neighborhood of each degree one

vertex where the boundary slopes down to hit T at the vertex. We can clearly map

Ω0 → Ω1 by a uniformly QC map with dilatation supported in a δ-neighborhood of
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T . See Figure 7. If δ is small enough then any interval of length δ with one endpoint

at a degree 1 vertex of T is contained in the image of the two I intervals on the circle

that are adjacent to that vertex. Assume δ has been chosen small enough to make

this happen at every degree 1 vertex.

ψ
1

Figure 7. The map ψ1 : Ω0 → Ω1.

Let J denote the segments in T that are of the form ∂Ω0 ∩ e for some edge e of

T . Each edge e of T either connects two vertices of degree four or connects a vertex

of degree four to a vertex of degree one. In the first case, segments in J consist of

e with two intervals of length δ removed (one at each endpoint), and in the second

case we only remove an interval at the degree four vertex.

The map ψ0 ◦ f ◦ φ−1 sends each element of I into some element of J . Since each

element of I has measure that is a power of 2, there is a smallest and largest power

that occur and we denote these by 2−n and 2N−n. Then the measure of each element

that occurs can be written as 2m2−n−N where N ≤ m ≤ 2N . By taking N larger, if

necessary, we can assume 2−n−N evenly divides 1 − 2δ and 1

4
− δ (the two possible

lengths of edges in J ). Thus each element of J can be divided into an integer number

of disjoint sub-segments of length 2−n−N . This collection of subintervals is called K.

Taking N larger, if necessary, we may assume 2N2−n−N < δ.

Each element K ∈ K is associated to two elements of I whose images contain K

and which correspond to the two sides of K. If the measure of one of these intervals

is 2m2−n−N we call m one of the two “heights” associated to K. Each height is

associated to one side of K. Lemma 3.2 implies that the heights of intervals in K
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do not change very quickly. In fact, that lemma implies the following facts about

intervals in K:

(1) adjacent intervals have heights differing by at most 1,

(2) every interval has the same height as at least one of its neighboring intervals,

(3) given a degree 1 vertex v of T , every interval within distance δ of v has the

same height,

(4) given one of the δ × δ squares removed from Ω to form Ω0, the two intervals

adjacent to that square have the same height. They also have the same heights

as the neighboring intervals that are not adjacent to the removed square.

Next we build Ω2. For each segment K ∈ K in ∂Ω0 we add a rectangle or trapezoid

to both sides as follows. First suppose K = [a, b] is within distance δ of a degree 1

vertex v. This means that the heights of K for either side are the same by Lemma

3.2 if δ has been chosen small enough (since intervals adjacent to a vertex of the tree

have equal measure). If m denotes the height associated to K, and if

m|K| ≥ dist(K, v1) + |K|.

then we add a rectangle of size |K| ×m|K| to both sides of K. Otherwise we add a

trapezoid with one side K, two sides perpendicular to K and the fourth side on ∂Ω1.

See Figure 8.

ψ
2

Figure 8. We map ψ2 : Ω1 → Ω2 by pushing the boundary back
towards T . The map is the identity for points more than δ from T and
is affine in |K| × δ rectangles adjoining T .



16 CHRISTOPHER J. BISHOP

If K is more than distance δ from any degree one vertex then consider one side of

K and the two adjacent intervals. If all three intervals have the same height m, then

we add a |K| ×m|K| rectangle with K as one side. Otherwise, one of the adjacent

intervals has the same height m as K and the other has height m∗ differing by 1.

We add a trapezoid with base K, and two parallel sides that are perpendicular to K

with side lengths m|K| and m∗|K|. The fourth side of the trapezoid is opposite K

and has length
√
2|K|.

If K has only one neighbor, it must be adjacent to one of the removed “corner

squares” of Ω0. As noted earlier, it must have the same height as its immediate

neighbor, as well as the other interval of K adjacent to the same corner square.

Let W be the union of all these closed rectangles and trapezoids, together with

the closures of δ × δ squares removed from Ω to form Ω0. The union is a closed

connected set and the complement is the open set Ω2. Clearly Ω1 can be mapped

to Ω2 by a quasiconformal map ψ2 which is piecewise affine, has uniformly bounded

quasiconstant and has dilatation supported in a δ-neighborhood of T . See Figure 8.

If we add all the open rectangles and trapezoids to Ω1, along with their edge on

∂Ω2, we get an open set Ω3 containing Ω2. We define Ω4 = ψ−1

0 (Ω3) and T
′ = ∂Ωr.

Clearly this is a linear tree that contains T . See Figure 9.

ψ ψ3 0
−1

Figure 9. The map ψ3 : Ω2 → Ω3 fills in rectangles and trapezoids
and then ψ−1

0 “refills” the corners. The composition ψ = ψ−1

0 ◦ ψ3 ◦
ψ2 ◦ψ1 ◦ψ0 has uniformly bounded dilatation, is the identity outside a
δ-neighborhood of T and has a continuous extension Ω → Ω4.

The only object not yet defined is the quasiconformal map ψ3 : Ω2 → Ω3. Again,

the map is the identity far from T , and each added rectangle or trapezoid (we will

denote either type of region by R) is the image of a square in Ω2 which shares a side

with R. There are three types of maps to describe: m-rectangle maps, m-trapezoid
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maps and m-tip maps. Each of these maps takes a region in Ω2 (either a triangle

or square) with one boundary segment I on ∂Ω2 and expands it into the component

of Ω3 \ Ω2 attached along I (this component is either a rectangle, a trapezoid or a

triangle). See Figure 10. Each map is the identity on ∂R ∩ Ω2, so the map can be

extended as the identity to the rest of the plane. We will describe each type of map

separately.

3ψ

Figure 10. The map ψ3 : Ω2 → Ω3 is made up of three types of maps
that expand a square or triangle in Ω2 into a rectangle or trapezoid in
Ω3 \ Ω2.

Rectangle maps: An m-rectangle map sends a unit square S to a 1×m rectangle

R. We write R as a union of m adjacent unit squares R = ∪k=1mSk with S1 = S. The

boundary values of the map are as follows. The map is the identity on ∂S ∩ ∂R (this

is three sides of the square) and the fourth side is mapped to the rest of R. starting at

the endpoints, divide the fourth side symmetrically into two intervals of lengths 4−k

for k = 1, . . . ,m (the longest adjacent to the endpoints, the shortest adjacent to the

midpoint). For k = 1, . . . m intervals of length 4−k are mapped affinely to the part of

∂Sk on the long sides of R. The union of the two intervals of length 2−m is mapped

affinely to the short side of R on ∂Sk. That these boundary values can be attained
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ψ3 ψ3 ψ3

Figure 11. This shows in more detail how the map in Figure 10
expands Ω2 into Ω3. In each case the domain is cut into decreasing,
nested pieces and the pieces are expanded to shapes that fill the image.
The boundary expansion on the kth piece is 2k in a sense that is made
precise in the text. The details of each type of map are shown in Figures
12, 13 and 14.

by a uniformly quasiconformal map is apparent from the diagrams in Figures 11 and

12.

The first figure shows how to subdivide the square into m − 1 nested polygonal

regions P1, . . . , Pm−1; P1 maps to a 1 × 2 sub-rectangle in R, P2, . . . , Pm−2 are all

similar to each other and map to squares, and Pm−1 is a square mapping to a square

(but not in the obvious way, since one of its sides must map to three sides in the

image). These three maps are constructed in Figure 12 by showing compatible trian-

gulations for domains and ranges (i.e., the triangulations are in a 1-1 correspondence

that preserves adjacency). Given compatible triangulations of two regions we can de-

fine a quasiconformal map between them by taking the obvious piecewise affine maps

between triangles. It is now an easy exercise to check that the mappings induced by

the triangulations have the boundary values described above.

Trapezoid maps: A m-trapezoid map also maps into a 1 × m rectangle R as

above, but the domain of this map is now a right triangle that we may identify with

one half of the top square cut by a diagonal. The boundary map is the identity on

the legs of this triangle. There is an asymmetry to the construction and we assume

the picture is as shown in Figure 11, so that the domain of the map is the upper

right half of the top square. The hypotenuse of the triangle is divided into pairs of
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Figure 12. The m-rectangle map sends a square to a 1 × m rec-
tangle. The map is composed from three types of pieces: one each for
mapping onto the “top” box (lighter shading in Figure 11) and “bot-
tom” (darker) and another that is repeated in all the “middle” boxes
(white). The triangulations define piecewise affine maps between the
polygons.

intervals of size 4−k, k = 1, . . . as before and the left half is mapped to the left side

of the rectangle as before. On the right side the rightmost interval has length 1

4
and

is folded onto itself to form a slit of length 1/8 in the rectangle; this slit is not in

the image of the interior. The remaining smaller intervals are mapped to the right

side of the rectangle just as before. Figure 13 shows how to divide the triangle into

regions and map these regions into the rectangle. We only show the details for the

top piece; the lower pieces are affinely stretched to be similar to the rectangle map

pieces and then mapped exactly as in the rectangle maps.

Note that m-trapezoid maps interpolate between m-rectangle maps and (m − 1)-

rectangle maps. The boundary segments of ∂Ω2 corresponding to each map have

measure 2m2−n−M . Dividing these segments into 2m+1 equal, disjoint subsegments

and applying the “filling map” partitions the sides and bottom of the rectangular

image into intervals. Whenever two rectangles or trapezoids share a side, we want

the partitions of these sides to be identical. Each piece of the partition is one edge

of our QC-balanced tree and we want them to have equal measure. Obviously two

rectangles maps of the same height match up and the definition of the m-trapezoid

map is designed so that it matches a m-rectangle map on one side and a (m − 1)-

rectangle map on the other. The top side of an (m − 1)-rectangle map has half the
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Figure 13. The m-trapezoid map sends the triangle to a 1 × m
rectangle. The middle and bottom maps are the same, after an affine
stretching, to the middle and bottom maps of the rectangle map, so
we only show the construction for the top piece. Note that the image
is not a simple polygon; a piece of the boundary is folded onto itself
to form a slit in the image. This is necessary for the trapezoid map to
match rectangle maps of different heights on either side.

measure of the top of a m-rectangle, so the trapezoid map matches up intervals of

equal measure.

Tip maps: The third type of map is the m-tip map. The details are described in

Figure 14. Each m-tip map is designed to match a (m+1)-tip map (or a m-rectangle

map) on its longer vertical side and a (m − 1)-tip map on its shorter vertical side.

Once again the boundary map is the identity on the top three sides of the domain,

and maps the bottom side to the sides and bottom of the image trapezoid. The

bottom side of the domain square is again divided into symmetric pairs of intervals

of length 4−m. The leftmost and rightmost are mapped to the unit segments of the

trapezoids vertical sides, but since these sides are different lengths, the images are

displaced vertically with respect to each other, so they form the vertical sides of

a parallelogram. Intervals of length 4−k are mapped to vertical sides of the lower

parallelograms. After m steps, the parallelogram hits the bottom edge and the rest

of the domain square is mapped to the bottom triangle as illustrated in Figure 14.

The last map, adjacent to the tip, is a special case that is illustrated in Figure 14.

All the top intervals of the tip trapezoids have the same measure, so the tip maps

match intervals of the same measure along the vertical sides. Tip maps for opposite

sides of an interval K ∈ K are the same and such intervals have the same measure

from both sides, so the maps match here as well.
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Figure 14. The m tip maps also fills in a trapezoid, but is different
from a trapezoid map because it has to match other tip maps, not two
rectangle maps of different heights. Again, it is built from three types
of map: top, bottom and middle. Along its left side (for the orientation
shown) it matches a m-rectangle map or the right side of a (m+1)-tip
map and on the right it matches the right side of a (m − 1)-tip map.
The 1-tip map requires a special construction, as shown at lower right.

This completes the construction of the map ψ : Ω → Ω4 and the verification that

ψ ◦ f ◦ φ−1 makes T ′ a QC-balanced tree. The construction also clearly shows this

map is uniformly quasiconformal and is conformal except on a small neighborhood of

T . In particular, the quasiconstant is independent of δ, and as δ → 0, the support of

the dilatation is as small as we wish, so that the “correction” map obtained from the

measurable Riemann mapping theorem is as close to the identity as we want. This

completes the proof of Theorem 1.2.
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