
TREE-LIKE DECOMPOSITIONS OF SIMPLY CONNECTED

DOMAINS

CHRISTOPHER J. BISHOP

Abstract. We show that any simply connected rectifiable domain Ω can be de-
composed into Lipschitz crescents using only crosscuts of the domain and using
total length bounded by a multiple of the length of ∂Ω. In particular, this gives a
new proof of a theorem of Peter Jones that such a domain can be decomposed into
Lipschitz disks.

1991 Mathematics Subject Classification. Primary: 68U05 Secondary: 26B15, 28A75 .
Key words and phrases. Domain decomposition, medial axis, Lipschitz domains, treelike decom-

position .
The author is partially supported by NSF Grant DMS 04-05578.

1



TREE-LIKE DECOMPOSITIONS OF SIMPLY CONNECTED DOMAINS 1

1. Introduction

Can every domain be efficiently decomposed into nice pieces? Of course, this

depends on what the words “efficiently” and “nice” mean, but one possible answer

was given by Peter Jones who proved in [8] that every simply connected plane domain

Ω has a decomposition into Lipschitz disks {Ωk}, such that
∑

k ℓ(∂Ωk) = O(ℓ(∂Ω)).

However, Jones’ proof is based on the conformal mapping from the disk onto Ω, so

that the construction of these pieces might not be very efficient from a computational

point of view. In this note we will give a simpler proof of a stronger result, replacing

conformal maps by an object from computational geometry: the medial axis.

Theorem 1.1. There is an M < ∞ so that every simply connected plane domain Ω

has a collection of disjoint circular arc crosscuts Γ = ∪γk with
∑

k ℓ(γk) ≤ Mℓ(∂Ω)

and so that each connected component of Ω \ Γ is an M -Lipschitz crescent.

A crosscut is a Jordan arc in Ω with distinct endpoints on ∂Ω. Since Γ consists of

crosscuts, the components of Ω \ Γ form the vertices of a tree under the obvious ad-

jacency relation. This is analogous to the idea of taking a triangulation of a polygon

using only existing vertices of the polygon, as opposed to allowing new vertices (called

Steiner points) in the interior of the polygon. The pieces in our decomposition are

not quite Lipschitz disks, but they satisfy a slightly weaker condition we call being

a Lipschitz crescent (see Section 2). A Lipschtiz crescent is easily decomposed into

Lipschitz disks with the correct length bounds, so Jones’ theorem follows trivially

from our result. Moreover, each crosscut γ in our construction is a circular arc which

lies in a disk D contained inside the domain, and γ lies within an M -neighborhood of

the hyperbolic geodesic (for either D or Ω) with the same endpoints. Distinct cross-

cuts are uniformly separated in the hyperbolic metric of Ω. Finally, the construction

is invariant under Möbius transformations of Ω.

The medial axis of a domain is the subset of points that are equidistant from two

or more boundary points. For a simply connected plane domain, it is a real tree and

for polygons it is a finite tree. Briefly, our construction works by taking a medial

axis disk and moving it along arms of the medial axis until a certain angle between

the moving disk and the starting disk becomes too large. Then we insert a crosscut

and start the process again. This is similar in spirit to the construction in [8] which
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uses a stopping time based on the growth of the derivative of the conformal map

f : D → Ω. Computation of the medial axis is easier in many cases (e.g., linear time

for n-gons) and Stephen Vavasis has suggested using tree-like decompositions in the

numerical computation of conformal maps, so using conformal maps to construct the

decompositions would be circular. His idea is explored further in [3]. Our result is

also an illustration of the idea that results that are proven using conformal mapping

can sometimes be obtained from constructions using the medial axis. This may be of

interest since the medial axis makes sense for any domain, even in higher dimensions.

This paper is one of three related papers that were prompted by questions of

Stephen Vavasis. He asked whether a tree-like decomposition into “nice” pieces al-

ways exists, and he conjectured that such a decomposition could be used to construct

an approximately conformal map to the disk. He also suggested that tree-like de-

compositions could be used to give bounds for the L2 norm of harmonic conjugation

∂Ω. In this note, we answer his first question afirmatively. In [3] we answer the

second question by showing that a tree-like decomposition into uniformly chord-arc

subdomains can be used to define a simple map ∂Ω → ∂D which has a uniformly

quasiconformal extension to the interiors. In [1] we answer the third question by

bounding the norm of harmonic conjugation using tree-like decompositions.

In Section 2 we recall some definitions related to rectifiable domains and in Section

3 we discuss the medial axis. In Section 4 we define a distance on the medial axis

using angles between medial axis disks and use it to partition the medial axis into

subtrees. In Section 5 we partition Ω into pieces corresponding to these subtrees

and show they are Lipschitz crescents. In Section 6 we prove a technical lemma and

in Section 7 we complete the proof of Theorem 1.1 by showing the lengths of our

crosscuts have the correct length sum.

2. Background

Given a set E in the plane we define its 1-dimensional measure as

ℓ(E) = lim
δ→0

inf{
∑

2rj : E ⊂ ∪B(xj, rj), rj ≤ δ}

where the infimum is over all covers of E by open balls. We denote it by ℓ(E), since

if E is a Jordan curve, this agrees with the usual notion of length. We say that a

simply connected domain Ω has a rectifiable boundary if ℓ(∂Ω) < ∞. In this case
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∂Ω is locally connected and may be parameterized by a Lipschitz map from the unit

circle which is at most 2-to-1 almost everywhere on the circle. It is also convenient

to define

ℓ̃(∂Ω) =

∫
T

|f ′(z)||dz|,

where f is a conformal map from the disk onto a simply connected domain Ω. For

Jordan domains this equals ℓ(∂Ω) and in general ℓ̃(∂Ω) ≤ 2ℓ(∂Ω). This measures

the length of the boundary “with multiplicity”. For example, if Ω = D \ [0, 1), then

ℓ(∂Ω) = 2π + 1 and ℓ̃(∂Ω) = 2π + 2.

A set is called regular (or sometimes Ahlfors-regular or Ahlfors-David regular) if

there is a constant M < ∞ so that

ℓ(E ∩ B(x, r)) ≤ Mr,

for every disk in the plane. If E = Γ is a Jordan curve, we say it is chord-arc (or

Lavrentiev) if the length of any subarc is bounded in terms of the corresponding

chord, i.e. if there is a constant C < ∞ so that

ℓ(Γx,y) ≤ C|x − y|,

where Γxy is the arc between x and y (or shortest arc in the case that Γ is a closed

Jordan curve).

A real valued function is called M -Lipschitz if

|f(x) − f(y)| ≤ M |x − y|

for all x, y in its domain. A curve Γ in the plane is called a M -Lipschitz graph if it

is an isometric image (e.g., rotation and translation) of a set of the form

{(x, f(y)) : a ≤ x ≤ b}

where f is a M -Lipschitz function.

A bounded domain Ω in the plane is called a Lipschitz disk if it is isometric to a

domain whose boundary is a Lipschitz function in polar coordinates, i.e.,

Ω = {z = reiθ : r < g(θ)},

where g is a 2π-periodic M -Lipschitz function on R so that 1
M+1

≤ g ≤ 1 (this is the

definition given in Chapter X.3 of [7]). We will say that Ω is a Lipschitz crescent (or
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more precisely an M -Lipschitz crescent) if it has the form

Ω = {reiθ : 0 < r < ∞, 0 < θ < f(r)},

where f is an M -Lipschitz function such that 1/M ≤ f(r) ≤ π/2. We will also call

any bounded Möbius image of such a domain a Lipschitz crescent. The following

simple results are left to the reader.

Lemma 2.1. Any Lipschitz crescent is chord-arc.

Lemma 2.2. Any Lipschitz crescent Ω can be partitioned into Lipschitz disks {Ωk}

so that
∑

k ℓ(∂Ωk) ≤ Cℓ(∂Ω).

Figure 1. A Lipschitz disk and a Lipschitz crescent.

3. The medial axis

Suppose Ω is a simply connected planar domain. A medial axis disk is an open

disk D in Ω so that ∂D ∩ ∂Ω contains at least two points. The medial axis of Ω is

the set of all centers of such disks. A point of the medial axis is called a vertex if the

boundary of the corresponding disk hits ∂Ω in three or more points. A point which

is not a vertex is called an interior edge point (and the corresponding disk hits ∂D in

exactly two points). The medial axis is always a union of countably many rectifiable

arcs (see [6]; also [4], [5]). In particular, Fremlin shows in [6] that there is a λ < ∞,

so that for each point z in the medial axis there is a ball B(z, r) so that any point

w ∈ B(z, r) can be connected to z by a path of length ≤ λδ.

If Ω is a polygon with n sides or if Ω is a union of n disks, then the medial axis is

a finite tree with at most O(n) vertices and whose edges are either straight lines or

parabolic arcs (these only occur for polygons). It is easy to see by a limiting argument

that if we prove Theorem 1.1 for one of these special classes (with a uniform bound)
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then it follows for general simply connected domains with the same bound. Therefore,

in what follows, the reader may assume Ω has one of these forms (or may add any

details needed to apply the argument to the general case).

Figure 2. A polygon and its medial axis.

If T is a connected subset of the medial axis, let ΩT be the union of medial axis

disks with center in τ . This is a simply connected subregion of Ω and (see [2])

ℓ̃(∂ΩT ) ≤ ℓ̃(∂Ω).(3.1)

We call this the length decreasing property of the medial axis.

Given a medial axis disk D of Ω let C = CD be the hyperbolic convex hull (in D)

of E = ∂D ∩ ∂Ω. This is simply the region bounded by replacing each arc in ∂D \E

by a circular arc in D with the same endpoints and perpendicular to ∂D. See Figure

3. One can easily check that these sets are disjoint for distinct medial axis disks.

Thus there can be at most countably many with interior, i.e., there are at most a

countably many vertices of the medial axis.

Given a point p of the medial axis we also define a “thickened” version of the

convex hull of ∂Dp ∩ ∂Ω adding a crescent of angle θ along each face (if the convex

hull is an arc, we add a crescent along both sides) . See Figure 4. Such a piece will

be used as the root of our decomposition.

For an interior edge point of the medial axis, the set E has exactly two points and

C is the circular arc in D with endpoints E and perpendicular to ∂D. Given an angle

0 < θ < π/2 we will let γθ to be the circular arc with the same endpoints but making

angle θ with ∂D. Thus γπ/2 = C. If θ 6= π/2 then there is some ambiguity about

which of two possible arcs we mean. However, if we choose a fixed basepoint p0 on

the medial axis, then for any distinct medial axis non-vertex point, the corresponding
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Figure 3. The convex hulls of ∂D ∩ ∂Ω can either be arcs or hyper-
bolic polygons. Disjoint points of the medial axis give disjoint convex
hulls (disjoint in Ω) they may have common points on the boundary).

θ

θ

θ

Figure 4. These show thickenings of the convex hull by adding
crescents of angle θ along each boundary geodesic of the convex hull.
If the root is not a vertex, then its medial axis disk meets ∂Ω in two
points and the decomposition piece is a crescent with internal angle 2θ.
If the root is a vertex, then the decomposition piece has several sides.

geodesic γθ divides Ω into two components only one of which hits p0. We choose γθ

to be in the other component, i.e., γθ “bends away” from p0. See Figure 5.

If p is a vertex point in the medial axis, then the set E = ∂D ∩ ∂Ω is a closed

set with at least three points. If p is not the root, then ∂D \ E = ∪jIj is a union

of at least three (and possibly countably many) open intervals, and exactly one of

these has the property that it is closest to the root p0 in the sense that there is a

crosscut with the same endpoints separates the other intervals from the root in Ω.

Let this special interval be denoted I0. For each of the remaining intervals, Ij, define

a circular crosscut on D with the same endpoints as Ij and making angle θ with Ij
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Figure 5. We cut the domains by circular crosscuts that have their
endpoints in the set ∂D ∩ ∂Ω, where D is the medial axis disk corre-
sponding to a chosen division point. The crosscut is not a geodesic in
D but it makes a fixed angle with the geodesic and “bends away” from
the root of the medial axis. In the picture the thin crosscuts are the
hyperbolic geodesics and the thicker ones are the “bent” crosscuts.

and bending away from the root as above. The union of these circular crosscuts will

be the γθ corresponding to the vertex point p.

The general idea is as follows. Fix some angle θ ∈ [1
4
π, 3

8
π], ǫ > 0 and a root

p of the medial axis. The root of our decomposition is the thickened convex hull

corresponding to p. We will define a distance function on the medial axis and use it

to partition the medial axis into subtrees of diameter ≃ ǫ. For each division point

between adjacent subtrees we insert the crosscut γθ described above, giving the other

pieces of the decomposition. In the remaining sections we explain:

• How to parition the medial axis.

• Why each decomposition piece is a Lipschitz crescent.

• Why the total length of the crosscuts is O(ℓ(∂Ω)).

4. How to choose the subtrees

The most natural distance on the medial axis might be the hyperbolic metric of Ω,

but it turns out that using this to construct our decompositions pieces leads to “bad

shapes”. In order to get “nice shapes”, we introduce a more complicated distance

defined in terms of the angles. The first step is to define an angle between two circular

arcs (which don’t necessarily intersect each other).

Suppose I and J are circular arcs (or line segments). Apply a Möbius transforma-

tion σ to both arcs, chosen so that I is mapped to the real segment [−1, 1]. If I is
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already a line segment, we take σ linear. If I is an arc of circle C, then we take σ so

that it maps the point q of C that is opposite the center of I to ∞. Then we define

the angle between I and J at w ∈ J to be the angle σ(J) makes with the horizontal

at σ(w). The angle between I and J is the maximum angle σ(J) makes with the

horizontal. See Figure 6.

wq p
I

J

I

J

σ(  )

σ(  ) wσ(  )

Figure 6. We define angles with respect to a family of circles tangent
to D at a point opposite from I. If we map the disk to a half-plane
this just becomes the angle between J and the horizontal.

Next we use this notion of angles to define a function on pairs of points z, w in the

medial axis. Let Dz, Dw be the corresponding medial axis disks. Note that ∂Dz ∩ Ω

has at least two components, exactly one of which hits Dw or separates Dw from z.

This arc is called the near arc of z with respect to w and its complement in ∂Dz is

called the far arc of z with respect to w. Let I be the near arc of w with respect

to z and let J be the far arc of z with respect to w (see Figure 7). Let d(w, z) be

the angle between I and J , as defined above and let D(w, z) = sup d(w, x) where the

supremum is over all points x on the unique path in the medial axis between x and

z. This is the function we will use to decompose the medial axis.
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z

w

Figure 7. If w, z are in the medial axis d(w, z) is the angle of the
far arc of ∂Dz with respect to w with respect to the near arc of ∂Dw

with respect to z.

Choose a root p of the medial axis. This point our first subtree. Removing it

breaks the medial axis into connected components. Suppose ǫ > 0 is fixed. For each

connected component, we take all the points z so that D(p, z) ≤ ǫ. By the definition

of D, this is a connected set. At each step, we choose connected components of points

whose D-distance from what we have already chosen is ≤ ǫ. This breaks the medial

axis into countably many subtrees. Each subtree has leaves that are either (1) leaves

of the medial axis or (2) interior points of the medial axis. In former case we do

nothing and in the latter case we divide Ω using the corresponding γθ (which is a

single circular arc unless z is a vertex of the medial axis, when it is a collection of

such arcs). The idea is illustrated in Figure 8. Figure 9 shows why we take θ < π/2;

if θ = π/2 then cusps may form in certain situations.

Given the domain Ω and its medial axis, we want to subdivide the medial axis into

subtrees with disjoint interiors and then cut Ω with circular crosscuts, one for each

point were two subtrees meet. The idea is illustrated in Figure 8.

It is useful to note that D(w, z) is a Lipschitz function with respect to the hy-

perbolic metric. This is because in the normalized situation, moving z by a small

amount δ in the hyperbolic metic can change the angle of the bottom edge by only

O(δ). This means that at each stage of our construction our subtrees cover a fixed
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Figure 8. The top left shows a polygon, its medial axis and a col-
lection of points that divide the medial axis into subtrees. The one
chosen as root has a white interior. On the top right we show the me-
dial axis disks corresponding to these points. On the lower left are the
“bent” geodesics we use for crosscuts. Note the shaded region which is
a thickened convex hull and is the decomposition piece corresponding
to the root. On the lower right we erase the medial axis and disks to
show just the resulting decompositions.

Figure 9. Here is a situation when we want to avoid using crosscuts
that are perpendicular to the corresponding medial axis circles. If a
leaf of the subtree is a vertex of the medial axis, then we may add
crosscuts to two bottom arcs that are adjacent and then the resulting
piece will have a cusp and the crosscuts will not be uniformly separated
in the hyperbolic metric.
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hyperbolic neighborhood of the previous step, which imples that eventually we cover

the whole medial axis (the medial axis is path connected).

5. Decomposition pieces are Lipschitz crescents

In this section we will show that the decomposition pieces {Wn} we have con-

structed are Lipschitz crescents. This is easy to see for the root piece, so we will only

deal with non-root pieces. Each such piece corresponds to a subtree of the medial

axis which is rooted at the point pn closest to the root of the medial axis. Lipschitz

crescents are invariant under Möbius transformations, so it suffices to show Wn is such

a crescent after we normalize by mapping the medial axis disk Dn centered at pn to

the upper half-plane. After this normalization, Wn looks like the region illustrated

in Figure 10.

θ

ε

Figure 10. Here is a typical decomposition piece where we have
normalized the medial axis disk of the root of the subtree by sending it
to the upper half-plane. The large dashed arc at the top is the crosscut
corresponding to the the root of the subtree. Along the bottom are
arcs corresponding to the other leaves of the subtree (dashed if the leaf
is an interior point of the medial axis, solid if it is also a leaf of the
medial axis). The bottom arc makes angle with the horizontal which
is bounded between −ǫ and θ − ǫ. The top and bottom arcs of Wn are
separated by a crescent of fixed angle ǫ.

When we normalize, we see that the each piece has a top edge which is the circular

crosscut corresponding to the root of the subtree. We claim that the lower edge of Wn

is a Lipschitz graph. This is certainly true on the circular arc crosscuts corresponding

to stopping points (because we stopped the first time the angle = ǫ anywhere on the

arc). On the other hand, at any other points of the lower edge correspond to paths

on the medial axis where we never stopped, and such a point is the tip of a cone with
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sides of angle ǫ (with the horizontal). See Figure 11. When we add in the crosscuts

γθ to get the decomposition piece W , the crosscuts form an angle between −ǫ and

θ − ǫ with the horizintal.

Figure 11. At a boundary point of the normalized piece were we
never stop, consider the union of medial axis disks corresponding to the
path leading to this point. Each bottom edge of each corresponding
disk makes angle ≤ ǫ with the horizontal and hence the point is vertex
of a cone in the piece with sides of angle ǫ. Thus the bottom edge of
W is a Lipschitz graph.

Finally, we only have to check that the top and bottom edges are separated by a

crescent of angle ǫ. See Figure 10. Let C be the crescent of angle ǫ with endpoints

±1 and top edge equal to the top edge of W . We claim that C ⊂ W , i.e., the bottom

edge of W does not hit this crescent. By taking a finite approximation of the medial

axis we can assume the lower edge of W is a finite union of circular arcs and each is

either an arc of ∂Ω, or a circular crosscut that was added at a leaf of the subtree. If

the arc is a boundary arc of Ω then it lies in the lower half-plane and so does not hit

C (assuming ǫ < θ). If the arc corresponds to an interior point of the medial axis,

then there is a point in this arc where it makes angle ǫ with the horizontal. This point

must be an endpoint of the arc, and then the corresponding arc γθ makes angle θ− ǫ

with the horizontal at this point. If this arc crosses into the upper half-plane, then

at the points where it crosses, it must make angle ≤ θ − ǫ with the horizontal. Thus

it lies beneath the circular arc from −1 to 1 which makes angle θ − ǫ with the real

axis, as claimed. From this is is clear that the normalized domain W is a Lipschitz

crescent, as desired. By definition, any bounded Möbius image is also a Lipschitz

crescent, so the unnormalized piece is as well.
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6. A length estimate

Suppose we have a decomposition of the medial axis into subtrees {Tn} where T0

is the “root” and consists of a single point. Let Ω \ Γ denote the corresponding

decomposition of Ω using the crosscuts γθ described earlier.

For any n, we let Ωn be the union of all medial axis disks centered in Tn. For each

n we let Wn be the component of Ω \ Γ which is inside Ωn. These are the pieces

of our decomposition. We let γn denote the crosscut which separates Wn from its

parent. If n 6= 0, let Un = Ωn \Ωn∗ where n∗ denotes the index of the parent domain

of Ωn (i.e., Ωn∗ separates Ωn from Ω0). ∂Un has one circular arc edge in common

with its parent Un∗ . We will call this the top edge of Un and is denoted τn. Note

that τn and γn are both circular arcs with the same endpoints, but that they bound

a crescent with interior angle θ. Because the angles used to define the crosscuts in Γ

have angles bounded between 1
4
π and 3

8
π, then length of the crosscut γn dividing Wn

from its parent is at most a uniform multiple of the distance between its endpoints.

This distance, in turn, is at most the length of τn (possibly much shorter in some

cases), i.e.,

ℓ(γn) = O(ℓ(τn)).(6.1)

Note that τ0 = ∅ since the root piece has no top edge. See Figure 12. The domain

Un is introduced because it will be easier to estimate its boundary length, and then

use this to control the boundary lengths of our decomposition pieces, Wn.

The rest of ∂Un is called the “bottom” edge and will be denoted βn. This is a

Jordan arc. By the length decreasing property of the medial axis we have

ℓ(τn) ≤ ℓ(βn).(6.2)

Fix some δ > 0. We say that Un is boundary-like if

ℓ(βn ∩ ∂Ω) ≥ δℓ(βn),(6.3)

and is interior-like otherwise. Since ℓ(τn) ≤ ℓ(βn)), in boundary-like pieces we also

have

ℓ(βn ∩ ∂Ω) ≥ δℓ(τn).(6.4)

We will bound the length of Γ using:
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Ω n

n Wn
γ τn

βn
Un

Figure 12. The upper left shows a domain and its medial axis. The
selected root is shown as a white dot. A subtree Tn has been indicated
by the darker edges. The top right shows the union of medial axis disks
for this subtree; this is Ωn. The lower left shows the corresponding
decomposition piece Wn. It is bounded by arcs that deviate from the
hyperbolic geodesic with the same endpoints by a fixed angle. Note
that they bend away from the root. The lower right shows Un.

Lemma 6.1. Suppose that every non-root, interior-like subdomain Un satisfies

ℓ(βn) ≥ (1 + δ)ℓ(τn).(6.5)

Then
∑

ℓ(γn) = ℓ(Γ) ≤ C
δ
ℓ̃(∂Ω) for some absolute C < ∞.

Proof. Assume that the subdomains {Wn} are indexed so that n∗ < n for all n (i.e.,

every subdomain comes somewhere after its parent in the list). Let Vn = ∪k≤nΩn.

Then V0 ⊂ V1 ⊂ · · · ∪n Vn = Ω and ℓ̃(∂V0) ≤ ℓ̃(∂V1) ≤ · · · ≤ ℓ̃(∂Ω) by (3.1). By (6.1)

it is enough to show that ∑
k

ℓ(τk) ≤
C

δ
ℓ(∂Ω).

We will prove this by induction. Our hypothesis will be

∑
k≤n

ℓ(τk) ≤
1

δ
[ℓ̃(∂Vn) +

∑
k≤n

ℓ(βk ∩ ∂Ω)].(6.6)
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This will suffice since ℓ̃(∂Vn) ≤ ℓ̃(∂Ω) ≤ 2ℓ(∂Ω) by (3.1), and
∑
k≤n

ℓ(βk ∩ ∂Ω) ≤ ℓ̃(∂Ω) ≤ 2ℓ(∂Ω).

The induction hypothesis (6.6) is trivial for n = 0 since the left hand side is zero

(recall that τ0 = ∅). Assume the hypothesis for n and consider n + 1. If Un+1 is

boundary-like, then by the induction hypothesis, (6.4) and (3.1) we have,

∑
k≤n+1

ℓ(τk) ≤ ℓ(τn+1) +
∑
k≤n

ℓ(τk)

≤
1

δ
ℓ(βn+1 ∩ ∂Ω) +

1

δ
[ℓ̃(∂Vn) +

∑
k≤n

ℓ(βk ∩ ∂Ω)]

≤
1

δ
[ℓ̃(∂Vn+1) +

∑
k≤n+1

ℓ(βk ∩ ∂Ω)],

as desired. If Un+1 is interior-like, then by (6.5),

ℓ(τn+1) ≤
1

1 + δ
ℓ(βn+1) =

1

1 + δ
(ℓ̃(∂Vn+1) − ℓ̃(∂Vn) + ℓ(τn)),

so

(1 −
1

1 + δ
)ℓ(τn+1) ≤

1

1 + δ
(ℓ̃(∂Vn+1) − ℓ̃(∂Vn)),

which gives

ℓ(τn+1) ≤
1

δ
(ℓ̃(∂Vn+1) − ℓ̃(∂Vn)).

Hence
∑

k≤n+1

ℓ(τk) ≤ ℓ(τn+1) +
∑
k≤n

ℓ(τk)

≤
1

δ
(ℓ̃(∂Vn+1) − ẽll(∂Vn)) +

1

δ
[ℓ̃(∂Vn) +

∑
k≤n

ℓ(βk ∩ ∂Ω)]

≤
1

δ
[ℓ̃(∂Vn+1) +

∑
k≤n

ℓ(βk ∩ ∂Ω)]

≤
1

δ
[ℓ̃(∂Vn+1) +

∑
k≤n+1

ℓ(βk ∩ ∂Ω)].

Thus in either case, the induction hypothesis is verified and the lemma is proven. �
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7. Decomposition pieces have the correct length bounds

To finish the proof of Theorem 1.1, it is now enough to check that (6.5) is satisfied

for the non-root, interior-like pieces. We first need some simple geometric facts.

Lemma 7.1. Suppose γ is a circular arc contained in the upper half-plane and con-

tains at least one point where the tangent makes angle ≥ ǫ > 0 with the horizontal.

Then it makes an angle ≥ ǫ/2 with the horizontal on at least 1/3 of its length.

Proof. If γ is a line segment, there is nothing to do since the slope is constant.

Otherwise γ is an arc of a proper circle and subtends some angle θ with respect to

the center of this circle. There are two arcs of this circle where the tangent makes

angle ≤ ǫ/2 with the horizontal and each subtends angle ǫ with respect to the center

of the circle. Each is separated by arcs of angle measure ǫ/2 from the arcs of the

circle where the angle to the horizontal is ≥ ǫ. Thus γ either has angle ≥ ǫ/2 on its

whole length or it contains a subarc of angle measure ≥ ǫ/2 on which it makes angle

≥ ǫ/2 with the horizontal. This arc must account for at least 1/3 of its length, so we

are done. �

Lemma 7.2. Suppose γ is a circular arc contained in the upper half-plane and con-

tains at least one point where the tangent makes angle ≥ ǫ > 0 with the horizontal.

Then ℓ(γ) ≥ (1 + cǫ2)ℓ(I) where I is the vertical projection of γ onto the real line

and c > 0 is a fixed constant.

Proof. Let γ′ ⊂ γ be the subarc where γ makes an angle of at least ǫ/2 with the

horizontal and let I ′ be its projection. Then ℓ(I ′) ≥ ℓ(I)/3, so

ℓ(γ) = ℓ(γ \ γ′) + ℓ(γ′) ≥ ℓ(I \ I ′) + ℓ(I ′)/ cos(ǫ2) ≥ ℓ(I)(1 + cǫ2).

�

Lemma 7.3. Suppose 0 < ǫ ≤ 1/4 and let R = [0, 1] × [0, ǫ] and suppose ǫ ≤ 1
2

and

suppose γ is a circular arc in the upper half-plane, which is part of a circle centered

in the lower half-plane and which connects the two short sides of R within R. Then

γ makes an angle of at most O(ǫ) with any horizontal line.

Proof. This is left to the reader. �
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Lemma 7.4. Suppose σ is a Möbius transformation that fixes both −1 and 1 and

maps 0 to −iR (i.e., σ is an elliptic rotation around ±1 with angle ≤ π/2). Let γ

be a circular arc in the rectangle [−1/R, 1/R]× [−η/R, 0] which makes an angle ≥ ǫ

with the horizontal at some point and whose σ-image is in the lower half-plane. Let

I be the vertical projection of γ onto the real line. Then there is a c > 0, so that

ℓ(σ(γ)) ≥ (1 + cǫ2)ℓ(σ(I)).

Proof. The Möbius transformation σ is of the form

σ(z) =
z + µ

µz + 1
,

where µ = −iR. The derivative is τ ′(z) = 1−µ2

(µz+1)2
, so

|τ ′(z)| = |
1 + R2

R2
|

1

|z − (−i/R)|
.

Thus |τ ′(x − iy)| is an increasing function of y ∈ [0, 1/R) for any x ∈ [−1, 1]. In

particular, if γ is as in the lemma, z = x − iy ∈ γ, then |τ ′(z)| > |τ ′(x)|. Since γ

makes an angle ≥ ǫ/2 with the horizontal along at least a third of its length, we get

ℓ(τ(γ)) ≥ (1 + cǫ2)ℓ(τ(I)).

�

So now we have to show (6.5) is satisfied for the non-root, interior-like pieces U .

First we do this assuming that the corresponding decomposition piece W has been

normalized as in Figure 10 (the medial axis disk of its root is the upper half-plane)

and later we will verify the estimate for any Möbius image of W . Let β be the

bottom edge of U and let τ be its top edge (which is a segment on the real line). By

assumption, a fixed fraction δ of the length of β consists of interior arcs of Ω, and

each of these arcs has a point where the angle with the horizontal is ≥ ǫ. By Lemma

7.2 this implies the length of the arc is strictly longer than its vertical projection onto

τ by a factor depeding only on ǫ, δ. Thus a normalized U satisfies (6.5).

A general U ′ is simply a Möbius image of a normalized U . Since we may ignore

Euclidean similarities, we can assume this transformation σ is of the from in Lemma

7.4 and the top edge of U is τ = [−1, 1]. Then Γ = σ(τ) is a circular arc in the lower

half-plane with endpoints ±1. The image of β also has endpoints ±1 and lies in the

lower half-plane outside Γ. See Figure 13.
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Let c be a small positive constant and define three adjacent rectangles

R0 = [−c/R, c/R] × [−cη/R, 0],

R1 = [−3c/R,−c/R] × [−cη/R, 0],

R2 = [c/R, 3c/R] × [−cη/R, 0].

The σ images of these are circular arc quadrilaterals of diameter ≃ R that lie between

Γ and Γη. See Figure 13.

R0 R2R1
β

τ(β)

Figure 13. Three small rectangles map to three quadrilaterals with
diameter comparable to R.

As the curve β goes from −1 to +1, it crosses from the vertical line x = −2c/r to

the line x = 2c/R. Either it stays entirely inside R0∪R1∪R2 or it does not. If it does

not, then β contains a point w between these lines but below the rectangles. Thus

σ(β) contains a point w which is at least distance CδR from Γ. Thus the length of

σ(β) is at least the length of the shortest path connecting ±1 in the lower half-plane,

outside Γ and containing w. This at least (1 + µ)ℓ(Γ), for some fixed µ > 0 (see

Figure 14).

Otherwise β lies entirely inside the union of the three rectangles. We may also

assume β consists of a finite number of circular arcs. Suppose one of these arcs

crosses R1. Then by Lemma 7.3 it must make angle ≤ 2πη with the horizontal along
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Figure 14. If β contains a point below R0 ∪R1 ∪R2, then its image
contians a point at least distance ηR from Γ. Then the lengh of τ(β) is
at least the minimum length of a path in the lower halfplane connecting
the endpoints of Γ and containing the point. The minimum length path
looks follows Γ until it sees the point and then follows a straight line.
Its easy to check this path has length ≥ (1 + cη2)ℓ(Γ).

its whole length. If 2πη < ǫ then such an arc must correspond to a leaf of the medial

axis since it does not satisfy the stopping rule we used to partition the medial axis.

But the image of this arc under τ has length ≃ R ≃ ℓ(Γ) ≥ δℓ(Γ) if δ is small enough,

which contradicts the assumption that the piece U is interior-like. Thus no arc of β

crosses R1. Similarly, no arc crosses R2. Thus any arc in β which hits R0 cannot

leave R0 ∪ R1 ∪ R2.

Consider the union of the stopped arcs in β which hit R0. First suppose that at

most half the length of β in R0 consists of these stopped arcs. Then just as in the

previous paragraph the σ image of the complement of these arcs has length ≃ R and

we deduce that the piece in boundary-like, not interior-like. Thus at least half the

length of β in R0 must be from stopped arcs, so by Lemma 7.4, we are done. This

proves the desired estimate and completes the proof of Theorem 1.1.
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8. Further remarks

The Lipschitz crescents described in the previous proof are built using two bound-

ary arcs which are Lipschitz graphs, so why aren’t the domains themselves always

Lipschitz disks? There are two things that can go wrong.

The first problem is illustrated in Figure 15. Suppose that the point labeled D is

the right endpoint of I0 = [−1, 1] and the upper edge of W makes angle θ with the

real axis at D. Suppose that near D, the boundary of Ω0 looks like the dashed curves

in Figure 15, each of these is a crescent of angle ǫ. We get ∂W0 by taking circular

arcs which have the same endpoints and which make angle θ with these arcs. Thus

the solid arc from points A to B is an arc in W0 and it makes angle θ − ǫ with the

horizontal at A and angle θ at B. Thus there cab be a sequence of points converging

to D where the upper and lower boundaries of the crescent have the same slope.

Thus there is no neighborhood of D in which ∂W0 is a Lipschitz graph. Moreover,

the domain can’t be star-shaped; given any base point in the interior, there will

always be points near D which can’t be seen.

CA

B

D

Figure 15. This shows that that the Lipschitz crescent we construct
need not be a Lipschitz domain near a vertex.

The second problem is that even if W is Lipschitz with a uniform constant, a

Möbius image of it need not be. Consider the case when W is a crescent with interior

angle < π/2 and bottom edge equal to [−1, 1]. By applying an elliptic transformation

fixing ±1 and rotating by an angle slightly less than π we can map the bottom edge

to a circular arc of very large diameter (as large as we want) while the top edge limits

on a circular arc of fixed size. See Figure 16.

Clearly, the large crescent is not star-shaped since there is no interior point which

sees both vertices. While it is true that every boundary point of the big crescent has
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Figure 16. On the left is a Lipschitz crescent which is also a Lipschitz
disk and on the right is a Möbius image which is not a Lipschtiz disk
(but it is a Lipschitz crescent by definition).

some neighborhood in which the boundary is a Lipschitz graph, these neighborhoods

can’t have diameter comparable to the diameter of the whole domain (otherwise a

neighborhood of one vertex would contain the other vertex). Thus we can’t expect

to get Lipschitz disks unless we give up the Möbius invariance of the construction.

Is it always possible to find a tree-like decomposition of a simply connected domain

into Lipschitz disks so that ℓ(Γ) = O(∂Ω)? If so, is it possible to do this using only

circular arc crosscuts? Straight line crosscuts?
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