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Abstract

For any simple polygon P we compute the optimal upper and lower angle bounds for triangulating P with
Steiner points, and show that these bounds can be attained (except in one special case). The sharp angle bounds
for an N -gon are computable in time O(N), even though the number of triangles needed to attain these bounds
has no bound in terms of N alone. In general, the sharp upper and lower bounds cannot both be attained
by a single triangulation, although this does happen in some cases. For example, we show that any polygon
with minimal interior angle θ has a triangulation with all angles in the interval I = [θ, 90◦ − min(36◦, θ)/2],
and for θ ≤ 36◦ both bounds are best possible. Surprisingly, we prove the optimal angle bounds for polygonal
triangulations are the same as for triangular dissections. The proof of this verifies, in a stronger form, a 1984
conjecture of Gerver.

1 Statement of results

This is an announcement of results that are proven in full in [8]. Some proofs will sketched here, but various
details, especially involving estimates for conformal or quasiconformal mappings are left for [8].

It is a problem of long-standing theoretical and practical interest to triangulate a polygon with the best
possible bounds on the angles used. For example, the constrained Delaunay triangulation famously maximizes the
minimal angle if no additional vertices (called Steiner points) are allowed [23], [24], and algorithms for minimizing
the maximum angle (again without Steiner points) are given in [2] and [15]. Here we solve the analogous problems
when Steiner points are permitted.

In this case, Burago and Zalgaller [9] proved in 1960 that every planar polygon P has an acute triangulation
(all angles < 90◦). This is the sharpest bound that holds for all polygons, but what are the optimal upper and
lower angle bounds for triangulating a given polygon P with Steiner points? Are these bounds attained or can
they only be approximated? Can both bounds be attained simultaneously? How regular are the corresponding
triangulations? How do the angle bounds for triangulations differ from those for dissections? Using ideas involving
conformal and quasiconformal mappings, we shall answer each of these questions. However, the emphasis of our
results is on computing the optimal angle bounds; finding efficient triangulations that attain these bounds remains
an interesting open question.

We start with some notation. Suppose T is a triangulation of P . Let VP be the vertex set of P , VT the
vertex set of T , ∂T = VT ∩ P the boundary vertices of T , and let int(T ) = VT \ ∂T denote the interior

vertices. Label each v ∈ VT with the number, L(v), of triangles in T that have v as a vertex. For v ∈ ∂T , we
define its discrete curvature as κ(v) = 3−L(v), and for an interior vertex we set κ(v) = 6−L(v). Using these
definitions, Euler’s formula applied to a triangulation can be rewritten to look like the Gauss-Bonnet formula:

∑

v∈int(T )

κ(v) = 6−
∑

v∈∂T

κ(v).(1.1)

We define this common value to be κ(T ), the curvature of the triangulation.
For φ > 0, a φ-triangulation of P is one with all angles at most φ. For φ ∈ [60◦, 90◦] define the interval

I(φ) = [180− 2φ, φ]. Any φ-triangulation must have all of its angles in I(φ) (since the sum of all three angles is
180◦, if two are ≤ φ, the third is ≥ 180◦ − 2φ). Let |VP | be the number of vertices in P , and for v ∈ VP , let θv
denote the interior angle of P at v. A labeling L : VP → N = {1, 2, . . .} is called φ-admissible if θv ∈ L(v) · I(φ)
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for every v ∈ VP . The curvature of a labeling L is defined as

κ(L) =
∑

v∈VP

L(v)− (3|VP | − 6) = 6−
∑

v∈VP

(3− L(v)).

If a labeling L of VP comes from a φ-triangulation T of P with φ < 90◦, then it is automatically φ-admissible
and satisfies κ(L) ≤ κ(T ), since vertices of ∂T \ VP must have degree ≥ 3. If φ < 72◦ then int(T ) has no vertices
of degree ≤ 5, so (1.1) implies κ(L) ≤ κ(T ) ≤ 0. See Figure 1. Similarly, if φ < 5

7 · 90◦ ≈ 64.2857◦ then every
vertex in int(T ) has degree 6 and every vertex in ∂T \ VP has degree 3, so κ(L) = κ(T ) = 0. Remarkably, these
elementary necessary conditions are also sufficient.

Theorem 1.1. For 60◦ < φ ≤ 90◦, a polygon P has a φ-triangulation iff

1. 72◦ ≤ φ < 90◦ and there is some φ-admissible labeling L of VP ,

2. 5
7 · 90◦ ≤ φ < 72◦, and there is a φ-admissible labeling with κ(L) ≤ 0,

3. 60◦ < φ < 5
7 · 90◦, and there is a φ-admissible labeling with κ(L) = 0.

For 60◦ < φ < 90◦ define K(φ) be the set of possible values of κ(L) over all φ-admissible labelings of VP ; we
set K(φ) = ∞ if there is no admissible labeling. Note that K(φ) is either ∞ or a non-empty interval of integers.
Hence K(φ) has a unique closest element to 0, denoted κ(φ) (possibly 0 or ∞). The three conditions in Theorem
1.1 can be restated as κ(φ) < ∞, κ(φ) ≤ 0 and κ(φ) = 0 respectively. (We should write K(φ, P ), κ(φ, P ), since
these quantities also depend on P , but in this paper P is usually fixed and clear from context.)

Theorem 1.1 fails for φ = 60◦: Figure 1 shows that a polygon can satisfy κ(60◦) = 0, but have no equilateral
triangulation. However, if κ(60◦) = 0, then P can be triangulated using only angles ≤ 60◦ + ǫ for any ǫ > 0;
see Lemma 3.4. This is the only case where the optimal bound need not be attained by any triangulation. Note
that κ(60◦) = 0 if and only if P is a 60◦-polygon, i.e., all angles are multiples of 60◦. Such a polygon has an
equilateral triangulation iff all of its edge lengths are integer multiples of a single value.

72

54

360
7

450
7

1
s

t

Figure 1: The left polygon satisfies κ(60◦) = 0, but has no equilateral triangulation unless both s and t are
rational. The other pictures show where the special angles in Theorem 1.1 come from: these angles are forced by
interior vertices of degree five or seven.

For a simple polygon P , and let θmin and θmax denote the minimum and maximum interior angles of P and
define Φ(P ) to be the infimum of φ such that P has a φ-triangulation. Theorem 1.1 makes it easy to compute
Φ(P ). To illustrate this, we list a few corollaries of the result and its proof. The proofs may be found in [8].

Corollary 1.1. Φ(P ) can be computed in time O(|VP |).

Corollary 1.2. For any polygon, Φ(P ) ≤ 90◦ −min(θmin, 36
◦)/2. If θmin ≤ 36◦, then Φ(P ) = 90◦ − 1

2θmin and
P has a triangulation T with all angles in [θmin, 90

◦ − θmin/2].

Corollary 1.3. For the regular N -gon PN , Φ(PN ) = 72◦ except when N = 3, 6, 7, 8, 9; then Φ(PN ) = 60◦, 60◦,
5
7 · 90◦, 67.5◦, and 70◦ respectively.
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A triangular dissection covers P and its interior by finitely many closed triangles with disjoint interiors.
The edges of adjacent triangles need not match up exactly; if they do, then we have a triangulation. See Figure
2. A φ-dissection is a triangular dissection with maximum angle ≤ φ. In 1984 Gerver [18] showed that the
conditions in Theorem 1.1 are necessary if P has a (φ + ǫ)-dissection for every ǫ > 0, and he conjectured that
they were sufficient for a φ-dissection to exist if φ > 60◦.

Figure 2: On the left is a dissection of a polygon and on the right a triangulation. The white dots the Steiner
points. Despite triangulations being more restrictive than dissections, the optimal upper angle bounds are the
same for both types of decomposition.

Corollary 1.4. For a polygon P and φ ∈ (60◦, 90◦], the following are equivalent:

1. For every ǫ > 0, P has a (φ+ ǫ)-dissection,

2. P has a φ-dissection,

3. P has a φ-triangulation.

This is surprising (at least to the author). Since dissections satisfy much less stringent conditions than
triangulations do, one might expect a gap between the best possible angle bounds in these two cases, but such a
gap does not occur. Given a φ-dissection, can one obtain a φ-triangulation from it, e.g., as a refinement?

The conditions in Theorem 1.1 only depend on the set of angles of P , not on their ordering around P , nor
on the side lengths of P . This solves Problem C7 of [11].

Corollary 1.5. If φ > 60◦ and P , P ′ are N -gons with the same set of angles (possibly in different orders around
the boundary) then P has a φ-triangulation (or a φ-dissection) if and only if P ′ does.

As noted earlier, the Delaunay triangulation maximizes the minimal angle needed to triangulate a point set
without Steiner points (with Steiner points, angles arbitrarily close to 60◦ can be achieved for point sets). The
constrained Delaunay triangulation does the same for polygonal triangulations without Steiner points (see [23],
[24]), and an algorithm using only interior Steiner points is presented in [28]. The methods of this paper can be
used to maximize the minimum angle for triangulating a polygon P with arbitrary Steiner points. To see how
this works, suppose 0 < φ < 60◦ and define Ĩ(φ) = [φ, 180◦ − 2φ]; similar to the argument given for I(φ), any

triangle having smallest angle φ must have all its angles inside Ĩ(φ). Define a labeling L to be φ-lower-admissible

if θv ∈ L(v) · Ĩ(φ) where θv is the angle of P at v ∈ VP . The curvature κ(L) is defined just as before, and K̃(φ)
is the set of curvatures of φ-lower-admissible labelings. Also as before, κ̃(φ) is the element of this set closest to
0 (equal to ∞ if no φ-lower-admissible labeling exists). A φ-lower-triangulation is a triangulation with all angles

≥ φ. We define Φ̃(P ) to be the supremum of φ so that P has a φ-lower-triangulation.

Theorem 1.2. For 0 < φ < 60◦, a polygon P has a φ-lower-triangulation iff

1. 0 < φ ≤ 1
7 · 360◦ ≈ 51.4286◦ and κ̃(φ) <∞,
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2. 1
7 · 360◦ < φ ≤ 54◦, and κ̃(φ) ≥ 0,

3. 54◦ < φ < 60◦, and κ̃(φ) = 0.

As before, there are a variety of consequences that follow; these are proven in [8].

Corollary 1.6. Φ̃(P ) can be computed in time O(|VP |).

Corollary 1.7. If P has a φ-lower-triangulation then it also has an acute φ-lower-triangulation.

Corollary 1.8. If θmin ≤ 45◦, then Φ̃(P ) = θmin.

Comparing Corollaries 1.2 and 1.8, we see that if P is a polygon with θmin = 45◦, then Φ(P ) ≤ 72◦ and

Φ̃(P ) ≥ 45◦. If P has at least one angle θ ∈ (72◦, 90◦), then any triangulation of P that attains the optimal upper

bound Φ(P ) must subdivide θ and hence has an angle strictly less than 45◦ ≤ Φ̃(φ).

Corollary 1.9. There exist polygons so that any triangulation attaining the optimal upper angle bound Φ(P ),

does not achieve the optimal lower angle bound Φ̃(P ).

The idea behind both Theorems 1.1 and 1.2 is to associate to each polygon P a model polygon P ′, and then
to transfer a nearly equilateral triangulation from P ′ to P using a conformal map. We map the triangulation
vertices from P ′ to P and connect them by segments in P ; we call these the “pushed forward” triangles (conformal
images of the triangles themselves would have curved sides). A simple example is shown in Figure 3. The labeling
shown in Figure 3 is 72◦-admissible and has curvature 0, so κ(72◦) = 0. Moreover, the reader can check that
κ(φ) > 0 for φ < 72◦, hence Φ(P ) = 72◦. As the mesh in Figure 3 gets finer, the largest angle tends to 72◦, and
we will show later that this limiting bound can be attained by modifying a sufficiently fine triangulation near the
vertices (see Lemma 3.7).

Figure 3: An equilateral triangulation of P ′ (left) and its conformal image P (angles: 270◦, 126◦, 96◦, 126◦, 105◦,
105◦, 144◦, 144◦, 80◦, 262◦, 162◦). The maximum angle used here is ≈ 73.5205◦ and approaches 72◦ as the mesh
gets finer; 72◦ is sharp by Theorem 1.1 and can be attained by modifying a sufficiently fine triangulation near the
vertices.

We want P ′ to have a (nearly) equilateral triangulation, so we will assume it is a 60◦-polygon. Note that any
equilateral triangulation of P ′ has all interior vertices of degree six. The angle of P ′ at the vertex corresponding
to v ∈ VP is given by 60◦ ·L(v), where L is a labeling of VP . Since the angles of P

′ sum to (|VP |−2) ·180◦, a short
calculation shows that we must have κ(L) = 0. Given such a labeling of VP , we will use the Schwarz-Christoffel
formula to define P ′ and f . If we transfer a sufficiently fine and nearly equilateral triangulation from P ′ to P
using f , the image will be close to a φ-triangulation of P if the labeling L is φ-admissible. Thus to start the
construction it seems that we need a φ-admissible labeling of P with zero curvature.

However, such a labeling need not exist. For example, suppose P is a pentagon with five equal angles of 108◦.
Theorem 1.1 (in particular, Corollaries 1.3 and 1.5) implies that Φ(P ) = 72◦. However, the only 72◦-admissible
labels for a 108◦-vertex are {2, 3}, so K(φ) = {1, . . . , 6} and so κ(φ) = 1 > 0. This holds even if we add extra
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180◦-vertices to P (their possible labels are {3, 4, 5}). Therefore, any 72◦-triangulation of P has positive curvature
and thus at least one interior vertex of degree five (degree ≤ 4 implies an angle ≥ 90◦).

How can such a triangulation be a conformal image of a triangulation of P ′ that only has interior vertices
of degree six? The answer is that we can choose f to conformally map the interior of P ′ into a subdomain of
P obtained by cutting a slit in P . Two adjacent edges of P ′ are mapped to the two sides of the slit, and some
boundary vertices of P ′ become interior vertices of P , thus the topology of the triangulation changes. See Figure
4. In general, up to |κ(Φ(P ))| slits are used, introducing vertices of either degree five (κ > 0) or degree seven
(κ < 0).

Figure 4: The edges adjacent to the 300◦-vertex of P ′ are mapped to the two sides of the slit inside P . An interior
vertex v of degree 5 is created. The slit is slightly curved to make the triangles on either side match up, although
this is not easily visible (the actual slit lies slightly above the chord between its endpoints).

This scheme encounters a number of difficulties, that we will overcome using ideas from complex function
theory. We list a few here, giving details later.

• Conformal welding: When we map boundary edges of P ′ to a slit in P , the images of certain boundary
triangles in P ′ must match up across the slit in P , so that the image is a triangulation and not a dissection. This
is only possible if the shape of the slit is carefully chosen so that arclength on each boundary segment maps to
the same measure on the slit, i.e., we need f(z) = f(w) ⇒ |f ′(z)| = |f ′(w)|. This is a special case of a conformal
welding problem, e.g., [6], [20], [30], and in our case it can be solved explicitly using power maps.

• Riemann surfaces: In cases where we introduce an interior vertex of degree seven, P ′ will need to have
a boundary vertex of degree seven, i.e., P ′ has interior angle 420◦ at some vertex. Thus we necessarily consider
“polygons” P ′ that are actually Riemann surfaces and not planar regions. See Figure 5.

Figure 5: We triangulate an equal-angle heptagon using a Riemann surface with a 420◦-vertex to insert a degree
7 vertex into the triangulation. The self-overlapping part of the surface is shaded.

• Distortion estimates: A conformal map f preserves interior angles infinitesimally, but to control our
triangulation angles we shall need angle distortion estimates at positive scales, with bounds depending on the size
of the triangle, its distance to the nearest vertex, and the ratio of the corresponding angles in P and P ′ at that
vertex. Here we make use of the classical distortion theorems for conformal maps.
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•Quasiconformal mappings: Given two triangulations of a region arising from different, but close, conformal
maps, we merge the triangulations by using a partition of unity to interpolate from one conformal map to the
other. The result is a quasiconformal map, and we shall use standard estimates on the angle distortion of such
maps to control the angles of the interpolated triangulations. We also use such estimates to prove that any
60◦-polygon has a nearly equilateral triangulation.

In 1992 Edelsbrunner, Tan and Waupotitsch [15] gave a O(N2 logN) algorithm for minimizing the maximum
angle of a polygonal triangulation without using Steiner points (their result has not been improved, so far as
I know). Thus Corollary 1.1 says that it is actually faster to compute the optimal angle bound when allowing
Steiner points. However a triangulation achieving the optimal bound might not be computable in polynomial time
(see the remarks below), and this paper does not address the question of finding efficient triangulations attaining
the optimal bounds. See the last section of [8] for some ideas on how this might be done.

Finding triangulations with good angle bounds has a long history and many applications, e.g, see [7] or [38]
for lists of algorithms, such as the finite element method, that work better with well formed meshes. Corollary
1.2 gives an explicit bound for the acute triangulation theorem of Burago and Zalgaller [9] mentioned earlier.
Their result was an element of their polyhedral version of the Nash embedding theorem, but it long remained
unknown in the computational geometry literature. The first reference to it that I am aware of is [21] in 2004.
In 1988 Baker, Grosse and Rafferty [1] independently proved that every polygon has a non-obtuse triangulation
(all angles ≤ 90◦). This led to a large literature on algorithms for finding triangulations in various settings with
guaranteed angle bounds, e.g., [3], [4], [5], [7], [14], [17], [22], [25], [27], [31]. For a recent survey, see Chapter 29
of [19]. In 2002 Maehara [26], showed every non-obtuse triangulation can be converted to an acute one (with a
comparable number of triangles), giving an alternate proof of the Burago-Zalgaller result (see also Yuan’s paper
[37]). A simpler approach was given by Saraf in [32].

Despite much effort devoted to finding triangulations with good geometry and optimal complexity, finding
triangulations with optimal geometry has attracted less attention, at least when Steiner points are allowed. One
case that has been considered is triangulating the square with optimal angles, a problem discussed by Gerver in
[18] and by Eppstein in [16]. One possible reason that Theorem 1.1 has been overlooked is the close connection to
conformal mappings; at least it is difficult to see how our proof could have been discovered using purely discrete
geometric ideas.

Another reason may be the traditional focus on complexity. If the size of the triangulation is bounded by a
function of N = |VP |, independent of the geometry, then 90◦ is the best possible upper angle bound. For example,
if a 1×R rectangle with R≫ 1 is triangulated by O(1) triangles, then there must be a small angle θ = O(1/R),
and hence some angle ≥ 90◦ − θ/2. Thus the complexity of an angle-optimal triangulation of an N -gon is not
polynomial in N . Even so, the sharp angle bounds proven here are fast to compute and provide a benchmark
against which other triangulation methods can be compared.

Section 2 gives an overview of the proof Theorem 1.1, and later sections provide further details, assuming
various estimates related to conformal and quasiconformal mappings that are proven in [8]. That paper also
contains the proofs of the corollaries stated in this section and a variety of other consequences of Theorems 1.1
and 1.2. I thank Joe Mitchell and Herbert Edelsbrunner for their encouraging and helpful comments on an earlier
version of this paper. I also thank the anonymous referees who read the paper for SODA 2022 and provided
numerous suggestions. Several figures are drawn using Toby Driscoll’s SC-Toolbox package for MATLAB [12], an
improved version of an earlier algorithm of Nick Trefethen [36] for computing Schwarz-Christoffel maps. I thank
Toby for his assistance with the toolbox.

2 Overview of the proof

The basic idea is quite simple: we introduce a class of polygons that have “nearly equilateral” triangulations (all
angles close to 60◦) and use conformal maps to transfer these triangulations to general polygons.

We will say that a simple polygon is an equilateral grid-polygon if its edges are contained in a grid of the
plane consisting of congruent equilateral triangles, and its vertices are vertices of the grid. These are exactly the
simple polygons that have a triangulation by equilateral triangles. See Figure 6.

It will be convenient to enlarge this class to the class of 60◦-polygons, whose interior angles are all multiples of
60◦. We will say that a polygon P has nearly equilateral triangulations if for any ǫ > 0 it has a triangulation
with all angles in [60◦ − ǫ, 60◦ + ǫ] and that each vertex of P has a neighborhood in which the triangulation
elements are actually equilateral (this is needed to attain the desired angle bounds, instead of just approximating
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Figure 6: On the left is a equilateral-grid polygon, and on the right is a 60◦-polygon.

them). We will prove that every 60◦-polygon has nearly equilateral triangulations; see Lemma 3.4. This lemma
includes 60◦-surfaces, i.e., simply connected Riemann surfaces R obtained by identifying 60◦-polygons along
matching edges. The boundary of R projects into the plane, possibly with self-intersections. Such surfaces can
arise as Schwarz-Christoffel images of the disk (see Section 6) when all the angles are multiples of 60◦, but the
map is not globally 1-to-1.

Suppose f : Ω′ → Ω is a conformal mapping between the interiors of two polygons P ′ and P , and that f
induces a bijection between vertices of P ′ and vertices of P . (Below, we will often use P to refer to both the
boundary curve and the interior domain, instead of using Ω for the latter; the meaning should always be clear
from context.) Then f will only slightly perturb the angles of sufficiently small triangles in Ω′, unless they are
near vertices of P ′ (see Corollary 3.1). If v′ is a vertex of P ′ with angle ψ that maps to a vertex v of P with angle
θ, then any small triangle close enough to v′ will have its interior angles distorted by at most θ/ψ (Lemma 3.6).

The triangulations we construct will have all their angles between 36◦ and 72◦, except for some triangles near
vertices of P that have angle less than 36◦. Larger angles of P will be subdivided by the triangulation to give new
angles that are all in the interval [36◦, 72◦], and these sub-angles should each map to 60◦ under the conformal
map from P to P ′. In order to have this work out correctly, we need an angle θ in P to correspond to an angle
ψ = L(v) · 60◦ in P ′ that satisfies

3

5
ψ ≤ θ ≤

6

5
ψ.(2.2)

The restrictions imposed by (2.2) are summarized by Table 1 and Figure 7. For example, if P has a vertex v
with interior angle θ = 135◦ the corresponding vertex v′ in the 60◦-polygon P ′ must have angle either 120◦ or
180◦. Any other choice means that the triangles containing v′ in the nearly equilateral triangulation of P ′ map
to triangles with angles either less than 36◦ or larger than 72◦.

θ range allowable ψ
0–72 60

72–108 120
108–144 120, 180
144–180 180, 240
180–216 180,240, 300
216–288 240, 300, 360
288–360 300, 360

Table 1: Given an angle θ of P , this table gives the possible corresponding ψ’s in P ′ needed to attain Φ(P ) ≤ 72◦.
Note that angles ≤ 36◦ in P will always give angles ≥ 72◦ in the triangulation.

Figure 7 plots
⋃

k k · I(φ) vertically above each value of φ. The result is a union of shaded triangles. P has a
φ-admissible labeling if and only if all its angles lie in the intersection of the shaded region and the vertical line
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Figure 7: P has a φ-admissible labeling iff all its angles lie in the union of shaded triangles, on the vertical line
through φ. The dashed vertical lines indicate where the transitions occur in Theorem 1.1, i.e., φ = 5

7 · 90◦, and
φ = 72◦.

through φ. For 72◦ ≤ φ ≤ 90◦, ∪kk · I(φ) = [180◦ − 2φ, φ] so this condition only depends on the size of θmin, and
is equivalent to having a φ-triangulation. For φ < 72◦, having a φ-triangulation requires other conditions as well,
involving which triangles the angles of P lie in.

Unfortunately, there are some polygons P whose vertices cannot be put into 1-1 correspondence with the
vertices of a 60◦-polygon so that they satisfy the restrictions in Table 1 and Figure 7. In general, the interior angles
{θ1, . . . , θN} of an N -gon must satisfy

∑
k θk = (N − 2)180◦. When we assign image angle values {ψ1, . . . , ψN}

using (2.2) or Table 1, we need to have
∑

k ψk = (N − 2)180◦, but this is sometimes impossible. For example, if
P is a square, then each of its four 90◦ angles would have to be assigned angle 120◦ in P ′, giving an angle sum
480◦ > 360◦. We can “fix” the angle discrepancy by adding extra vertices to the edges of P .

First suppose
∑

k ψk <
∑

k θk. We add a new vertex v of angle 180◦ in an edge of P , and assign the
corresponding vertex v′ in P ′ the angle 240◦ ≤ 6

5 · 180◦. See Figure 8. Doing this increases the angle sum
∑
θk

by 180◦ but increases the angle sum
∑
ψk by 240◦, decreasing the gap between them by 60◦. Doing this several

times we can clearly make the two sums match, as desired. Four equilateral triangles in P ′ touch v′, and they are
mapped to four triangles in P touching v. they have angle 45◦ at v and the opposite angles are approximately
67.5◦ (some distortion may occur). Hence using this method can only give φ-triangulations with φ ≥ 67.5◦. This
is adequate to prove Case 1 of Theorem 1.1 but a more elaborate construction is needed to prove Cases 2 and 3.

P

P

180

240

Figure 8: Our first trick for increasing the ψ-sum relative to the θ-sum is to pair a 180◦-vertex in P with a
240◦-vertex in P ′. The conformal map locally looks like z3/4, and maps a 60◦ sub-angle to 45◦. A triangle
containing a 45◦ angle also contains an angle ≥ 67.5.

In Case 2 of Theorem 1.1 we want to get the angle 67.5◦ down to 5
7 · 90

◦ ≈ 64.2857. We will do this by using
a triangulation of a slit half-plane based on transferring an equilateral triangulation from a polygonal Riemann
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surface that has a 420◦ angle in its boundary. The idea is shown in Figure 9; the details will be given in Section
5. The Riemann surface R is built by attaching two planar domains as shown on the left side of Figure 16. R
has a 1-1 projection onto a sector of angle 240◦, except for the darker triangle where it is 2-1. Traversing the
boundary, we encounter angles 60◦, 420◦ and 120◦. The 420◦-vertex belongs to seven triangles in R and will map
to a degree seven interior vertex in the final triangulation.

360

P

60 120

420

120

60

P

Figure 9: We cut a slit in the upper half-plane at angle 60◦. This models a neighborhood of a 180◦-vertex on the
boundary of P . The angles we observe tracing the outline of the slit are: 60◦, 360◦ and 120◦. The triangulation
near this slit will correspond to an equilateral triangulation of a Riemann surface R with angles 60◦, 420◦ and
120◦, pictured at right. R is a 1-1 cover of a 240◦-sector, except for the darker triangle where it is 2-1.

The two segments adjacent to the 420◦-vertex are mapped to a slit in P where the angles are 60◦, 180◦ and
120◦. The worst distortion comes from mapping the 420◦-vertex in P ′ to the 360◦-vertex in P (the tip of a slit).
Locally the map looks like z6/7, that maps each 60◦ sub-angle to 6

7 · 60◦ = 4
7 · 90◦ ≈ 51.4286. A triangle with

this angle must also contain an angle ≥ 5
7 · 90◦ ≈ 64.2857, which is where this angle in Theorem 1.1 comes from.

Note that the two finite boundary segments of R are both mapped to the slit in P , so triangulation edges along
these two sides of R must map to matching edges along the slit. This requires that the conformal map sends the
length measures on the two segments to the same measure on the slit (but not necessarily length measure). See
Figure 17.

If
∑

k ψk >
∑

k θk we use a slightly easier variant of the 420◦-trick that we call the “120◦-trick”. This
involves mapping a slit half-plane to a 120◦-sector with a triangle removed, as shown in Figure 10. Traversing
the boundary of the slit half-plane we encounter angles 60◦, 360◦, and 120◦, but traversing the boundary of the
modified 120◦-sector we encounter 60◦, 300◦ and 120◦, so the ψ-sum decreases by 60◦ relative to the θ-sum. As
in the 420◦-trick, the shape of the slit can be chosen so that points on the two identified segments are paired
according to their distance from the 300◦-vertex. Then an equilateral triangulation of the modified sector maps
to a triangulation of the half-plane. Note also that exactly one degree five vertex is created in the triangulation,
located at the tip of the slit. See also Figure 14.

3 Conformal and quasiconformal maps

In this section we review the definition and basic properties of conformal and quasiconformal maps and state
a number of specific estimates that are used to create and merge various triangulations. Detailed proofs of all
lemmas and corollaries stated here are given in [8].

We let D(z, r) = {w : |z − w| < r}, D = D(0, 1) and T = ∂D = {z : |z| = 1}. In this paper, a conformal

map always refers to a 1-to-1 holomorphic mapping. Thus it is angle and orientation preserving. By the Riemann
mapping theorem, there is a conformal map from D onto any proper, simply connected subdomain of the plane,
in particular, the interior of any bounded polygon. The conformal map is unique if we specify the image of 0 and
of one boundary point. For a conformal map onto the region Ω bounded by a N -gon P , the preimages of the N
vertices are called the prevertices, and for an N -tuple of distinct points on T.

The Riemann mapping theorem also holds for any simply connected Riemann surface that is not conformally
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Figure 10: Take a 120◦-sector and cut out an equilateral triangle (left). Conformally map this region to a
slit half-plane (right). The two edges adjacent to the 300◦-vertex are mapped to opposite sides of the (slightly)
curved slit, and points on these edges equidistant from this vertex are identified. This implies that an equilateral
triangulation on the left pushes forward to a triangulation on the right.

equivalent to the 2-sphere or the plane (this is usually called the uniformization theorem). All the Riemann
surfaces that we will consider in this paper are simply connected and a have non-constant, holomorphic map into
a bounded region of the plane; this implies they are conformally equivalent to the disk.

By definition, a conformal map f on a domain Ω preserves angles infinitesimally. When we map a triangulation
by a conformal map, we will not just take the image f(T ) of each triangle T ; this would have curved sides. If
T = ∆ABC ⊂ Ω has vertices A,B,C, we define the pushed forward triangle f∗(T ) = ∆f(A)f(B)f(C), i.e.,
the triangle with vertices f(A), f(B), f(C). See Figure 11.

Figure 11: An equilateral triangulation (left), the actual conformal images of the triangles (center), and the
pushed forward triangles (right) where vertex images are connected by segments.

Lemma 3.1. If f is a conformal map on a disk D(z, r), δ > 0 is sufficiently small, and T = ∆ABC is triangle
inside D(z, δr), then the triangle f∗T = ∆f(A)f(B)f(C) has angles that are within O(δ) of the corresponding
angles of T .

This result allows us to quantify the fact that, except near the corners, a conformal map between polygons
alters the angles of small triangles very little under the push forward operation.

Corollary 3.1. Suppose f is conformal map between the interiors of two polygons P and P ′ that maps vertices
to vertices. Suppose VP is the vertex set of P , Ω is the interior of P , and that {Dv}v∈VP

are disjoint disks around
each vertex v. Define Ω0 = Ω \ ∪v∈VP

Dv and suppose T ⊂ Ω0 is a triangle. Then for every ǫ > 0 there is a δ > 0
so that f changes the angles of T by less than ǫ if diam(T ) < δ.

An infinite sector is a region congruent to S(θ) = {reφ : r > 0,−θ/2 < φ < θ/2}. The boundary consists
of two infinite rays meeting at its vertex and the angle of the sector is the interior angle θ made by these rays.
A finite sector is a region congruent to S(θ) ∩ D(0, t) for some t > 0 and θ ∈ (0, 360◦]. For r > 1, let
A(r) = {z : 1/r < |z| < r}. An annular sector is a region congruent to S(θ, r) = S(θ) ∩A(r).
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Lemma 3.2. Suppose Ω1,Ω2 are simply connected domains and that both Ω1∩A(3) and Ω2∩A(3) have connected
components equal to S(θ, 3). Suppose fk is conformal on Ωk, k = 1, 2 and supS(θ,3) |f1 − f2| < ǫ. Suppose that
f1, f2 both map each radial segment of ∂S(θ, 3) into the same line. Let η : [0,∞) → [0, 1] be smooth with η(r) = 0
if r < 1/2 and η(r) = 1 if r > 2. Then

g(z) = f1(z)(1− η(|z|)) + f2(z)η(|z|)

is quasiconformal on Ω1 ∪ Ω2 with complex dilatation bounded by O(ǫ).

A similar argument also proves the following slightly simpler variation, where we assume the maps are defined
on a common disk, instead of a sector. This version will be used to merge triangulations near tips of slits in the
120◦-trick (see Section 4) and the 420◦-trick (see Section 5) .

Lemma 3.3. Suppose Ω1,Ω2 are simply connected domains and D(0, r) ⊂ Ω1 ∩ Ω2 for some r > 4. Suppose
f : Ω1 → Ω2 is conformal and f(0) = 0, f ′(0) = 1. Let η : [0,∞) → [0, 1] be smooth with η(r) = 0 if r ≤ 1/2 and
= 1 if r ≥ 2. Then

g(z) = z(1− η(|z|)) + f(z)η(|z|)

is quasiconformal on Ω1 ∪ Ω2 with complex dilatation bounded by O(1/r).

As noted in the introduction, not every 60◦-polygon P has an equilateral triangulation, but in this section we
will prove that they all have nearly equilateral triangulations. Recall that this means that for any ǫ > 0, there
is a triangulation of P with all angles within ǫ of 60◦ and that all angles are equal to 60◦ in some neighborhood
of each vertex (the neighborhood may depend on the triangulation). Also recall that we need this result for both
planar polygonal regions and Riemann surfaces with polygonal boundaries.

Lemma 3.4. Every 60◦-surface P has nearly equilateral triangulations.

Roughly speaking, the proof is to explicitly construct a 60◦-surface R′ that has an equilateral triangulation and
that closely approximates R. Then show that the conformal map R′ → D can be composed with a quasiconformal
map D → D with small dilatation, so that the vertices of R′ map to the conformal prevertices of R on T. From
this we get a quasiconformal map R′ → R that sends vertices to vertices and has small dilatation. Hence the
equilateral triangulation of R′ is pushed forward to a nearly equilateral triangulation of R (some extra work is
needed to get true equilateral triangles near each vertex of R). For details see [8].

One step of the above lemma that we will need later is the following.

Lemma 3.5. Suppose 0 < θ ≤ 360◦ and that Ω1,Ω2 are simply connected domains such that Ω1 ∩ D(0, 1) =
Ω2 ∩D(0, 1) = S(θ) ∩D(0, 1) and f is a conformal map Ω1 → Ω2 so that f(0) = 0. Then f(z) = cz + O(z2) on
D(0, 1/2) for some c 6= 0.

Our last application of conformal mappings is to find good triangulations of infinite sectors; these will be
used to triangulate a polygon near each of its vertices. As before, S(θ) denotes the infinite sector of angle θ with
positive real half-line as its axis of symmetry. Note that S(60◦) comes with a natural equilateral triangulation G
as shown in Figure 12. This triangulation can obviously be extended to a triangulation of the right half-plane,
and our triangulations of general sectors are constructed by taking images of equilateral triangulations of special
sectors (multiplies of 60◦) under power maps z → zα. See Figure 13 for two examples.

Lemma 3.6. Consider the grid G of unit equilateral triangles in S(60◦). Let 0 < α ≤ 2. Suppose T = ∆ABC ∈ G
and f∗T = ∆f(A)f(B)f(C), where f is a branch of zα defined on T . Then the interior angles of f∗T differ from
the corresponding angles of T by at most |α− 1| · θ where θ is the angle subtended by T from the origin.

Corollary 3.2. Suppose 0 < φ < 90◦. The sector S(φ) has a triangulation with all angles in [180◦ − 2φ, φ] if
φ ≥ 60◦, and in [φ, 90◦ − φ/2] if φ < 60◦.

The sector triangulations described above are used in a neighborhood of each vertex of P . Outside these
neighborhoods, the conformal image of a nearly equilateral triangulation is used. Quasiconformal interpolation
is applied to merge the various triangulations in an annulus around each vertex. The precise statement of this
procedure is given by the following lemma.
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Figure 12: The sector S(60◦) and its equilateral triangulation G.

Figure 13: Image of the equilateral grid in the upper halfplane under the maps z3/5 and z6/5. These are the
extreme values that keep images of 60◦ angles between 36◦ and 72◦.

Lemma 3.7. Suppose f : P ′ → P is a conformal map between polygons that maps vertices to vertices. Suppose
f(v′) = v where v′ is a vertex of P ′ and v is a vertex of P , with angles ψ = k · 60◦ and θ respectively. Suppose
T is a nearly equilateral triangulation of P ′ and f∗T the image triangulation. If T is fine enough, then there is
a neighborhood U of v and a triangulation S of P that equals f∗T outside U and every triangle of S touching U
has all angles bounded by max(θ/k, 90◦ − θ/2k).

4 The 120◦-trick

In this section we provide the details of the “120◦-trick” for triangulating the upper half-plane in a way that uses
maximum angle 72◦, and near infinity looks like the push forward under z3/2 of the standard equilateral mesh of
a 120◦-sector. This involves cutting a slit in P , as discussed in Sections 1 and 2.

Consider the region Ω shown on the left in Figure 10. This is a 120◦-sector with an equilateral triangle at the
origin removed. We translate the picture so the 300◦-vertex is at the orgin. If we then apply a branch of z6/5,
the 300◦ angle becomes 360◦, and the two finite segments in ∂Ω adjacent to it become identified with a radial slit
in the image. The two rays in ∂Ω map to the boundary curve of a simply connected region Ω′. See lower left in
Figure 14. By the Riemann mapping theorem, Ω′ can be mapped to the upper half-plane, and the slit maps to a
curved arc, meeting the real line at angle 60◦ (the slit looks quite straight since the tangents at the two endpoints
differ by only ≈ 2.75◦).

Since the power map identifies points on the two segments adjacent to w that are equidistant from w, any
equilateral triangulation of Ω will push forward to triangulation of the upper half-plane. If the triangulation is
fine enough, then all the pushed forward triangles will be nearly equilateral, except near the corners and tip of
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Figure 14: The cut 120-sector (top) is mapped to a simply connected region (lower left) by a branch of z6/5. This
is then mapped to the upper half-plane by a conformal map. Because the power map identifies points according
to distance to zero (the white dot), the push forward of the triangulation is still a triangulation.

the slit. However, near the point v where the slit joins the real line, P looks like the union of a small 60◦-sector
and a 120◦-sector and the map to P ′ sends each of these to subdomains of P ′ that contain and are contained
in small sectors of the same angles. Thus by Lemma 3.5, the conformal maps restricted to each finite sector is
approximately linear and the image of the equilateral triangulation of P ′ is close to equilateral in P near v. This
leaves only the tip of slit. In a small neighborhood of the tip, angles are bounded above by 72◦ + ǫ if the mesh
is fine enough, but might exceed 72◦. However, we can replace the mesh in a neighborhood of the tip by the
standard mesh of a 360◦-sector using Lemma 3.3. This gives the 72◦ bound. The construction is summarized in
the the following lemma.

Lemma 4.1. Suppose f : P ′ → P is a conformal map between polygons that maps vertices to vertices. Suppose
f(v′) = v where v′ is a vertex of P ′ and v is a vertex of P , with angles 120◦ and 180◦ respectively. Suppose T
is a nearly equilateral triangulation of P ′ and f∗T the image triangulation. If T is fine enough, then there is a
neighborhood U of v and a triangulation S of P that equals f∗T outside U and every triangle of S touching U
has all angles ≤ 72◦.

5 The 420◦-trick

There are two things we can do to increase the ψ-sum for P ′ by 60◦ with respect the θ-sum for P . The first is to
introduce a 180◦-vertex v in an edge of P and add a corresponding 240◦-vertex v′ to P ′. This clearly increases
the ψ-sum by an extra 60◦ relative to the θ-sum. The angle at v′ is subdivided into four equilateral triangles by
the nearly equilateral triangulation, and each of these are mapped to four angles of size 45◦ at v. The opposite
angles in the image triangles are 67.5◦ < 72◦, so this construction will be enough for proving Case 1 of Theorem
1.1.

However, in order to handle Case 2 of Theorem 1.1 we need another “trick” that can add 60◦ to the ψ-sum
relative to the θ-sum, but introduces triangulation angles no larger than 5

7 · 90◦ ≈ 64.2857◦. This is precisely the
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Figure 15: The left shows the equilateral triangulation of a 120◦-sector pushed forward to the half-plane by
z3/2. The right shows the triangulation coming from the “120◦-trick”. These two meshes can be merged using
quasiconformal interpolation as described in the text.

angle bound we get if a 420◦-vertex v′ ∈ P ′ is mapped to a 360◦-vertex v ∈ P . The 360◦ vertex v can occur as
the end vertex of a slit in P , but how do we get a 420◦-vertex in P ′? We do this by considering a non-planar
Riemann surface.

120

 420

60

60

300

120

120

Figure 16: Here a 180◦ vertex in P corresponds to a 420◦ in P ′. This is obtained by making P ′ a Riemann
surface instead of a planar domain. The surface can be constructed from two planar domains glued along the
dashed edges of each as illustrated on the left. The darker triangle indicates where the surface has two sheets
over the plane.

The idea is illustrated in Figure 16. Consider the two planar regions shown on the left side of the figure and
define a Riemann surface by identifying them along the dashed ray. This creates a simply connected Riemann
surface R with single boundary curve that is the union of two infinite rays, two finite segments and has three
corners of 60◦, 420◦ and 120◦.

We can conformally map R to a slit upper half-plane in two steps as illustrated in Figure 17 so that the
two segments of ∂R that are adjacent to the 420◦ angle are identified with the slit, and length measure on
these segments is pushed forward to the same measure on the slit. Translate the 420◦-vertex to the origin and
apply a branch of z6/7 defined on R. This maps R to a simply connected planar domain Ω with a straight slit;
the two segments of ∂R are identified with this slit in the correct way, and the two infinite rays are mapped to
disjoint, unbounded arcs on ∂Ω. The domain Ω can then be conformally mapped to a half-plane. Thus equilateral
triangulations of R will be mapped to triangulations of the upper half-plane.
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Figure 17: The Riemann surface R can be conformally mapped to a slit domain Ω by a branch of z6/7. This
map is followed by a conformal map to the upper half-plane that bends the the straight slit to an analytic arc
(but it looks quite straight; the tangent directions only change by about 1◦ along the arc).

6 Sufficiency in Theorem 1.1

Necessity of the conditions in Theorem 1.1 was already sketched before the statement of the theorem, and more
detailed arguments for this can be found in Gerver’s paper [18] and in [8]. Here we prove the new direction of the
theorem: sufficiency.

Proof. We want to show that any polygon P (possibly after adding extra vertices) can be conformally mapped
to a 60◦-polygon P ′, with the restrictions on the angles given by Table 1. We will use the 120◦-trick to “fix” the
pushed forward triangulation in a neighborhood of a few boundary points, but the 420◦-trick is not needed until
the proof of Cases 2 and 3 later.

The Schwarz-Christoffel formula gives a conformal map f of the disk onto a polygonal region P in terms
of two types of data. First are the angles of P : suppose VP = {vj}

N
1 are the vertices of P and the interior

angle at vj is αj · 180
◦. Second, suppose f maps zj ∈ T to vj ∈ P ; these points are called the prevertices or

Schwarz-Christoffel parameters of f . Then the conformal map f is given by

f(z) = A+ C

∫ z N∏

j=1

(1−
w

zj
)αj−1dw,(6.3)

for some appropriate choice of constants A,C. See e.g., [13], [29], [35]. The formula was discovered independently
by Christoffel in 1867 [10] and Schwarz in 1869 [34], [33]. For other references and a brief history, see Section 1.2
of [13]. Given a polygon P , the angles are known, but the prevertices must be solved for.

Given N distinct points z = {z1, . . . , zN} on the unit circle and N real values {α1, . . . , αN} summing to N−2,
Formula (6.3) defines a locally 1-1 holomorphic function on the disk that maps each component of T \ z to a line
segment, with the segments meeting at f(zk) making interior angle αk · 180◦. The map given by (6.3) is always
locally 1-1 on D, but need not be globally 1-1 in general. In this case, the image is a Riemann surface with an
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obvious projection onto the plane. For the proof of Case 1 of Theorem 1.1 we can arrange for the image to be a
planar 60◦-polygon. In the proof of Cases 2 and 3, given at the end of this section, the image is allowed to be a
non-planar 60◦-surface (this occurs when we apply the 420◦ trick).

Given an N -gon P , we take some conformal map f of its interior to the unit disk, D. The N vertices of
P map to N distinct points z = {z1, . . . , zN} on the unit circle T. We then want to choose N real values
ψk ∈ Z = {60◦, 120◦, 180◦, 240◦, 300◦} so that

∑
k ψk = 180(N − 2). If this is possible, we then set αk = ψk/180

and apply the Schwarz-Christoffel formula to get a map g : D → P ′. Then g ◦ f : P → P ′ is the desired map.
However, as noted in Sections 1 and 2, such a choice of angles ψk may not be possible without adding extra
vertices to P .

First choose six interior points of some edge of P . This creates an M -gon with M = N + 6. These are
180◦-vertices in P and are assigned to have angle ψv = 120◦ in P ′. Assign angle 180◦ to every other vertex of P ′,
so the ψ-angle sum is 6 · 120◦ +180◦N = (M − 2)180◦. Applying Schwarz-Christoffel gives a a 60◦-hexagon, as in
Figure 18.

Figure 18: In the proof of Case 1 of Theorem 1.1 we can assume P ′ is planar. The first step is to choose six
“artificial” vertices on one edge of P and make these correspond to six 120◦-vertices in P ′.

Next we modify the angle assignments to get a P ′ that approximates this hexagon. Let L : VP → N be a
φ-admissible labeling of the vertices of P . For v ∈ VP , assign angle 60◦ · L(v) to the corresponding vertex v′ of
P ′. In order to adjust the angle sums, for each vertex v of P we define either 0, 1 or 2 “associated vertices”. The
new vertices will be in the edge of P that begins with v (P has the counterclockwise orientation with the domain
interior on the left) and may be taken as close to v as we wish. The vertices associated to v on P have angle 180◦

and the corresponding vertices associated to v′ in P ′ have angle either 120◦ or 240◦. These angles are assigned so
that P ′ leaves the last associated vertex in the same direction as it entered v′. This implies that the part of P ′

near v′ approximates a straight line. The rules for making the assignments are simple and illustrated in Figure
19. Suppose v is an original vertex of P with interior angle θv:

i. if 0 < θ ≤ 72◦, set ψv = 60◦ and add two vertices each with angle 240◦,

ii. if 72◦ < θ ≤ 144◦, set ψv = 120◦ and add one vertex with angle 240◦,

iii. if 144◦ < θ ≤ 216◦, set ψv = 180◦ and add no associated vertices,

iv. if 216◦ < θ ≤ 288◦, set ψv = 240◦ and add one vertex with angle 120◦,

v. if 288◦ < θ ≤ 360◦, set ψv = 300◦ and add two vertices of angle 120◦.

If the vertices associated to v are close enough to v, then the image arc is close to a line. See Figure
20. In particular, P ′ is not self-intersecting and so is a 60◦-polygon. By Lemma 3.4, P ′ has nearly equilateral
triangulations. In the remainder of the proof we will take this triangulation as fine as is needed (but only finitely
many conditions are involved, so we finish with a positive grid size).

Each original vertex with angle θv ≥ 36◦ was assigned an image angle ψv in the allowable range from Table
1. Thus transferring a nearly equilateral triangulation of P ′ gives a triangulation of P with all angles between
36◦ and 72◦ except possibly in small neighborhoods of these vertices, where the angle bounds are with all angles
between 36◦ − ǫ and 72◦ + ǫ, and ǫ can be made as small as we wish be taking the triangulation fine enough. In
a neighborhood of each such vertex, we may use Lemma 3.7 to replace the pushed forward triangulation with a
sector triangulation for which the bounds 36◦, 72◦ hold.

For each original vertex with interior angle θv < 36◦ the same argument applies, except that now we get the
bounds in the interval I(θv) = [θv, 90

◦ − θv/2]. Again, we may use interpolation to locally replace the pulled

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited



240

120

180

120

240

300

120

120

60

240

240

Figure 19: The five cases for assigning image angles and associated vertices. In each case the black indicates the
image of the original vertex and the white dots the new associated vertices. These arcs illustrate small subarcs
of the 60◦-polygon P ′. The associated vertices map to 180◦ vertices that we add to the edges of P .

back triangulation (which might only approach the desired bounds as the triangulation gets finer), with a sector
triangulation satisfying the desired bounds.

Next consider the associated vertices with angles > 120◦; Cases (i) and (ii) above. In Case (i) each 240◦-vertex
is hit by 4 equilateral triangles and so each 60◦ sub-angle is mapped to an angle of size 180◦/4 = 45◦. In this case,
the interpolation with a sector triangulation isn’t needed; with small enough distortion, the angles are already
inside [36◦, 72◦]. Case (ii) is the same, except there is only one associated vertex.

Finally we consider Cases (iv) and (v). Here we only use image angles of size 120◦. Such an angle is divided
into two 60◦ angles that are mapped to 90◦ by the conformal map: too large. We use Lemma 4.1 to interpolate
between the conformal image triangulation and the triangulation of the half-plane coming from the 120◦-trick.
This gives a triangulation of with angles in I(36◦) = [36◦, 72◦] in a neighborhood of each associated vertex. This
completes the proof of Case 1 of Theorem 1.1.

We turn to the other two cases. We just have to modify the construction in the proof of Case 1 to avoid using
the 120◦-trick in Case 2 (this forces an angle ≥ 72◦), and to avoid both the 120◦-trick and the 420◦-trick in Case
3 (the latter forces angles ≥ 5

7 · 90◦).
Suppose L is a φ-admissible labeling of VP so that κ(φ) = κ(L) (i.e., choose L to minimize |κ(L)| among

admissible labelings). As before, let θv denote the angle of P at vertex v, and for each vertex v in P , suppose
ψv = L(v) · 60◦ is the tentative corresponding angle of v′ in P ′. As we have noted before,

∑

v

θv = (|VP | − 2)180◦ = 60◦(3|VP | − 6)

= 60◦

(
3|VP | − 6−

∑

v

L(v) +
∑

v

L(v)

)
= 60◦ · κ(L) +

∑

v

ψv.

Thus in Case 2 (κ(L) ≤ 0) we only need to introduce 180◦-vertices on P that correspond to 240◦-vertices in P ′. If
φ ≥ 67.5◦, we can do this by replacing the pushed forward triangulation from P ′ by the 240◦-sector triangulation.
If 5

7 · 90
◦ ≤ φ < 67.5◦ then we replace it with the triangulation of the half-plane obtained by the 420◦-trick. This

proves sufficiency in Case 2.
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Figure 20: The 60◦-polygon P ′. The six gray points were added at the beginning, the black points are the images
of the original vertices and the white points are the associated vertices.

Finally, if κ(L) = 0, then no extra vertices or “tricks” are needed. We simply use a fine enough triangulation
pushed forward by the conformal map from P ′ to P and replace it in a neighborhood of each vertex by the
appropriate sector mesh. This completes the proof in Case 3.
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