
CONFORMAL REMOVABILITY IS HARD

CHRISTOPHER J. BISHOP

Abstract. A planar compact set E is called conformally removable if every home-
omorphism of the plane to itself that is conformal off E is conformal everywhere,
and hence linear. Characterizing such sets is notoriously difficult and in this paper,
we partially explain this by showing that the collection of conformally removable
subsets of S = [0, 1]2 is not a Borel subset of the space of compact subsets of S with
its Hausdorff metric. We give some similar results for other classes of removable
sets and pose a number of open problems related to removability and conformal
welding, using the language of descriptive set theory.

1. Introduction

Several well known problems in classical complex analysis have remained open for

nearly a century and seem intractable. Two of these are to characterize the compact

planar sets that are removable for conformal homeomorphisms, and to characterize

conformal weldings homeomorphisms among all circle homeomorphisms. The purpose

of this note is to partially explain the difficulty of these problems by proving that

the collection of conformally removable sets is not a Borel subset of the space of all

planar compact sets with the Hausdorff metric. Much of the paper is a survey of

the relevant ideas from complex analysis and descriptive set theory, and a recasting

of known results into new forms. However, we also present a new result regarding a

special class of removable Jordan curves, and we discuss several new open problems

at the interface of classical complex analysis and descriptive set theory. We start by

recalling some relevant definitions.

A planar compact set E is called removable for a property P if every function with

property P on Ω = Ec = C\E is the restriction of a function on C with this property.

For example, if P is the property of being a bounded holomorphic function, then E is
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removable iff every bounded holomorphic function on its complement extends to be

bounded and holomorphic on the whole plane (and hence is constant by Liouville’s

theorem). A standard result in many introductory complex variable classes is the

Riemann removable singularity theorem, that says single points are removable in this

sense. While there are a wide variety of properties that could be considered, most

attention has been devoted to the following cases:

• H∞-removable: P = bounded and holomorphic,

• A-removable: P = H∞ and extends continuously to E,

• S-removable: P = holomorphic and 1-to-1 (also known as conformal or schlicht),

• CH-removable: P = conformal and extends to a homeomorphism of C.

For any excellent survey of what is known about each of these classes, see Malik

Younsi’s 2015 paper [52].

The basic problem is to find “geometric” characterizations of removable sets. For

example, Xavier Tolsa has given a characterization of H∞-removable sets in terms

of the types of positive measures supported on the set (see Section 2). Alhfors and

Beurling [1] gave a characterization of S-removable sets as “NED sets” (negligible

sets for extremal distance). On the other hand, although there are various known

sufficient conditions and necessary conditions, e.g., [25], [27], [28], there is no simple

characterization of A-removable or CH-removable sets. Thus it appears that char-

acterizing these sets is “harder” than characterizing H∞-removable or S-removable

sets. The following is a precise formulation of this idea.

Theorem 1.1. Let S = [0, 1]2 be the unit square in C and let 2S denote the hyperspace

of S, i.e., the compact metric space consisting of all compact subsets of S with the

Hausdorff metric. Within this metric space, the collection of

(1) H∞-removable subsets is a Gδ,

(2) S-removable subsets is a Gδ,

(3) A-removable subsets is not Borel,

(4) CH-removable subsets is not Borel,

Thus, in some sense, removability for conformal homeomorphisms is distinctly more

complicated than for bounded holomorphic functions. It turns out the proof of parts

(1) and (2) are relatively elementary, and parts (3) and (4) follow from well known

results in descriptive set theory and complex analysis.
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Given a closed Jordan curve Γ with bounded complementary component Ω and

unbounded component Ω∗, there are conformal maps f : D = {|z| < 1} → Ω and

g : D∗ = {|z| > 1} → Ω∗. Both these maps extend homeomorphically to the circle

T = ∂D = {|z| = 1}, so h = g−1 ◦f is a homeomorphism of the circle to itself. Such a

map is called a conformal welding. A single curve Γ can give rise to several weldings

due to different choices of the conformal maps f and g but all such weldings are related

by Möbius transformations of the circle. Similarly, two curves that are Möbius images

of each other will have the same set of associated weldings. In fact, this is true for

any image of a curve Γ under a homeomorphism of the sphere that is conformal off Γ.

(For brevity, we call this a CH-image of Γ.) Thus for conformally removable curves,

the curve (modulo Möbius transformations of the 2-sphere) is uniquely determined

by its welding (modulo Möbius transformations of the circle).

It is very tempting to claim that a non-removable curve is not uniquely determined

by its welding, but this is still open; it is possible that there is some non-removable

curve Γ so that any CH-image of Γ is also a Möbius image. Very likely there is no such

curve. Indeed, an even stronger conjecture is that any conformally non-removable

curve has a CH-image of positive area. Combined with the measurable Riemann

mapping theorem, this immediately implies that every non-removable curve has a

CH-image that is not a Möbius image. We will say more about these problems in a

later section of the paper.

It is known that not all circle homeomorphisms are weldings, e.g., examples are

given in [10] and [40]. Thus the map from curves to circle homeomorphisms is not

onto. However, weldings form a “large” subset in several senses. For example, con-

formal weldings are dense in all circle homeomorphisms. This is easy for the uniform

metric, since every circle diffeomorphism is a welding, but they are also dense in a

much stricter sense: for any ǫ > 0, any circle homeomorphism can be altered on

set of length ǫ to become a conformal welding. See Theorem 1 of [10]. Moreover,

weldings generate all circle homeomorphisms, i.e., any circle homeomorphism is the

composition of two conformal weldings, [46]. It follows from a result of Pugh and

Wu that conformal weldings contain a residual set in the space of all circle homeo-

morphisms. See Section 9. However, it is not known if weldings are a Borel subset of

circle homeomorphisms. It follows from general results about Borel sets (to be stated
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more precisely in Section 3), that if the map from curves to weldings were injective,

then conformal weldings would be a Borel subset of circle homeomorphism. Thus the

question of whether conformal weldings are a Borel subset is closely linked to under-

standing the failure of injectivity of this map, and it seems likely that injectivity fails

exactly for CH-non-removable curves, creating a strong link between these problems.

I expect that the collection of conformally removable Jordan curves is non-Borel, but

this seems difficult to prove. As a step in this direction, we will prove the following

result.

Theorem 1.2. As above, let S = [0, 1]2 be the unit square in C and let 2S denote the

hyperspace of S, i.e., the compact metric space consisting of all compact subsets of

S with the Hausdorff metric. Within this metric space, the collection of A-removable

closed Jordan curves is not Borel.

This result does not seem to be a reformulation of any known results, and perhaps

it forms a model for attacking the case of conformally non-removable curves. The

proof will consist of creating a family of Jordan curves, each corresponding to a tree

indexed by finite strings of integers, and so that the removable curves correspond

exactly to well-founded trees, i.e., those that have no infinite branches.

Given a compact set K, we define the Hausdorff distance between compact subsets

K1, K2 as

dH(K1, K2) = inf{ǫ : K2 ⊂ K1(ǫ), K1 ⊂ K2(ǫ)},

where Kj(ǫ) = {z : dist(z,Kj) < ǫ} is an ǫ-neighborhood of Kj, j = 1, 2. This defines

a compact metric space consisting of all compact subsets of K, called the Hausdorff

hyperspace of K and denoted 2K (e.g., see Theorem A.2.2 of [11]). In this note, we

mainly deal with three examples of K: the unit interval I = [0, 1] ⊂ R, the unit

square S = [0, 1]2 ⊂ R2 = C, or the Riemann sphere S. The collection of Borel

sets is the smallest σ-algebra containing the open sets (a σ-algebra is closed under

countable unions, under countable intersections and under complements). An Fσ set

is a countable union of closed sets; a Gδ is a countable intersection of open sets (this

terminology originates with Hausdorff in 1914). Analytic sets (also known as Suslin

sets) are continuous images of Borel sets, but they need not be Borel themselves

(more about this later). The complement of an analytic set is called co-analytic.

The sets in parts (3) and (4) of Theorem 1.1 turn out to be co-analytic complete, a
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condition we will define in Section 5, and that implies that they are non-Borel in a

strong sense.

The removable sets in the first three cases of Theorem 1.1 all form σ-ideals of

compact sets, i.e., they are closed under taking compact subsets and under compact

countable unions. The subset property is obvious, and the fact that a compact set

that is a countable union of compact removable sets is also removable is proven in

[52] for each of these three classes. The dichotomy theorem for co-analytic σ-ideals

(e.g., Theorem IV.33.3 in [30]) then says these collections must be either Gδ or co-

analytic complete in 2S. Theorem 1.1 indicates which possibility occurs in each case.

It is not known whether the CH-removable sets form a σ-ideal; indeed, it is not even

known if the union of two overlapping CH-removable sets is CH-removable. If the

sets are disjoint, then this is true, but is remains open even if both sets are Jordan

arcs sharing a single endpoint.

Although it is a basic theorem of descriptive set theory that every uncountable

Polish space X contains analytic and co-analytic sets that are not Borel (see Section

4), it is very interesting to obtain “natural” examples. For example, if X = C([0, 1])

(continuous functions on [0, 1] with the supremum norm) the following subsets of

functions are all known to be co-analytic complete, and hence non-Borel:

• everywhere differentiable [38],

• differentiable except on a finite set [47] or countable set [23],

• nowhere differentiable [37],

• everywhere convergent Fourier series [3].

For the space C([0, 1])N of sequences of continuous functions on [0, 1] the space CN

of everywhere convergent sequences is co-analytic complete, as is the space CN0 of

sequences converging to zero everywhere. See Theorem IV.33.11 of [30] by Kechris.

When X is the hyperspace of the unit circle T, we have already mentioned the

countable compact sets are co-analytic non-Borel. Other known examples of non-

Borel subsets of 2I are:

• sets of uniqueness [31],

• sets of strict multiplicity [29].

A closed set E ⊂ T is a set of uniqueness if any trigonometric series that converges

to zero everywhere off E must be the all zeros series. E is a set of strict multiplicity
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if it supports a measure whose Fourier coefficients tend to zero; the Fourier series of

such a measure shows that its support is not a set of uniqueness in a strong way.

These particular examples have an intimate connection to the foundations of modern

mathematics: Cantor showed that finite sets are sets of uniqueness and the problem

of extending this to infinite sets led him to the creation of set theory. For more about

this fascinating episode in the history of mathematics, see e.g., [14], [15], [36], [48].

For further “natural” examples of non-Borel sets from analysis and topology, see [6]

by Howard Becker.

This note was prompted by email discussions with Guillaume Baverez, in which he

proposed a possible characterization of CH-removable Jordan curves in terms of their

conformal weldings (see Section 9). I doubted such a concise criterion could be given,

and eventually I found a counterexample to his conjecture, but the interchange raised

the question of quantifying the difficulty of the problem. This note was written in

the hope that gathering the basic facts needed from descriptive set theory might be

of interest to fellow complex analysts, and perhaps motivate some of them to attack

harder variants of these problems, e.g., those discussed in Sections 8, 9 and 10.

2. H∞-removability is “easy”

As we shall explain below, identifying removable sets isn’t exactly easy in the usual

sense, but in terms of descriptive set theory the collection of such sets is pretty simple:

Lemma 2.1. The collection of H∞-non-removable subsets of S = [0, 1]2 is an Fσ

subset of 2S. The H∞-removable sets are therefore a Gδ subset.

Proof. Suppose E ⊂ [0, 1]2 is non-removable for H∞. Then there is a non-constant,

bounded holomorphic function f defined on the complement of E. Near infinity f

has a Laurent expansion

f(z) = c0 +
c1
z
+

c2
z2

+ . . .

and this has at least one non-zero coefficient ck for some k ≥ 1. If c1 = 0, the function

f1(z) = z(f(z)− c0) =
c2
z
+

c3
z2

+ . . .

is also bounded, non constant and holomorphic off E. Continuing in this way, we see

that we eventually obtain a bounded holomorphic function on Ω = C \ E that has

non-zero coefficient c1 in its Laurent expansion.
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LetXn be the collection of non-removable sets in [0, 1]2 whose complements support

a holomorphic function whose absolute value is bounded by 1 and whose Laurent

coefficient satisfies |c1| ≥ 1/n. We claim Xn is a closed set in 2S. Suppose {Kn} ⊂

Xn are compact sets converging to K in the Hausdorff metric. Assume fn is the

holomorphic function on Kc
n attesting to its membership in Xn. Each compact disk

D in the complement of K is eventually contained in the complements of the Kn for n

large enough, and by a normal families argument, we may extract a subsequence that

converges to a holomorphic function fD on D. Covering Kc by a countable union of

such disks and applying a diagonalization argument, we may extract a subsequence

converging to a holomorphic function f bounded by 1. Applying the Cauchy integral

formula to a fixed circle surrounding [0, 1]2 we see that the Laurent coefficients of fn

converge to the Laurent coefficients of f and hence |c1(f)| ≥ 1/n. Thus K ∈ Xn.

Since every non-removable set is in some Xn, the collection of all non-removable sets

is an Fσ in 2S. �

The proof that S-removable sets form a Gδ is very similar, except that the trick of

replacing f(z) by z(f(z)−c0) to get |c1| > 0 might not give a 1-to-1 map. Instead, we

may assume the map conformal off E has an expansion f(z) = z+ c1/z+ c2/z
2+ . . .

and that ck 6= 0 for some k. Thus it suffices to prove each member of the countable

family Kn,m where |ck| ≥ 1/n is closed. Then the proof proceeds just as above.

Of course, just because H∞-non-removable sets are Borel in 2S does not mean that

it is an easy task to find an elegant characterization of them. Indeed, it is a deep

result of Xavier Tolsa that E is non-removable for bounded holomorphic functions if

and only if it supports a positive measure µ of linear growth, i.e.,

µ(D(x, r)) ≤ Mr,(2.1)

(for some M < ∞ and all x ∈ R2 and r > 0) and that has finite Menger curvature in

the sense that

c2(µ) =

∫ ∫ ∫

c2(x, y, z)dµ(x)dµ(y)dµ(z) < ∞,(2.2)

where c(x, y, z) is the reciprocal of the radius of the unique circle passing thorough

(x, y, z) (linear growth implies µ3 gives zero measure to the set were two or more of

x, y, z agree).
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We know the proof of Lemma 2.1 must break down for A-removable and CH-

removable sets. In both cases, we can find non-removable sets contained in the strip

[0, 1]×[0, 1
n
] and with corresponding functions that converge to non-constant functions

on C \ [0, 1] as n → ∞. For A-removability this is done in [8]; one simply has to

take an Jordan arc that has tangents only on a set of zero linear measure. Thus any

“flat enough” fractal arc will work. For CH-removability, a similar argument works

by approximating a segment by “flat” flexible curves, as constructed in [9] or [10].

3. Analytic sets

A topological space X is called Polish if it is separable (has a countable dense set)

and has a compatible metric that makes it complete (Cauchy sequences converge).

Standard examples include Euclidean space Rn, the continuous functions on [0, 1] with

the supremum norm C([0, 1]), and the collection of compact subsets of a compact

set K ⊂ Rn with the Hausdorff metric. Another important example is the Baire

space NN of infinite sequences of positive integers equipped with the metric given

by d((an), (bn)) = e−m, where m = max{n ≥ 0: ak = bk for all 1 ≤ k ≤ n}. One

can show NN is homeomorphic to the irrational numbers (with the usual topology)

although they are different as metric spaces (one is complete and the other is not).

Every Polish space is the continuous image of the Baire space (Theorem B.1.2, [11]).

If X is a Polish space, then A ⊂ X is called analytic if there is another Polish

space Y and a Borel set E ⊂ X × Y so that A is the projection on E onto A, i.e.,

A = {x ∈ X : ∃ y ∈ Y such that (x, y) ∈ E}.

In a Polish space every open set and every closed set is analytic, and the analytic

sets are closed under countable unions and intersections. See [30] or Appendix B of

[11]. From this it follows that every Borel set is analytic. However, it is known that

any uncountable Polish space contains an analytic set that is not Borel (see Lemma

4.1), and several explicit examples were already mentioned in Section 1.

If A ⊂ X is analytic, then Ac = X \ A is called co-analytic. In descriptive set

theory, analytic sets are denoted Σ1

1
and co-analytic sets Π1

1
(using light-faced char-

acters refers to something else). These form the simplest elements of the projective

hierarchy of sets, much as closed and open sets are the simplest sets of the Borel
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hierarchy. Analytic and co-analytic sets can be quite complicated, e.g., although ev-

ery uncountable analytic set contains a perfect subset, Gödel [24] showed that this

question for co-analytic sets is undecidable (similar to his results for the Axiom of

Choice and the Continuum Hypothesis). Similarly, all analytic sets are Lebesgue

measurable, but proving general projective sets are measurable requires additional

axioms, e.g., the assumption that certain “large cardinals” exist. See [49].

There are several equivalent characterizations of analytic sets, including

(1) A is the projection of a closed set in X × NN,

(2) A is the continuous image of NN,

(3) A is a continuous image of a Polish space,

(4) A is the continuous image of a Borel subset of a Polish space,

(5) A is the Borel image of a Borel subset of a Polish space.

In comparison, Borel subsets of a Polish space are characterized by being

(1) a continuous 1-to-1 image of NN,

(2) a continuous 1-to-1 image of a Borel subset of a Polish space,

(3) a 1-to-1 projection of a closed set in X × NN,

(4) both a co-analytic and analytic set (see below).

Analytic sets are also known as Suslin sets in honor of Mikhail Yakovlevich Suslin,

who proved that a set is Borel if and only it is both analytic and co-analytic. While

a research student of Lusin in 1917, Suslin constructed a Borel set in the plane whose

projection on the real axis is not Borel, contradicting a claim in a 1905 paper of

Lebesgue, (Cooke [14] refers to this as “one of the most fruitful mistakes in all the

history of analysis”). Suslin died of typhus in 1919 at the age of 24, having published

just one 4-page paper while alive, and one posthumously with Sierpinski. His work

was further developed by Lusin1, Sierpinski2 and others, and Suslin’s legacy remains

very active a century later.

1In 1936 Lusin was the victim of a political attack that included charges of taking credit for
Suslin’s work and publishing too much in Western journals. Lusin survived the incident and was
officially rehabilitated in 2012. See [18]. However, Lusin’s thesis advisor, Egorov, died in 1931
following a hunger strike in prison after similar attacks.

2According to [14] although Sierpinski was technically under arrest in Moscow during World War
I as an Austrian citizen, he was allowed to participate in the academic life of Moscow University.
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To prove that the conformally non-removable subsets of S = [0, 1]2 form an analytic

subset of the hyperspace of S, we first record a few simple facts. A mapping is called

Borel if the inverse image of every open set is a Borel set.

Lemma 3.1. For any Borel map f : X → Y between Polish spaces, the graph of f

is a Borel set in X × Y .

Proof. It suffices to prove the complement of the graph is Borel. Since Y is separable,

there is a countable basis {Bk} for the topology. Thus given any x ∈ X and y ∈ Y

so that y 6= f(x) there is a basis element Bk so that f(x) ∈ Bk and y 6= Bk. In other

words, (x, y) is contained in the Borel product set f−1(Bk)× (Y \Bk) ⊂ X × Y and

this set is disjoint from the whole graph of f . Thus the complement of the graph of

f is a countable union of Borel sets, and hence is Borel itself. �

Lemma 3.2. If A is an analytic subset of 2K, then the collection of supersets of A

is also analytic.

Proof. Since A is analytic, it is the continuous image of some Polish space, say A =

f(X). Define a map X × 2K → 2K by (x,E) 7→ f(x) ∪ E. It is easy to check that

taking unions is a continuous map from 2K × 2K → 2K . Since products of Polish

spaces are also Polish, we see the union of supersets is a continuous image of a Polish

space, hence is analytic. �

Lemma 3.3. Suppose X is a Polish space. Suppose K ⊂ C is compact and that each

open U ⊂ C is associated to a closed set X(U) ⊂ X so that ∩αX(Uα) = X(∪αUα)

for any collections of open sets {Uα}. Then the map Λ from points of X to compact

subsets of K = [0, 1]2 defined by

Λ : x → Kx = K \ ∪{U : x ∈ X(U)},

is Borel from X to 2K.

Proof. Note that if V ⊂ W are open sets, then V ∪W = W , and hence

X(V ) ⊃ X(V ) ∩X(W ) = X(V ∪W ) = X(W ),

so our map has a “reverse monotone” property. For each closed set E ⊂ K and ǫ > 0

consider the open ball in 2K

B(E, ǫ) = {F ⊂ K : dH(F,E) < ǫ}
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These form a basis of the topology of the hyperspace, so it suffices to show preimages

of such sets are Borel. Each such set is a countable union of closed balls

B(E, δ) = {F ⊂ K : dH(F,E) ≤ δ},

for some sequence δn ր ǫ. Thus it suffices to show that sets of the form Λ−1(B(E, δ))

are Borel, i.e., {x ∈ X : dH(Kx, E) ≤ δ)} is a Borel subset of X.

Let N(E, ǫ) = {y ∈ C : dist(y, E) ≤ δ} and similarly for N(Kx, δ). It is easy to

check that the condition dH(Kx, E) ≤ δ holds for some x ∈ X if and only if x is in

the intersection of the sets Y1 = {x : Kx ⊂ N(E, δ)} and Y2 = {x : E ⊂ N(Kx), δ)}.

Hence so if suffices to show both Y1 and Y2 are Borel.

First consider Y1. We claim that x ∈ Y1 if and only if x ∈ X(U) where U =

{z : dist(z, E) > δ}. Suppose x ∈ X(U). Then Kx is in the complement of U , and

hence every point of Kx is within distance δ of E, i.e., Kx ⊂ N(E, δ). Hence x ∈ Y1.

Conversely, suppose x ∈ Y1. Then any point y ∈ U is strictly more than distance

δ from E and so y cannot be in Kx. Therefore y is in one of the open sets (call

it Uy) that was subtracted from K in the definition of Kx, and hence x ∈ X(Uy).

Thus Kx ⊂ ∩y∈UX(Uy) = X(∪y∈UUy). Since every point of U is in this union, we

have U ⊂ ∪y∈UUy, so ∩y∈UX(Uy) ⊂ X(U) by the reverse monotone property. By

assumption, X(U) is a closed subset of X, so Y1 is closed, and hence it is Borel.

Next we consider Y2. The complement X\Y2 consists of points x so that E contains

some point y that is strictly more than distance δ fromKx, i.e., Kx misses some closed

disk D′ = {z : |z ∈ C : |z − y| ≤ δ} with r > δ. Thus Kx also misses some closed

disk D ⊂ D′ that is centered at a rational point of the plane and that has rational

radius > δ. For each point z ∈ D, z 6∈ Kx implies x ∈ X(Uz) for some open set Uz

containing z, hence x ∈ ∩z∈DX(Uz) = X(∪z∈DUz) = X(VD) where VD is some open

set containing D but disjoint from Kx. For each rational closed disk chosen in this

way, the corresponding set X(VD) is closed. If x ∈ X \ Y2, then it is in one of these

closed sets and hence X \Y2 is contained in the union of these countably many closed

sets. Conversely, if x is in some X(VD), then Kx omits D and hence every point of

Kx is strictly more than distance δ from some point of E. Thus X \ Y2 = ∪DX(VD)

is Fσ, and hence Y2 is also Borel, as desired. �

Next we want to specialize to the case when X is the space of homeomorphisms

of the 2-sphere to itself that are holomorphic off K = [0, 1]2 and normalized to be
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h(z) = z + O(1/|z|)) at infinity. The space of homeomorphisms of a compact Polish

space (like the 2-sphere) is always a Polish space itself, but in this case we can be more

explicit and take the metric d(f, g) = sup |f − g| + sup |f−1 − g−1|, where distances

are measures in the spherical metric. It is not completely trivial to find a countable

dense subset, but we leave this as an exercise for the reader, with the following hint:

subdivide K = [0, 1]2 into a n×n square grid Γ, and consider homeomorphisms that

map each edge of the grid to a polygonal curve with rational vertices. Then “fill in”

the squares, using homeomorphism of squares to polygons that preserve arclength on

each side up to a multiplicative factor (so definitions on adjacent squares agree).

Lemma 3.4. The CH-non-removable subsets of [0, 1]2 form an analytic subset of the

hyperspace of [0, 1]2. Thus the removable sets are co-analytic.

Proof. Let X be the space of homeomorphisms of the 2-sphere to itself that are

holomorphic off K = [0, 1]2 and normalized to be h(z) = z + O(1/|z|)) at infinity.

For each open set U ⊂ C let X(U) be the elements of X that are holomorphic on

U . Since uniform limits of holomorphic functions are holomorphic, this is a closed

subset of X. Moreover, if h is holomorphic on each set in a collection {Uα} it is

holomorphic on the union so X(∪αUα) = ∩αX(Uα). (All functions in this set may be

homomorphic on a strictly larger set, e.g., if the union has removable complement,

but this equality still holds, and simply gives an example where X(V ) = X(W ) even

if V is strictly contained in W .)

For each h ∈ X, and let Uh = C\Kh be the largest open set so that h is holomorphic

on some neighborhood of every z ∈ Uh. Lemma 3.3 says that h 7→ Kh from X to Y

is a Borel map, Lemma 3.1 says its graph {(h,Kh)} is a Borel set in X × Y , and the

projection onto the second coordinate gives an analytic set A = ∪h∈XKh (projections

of Borel sets are analytic). By definition, a compact subset of K is conformally non-

removable if and only if it contains a non-empty set in A. Removing a point from an

analytic set gives another analytic set, so by Lemma 3.2 the super-sets of non-empty

elements of A form another analytic set. Thus conformally non-removable sets are

analytic in 2K . �

Corollary 3.5. The A-removable subsets of [0, 1]2 are co-analytic in 2S.
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Proof. This is exactly the same as the proof of Lemma 3.4, except that now we

work in the Polish space of all continuous functions on the Riemann sphere that are

holomorphic off [0, 1]2. (This space is complete with the usual supremum metric, and

a countable dense set is not hard to construct.) As before, the map sending each such

function to the complement of the set where it is holomorphic is a Borel mapping of

this Polish space into 2S, and the projection of its graph onto the second coordinate

gives an analytic subset of 2S. Taking all supersets of all non-empty projections gives

all A-non-removable sets, and shows this collection is analytic. �

4. Analytic non-Borel sets exist

This is another standard result, but we include the simple proof for completeness.

We follow the argument in Section 11.5 of [12].

Lemma 4.1. NN contains an analytic set that is not Borel. Thus the complement of

this set is co-analytic and not Borel.

Proof. This is a diagonalization argument. We claim it that suffices to show there is

an analytic subset X ⊂ NN × NN so that every analytic subset A ⊂ NN occurs as a

slice A = Xy = {x ∈ NN : (x, y) ∈ X} for some y. Given such a set X, then

B = {x ∈ NN : (x, x) ∈ X}

is the projection of the intersection of X with the (closed) diagonal of NN × NN and

hence is the continuous image of an analytic set, and therefore is itself analytic. The

complementary set Bc = {x ∈ NN : (x, x) 6∈ X} is automatically co-analytic, and if

Bc were also analytic, then it would be equal to a slice Xy of X for some y. In this

case,

Xy = {x : (x, y) ∈ X} = {x : (x, x) 6∈ X} = Bc.

However, assuming either y ∈ B or y ∈ Bc both lead to contradictions. Thus Bc

can’t be analytic, and hence neither B nor Bc is Borel (since Borel sets are closed

under complements, and all Borel sets are analytic). Thus we have reduced proving

the existence of a non-Borel analytic set to finding an analytic set X ⊂ NN × NN

which has every analytic subset of NN as a slice.

First we show this is possible for closed slices. If Y is a Polish with a countable

basis {Bk} for the topology, and if y ∈ Y , then let S(y) ⊂ N be the set of all k’s
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with y 6∈ Bk and let T (y) ⊂ NN be all the sequences with elements in S(y). Then

{(y, T (y)) ∈ Y ×NN} is a closed set: if yn → y and yn 6∈ Bk for large n, then y 6∈ Bk,

since Bc
k is closed. The second coordinates also converge, since the topology on NN

agrees with the product topology. If we fix a sequence (ak) ∈ NN as the second

coordinate, the first coordinate ranges over Y \ ∪kBak , so any closed subset of Y can

occur as a slice.

Next, to obtain every analytic subset of NN as a slice, we apply the previous

argument to Y = NN × NN to get a closed set X ⊂ (NN)3 = NN × NN × Nn so that

every closed subset of (NN)2 occurs as a slice of X. Hence every analytic subset of

NN occurs when we project X onto the first coordinate. Since projections of analytic

sets are analytic, projecting X onto the first and third coordinates gives an analytic

subset of NN × NN where the first coordinate ranges over all analytic subsets of NN,

as desired. �

Note that this implies the cardinality of the analytic subsets of a Polish space is at

most the cardinality of NN, i.e., the same as R, the continuum c. Since single points

are analytic sets, the analytic subsets of R have cardinality exactly c. In particular,

the collection of all Borel subsets of R also has cardinality c.

5. Co-analytic complete sets

A co-analytic subset A ⊂ X of Polish space is called co-analytic complete if for

any co-analytic set B of NN there is a Borel map f : NN → X so that f(y) ∈ A iff

y ∈ B. Thus membership in any such B can be reduced to checking membership in

A. Since Borel pre-images of Borel sets are Borel, and we know that NN contains a

non-Borel co-analytic set, we can deduce that any complete co-analytic set A must be

non-Borel. Thus a simple strategy for proving a co-analytic set A ⊂ X is non-Borel

is to find a Borel map f : NN → X so that its inverse image f−1(A) is a known

non-Borel set. A common set to use for f−1(A) is the collection of well-founded trees

(which we define next).

Let N∗ be the set of finite sequences of natural numbers (including the empty

sequence). A tree T is a subset of N∗ that is closed under removing the final element,

i.e., if a finite sequence is in T , so is every initial segment, including the empty one

(this labels the root vertex of T ). An infinite branch of T is an element of NN, all
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of whose finite initial segments belong to T . The set of all infinite branches of T is

denoted [T ].

A tree is well-founded if it has no infinite branches. Finite trees are obviously well-

founded, and the infinite set of finite sequences (n, n − 1, n − 2, . . . , 1) with n ∈ N,

together with all initial segments of these sequences, form an infinite well-founded

tree. See Figure 1.

1 3 4

2,1 3,2

3,2,1 4,3,2

4,3

4,3,2,1

0

2

Figure 1. An example of a well-founded tree. It is an infinite tree,
but has no infinite branches.

Since N∗ is countable and a subset can be identified with its indicator function,

any tree can be identified with a point of 2N, i.e., the Cantor set of infinite binary

sequence. In fact, the set of all trees corresponds to a closed subset of 2N with the

usual metric, making it a Cantor set itself. However, the collection of well-founded

trees is co-analytic complete, and hence non-Borel, in this space. To prove this, we

use the following.

Lemma 5.1. Every closed set in NN is of the form [T ] for some tree T . For every

analytic set A ⊂ NN there is a tree T so that a = (a1, a2, . . . ) ∈ A if and only if there

is some b = (b1, b2, . . . ) ∈ NN so that

W (a, b) = (a1, b1, a2, b2, . . . ) ∈ [T ].

Proof. The first part is straightforward. Suppose K ⊂ NN is closed, and let T be the

tree of all finite initial segments of all elements inK. Using the definitions and the fact

that NN is complete, we see that K is closed if and only if the limit x = (x1, x2, . . . )

of any Cauchy sequence {xn} = {(xn
1 , x

n
2 , . . . )}

∞
n=1 in K is also in K. This occurs
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if and only if for every n, the sequence of initial n-segments (xm
1 , . . . , x

m
n )

∞
m=1 equals

(x1, . . . , xn) for all large enough m. This holds if and only if every initial segment of

x is in T , which is equivalent to x = (x1, x2, . . . ) being an infinite branch of T .

To prove the second part of the lemma, note that NN×NN is homeomorphic to NN

by the 1-1, continuous map that interweaves sequences:

W : (a1, a2, . . . )× (b1, b2, . . . ) 7→ (a1, b1, a2, b2, . . . ).

Thus, if A has the form given in the lemma, then it is the projection onto the first

coordinate of the closed setW−1([T ]) ⊂ NN×NN, and hence A is analytic. Conversely,

if A is analytic, then it is a continuous image A = f(NN) and hence A is the projection

of the closed set (f(x), x) ∈ NN × NN (recall that graphs of continuous functions are

closed sets). Taking the W -image of this closed graph gives an analytic set in NN

whose corresponding tree T satisfies the interweaving condition in the lemma. �

Lemma 5.2. The well-founded trees are co-analytic complete in 2N.

Proof. SupposeA is analytic in NN. Then there is a tree T so that a = (a1, a2, . . . ) ∈ A

iff W (a, b) ∈ [T ] for some b = (b1, b2, . . . ) ∈ NN. If we fix a, then the map NN to

itself given by b 7→ W (a, b) is continuous. Since the inverse image of a closed set is

closed, we see that T (a) = {b ∈ NN : W (a, b) ∈ T} is a closed set in NN, and this

corresponds to a tree by the previous lemma. We claim the mapping NN → 2N
∗

given

by a 7→ T (a) is Borel. If this is true, then it suffices to show that the image of Ac

under this map is the set of well-founded trees (since Ac can be any co-analytic set

in NN). Note that a sequence a ∈ Ac if and only if W (a, b) 6∈ [T ] for all b ∈ NN. Thus

a ∈ Ac if and only if T (a) is a well-founded tree.

To check that the map a 7→ T (a) is Borel, we recall T (a) is a closed set of sequences

in NN and that a neighborhood of such a set is a countable union of basis elements

where we specify a finite initial segment and allow the remaining elements to be free.

The inverse image of one such basis element is the collection of all sequences a, so that

(1) interweaving the initial elements of a with the specified elements of the basis gives

a finite string in T and (2) there is some continuation of the specified elements to an

infinite sequence so that interweaving is a branch of T . Thus a is simply the sequence

of odd coordinates of all branches of T that pass through the specified vertex, and
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this is a closed set. Thus inverse images of open sets are countable unions of closed

sets, so the mapping is Borel, as desired. �

Theorem 5.3 (Hurewicz, [26]). The compact countable subsets of I = [0, 1] are

co-analytic complete in 2I .

Proof. We have to construct a continuous map from the space of trees into 2I , so that

the image of T is countable if and only if T is well-founded. For each n = 1, 2, . . . ,

let An = {x ∈ [0, 1] : 1
2n+1

≤ |x − 1
2
| ≤ 1

2n
}. Then the An are all disjoint and each

consist of two compact intervals. For any S ⊂ N define

AS = {
1

2
}
⋃

∪n∈SAn

This is a compact subset of [0, 1], and equals {1/2} if and only if S is empty.

Suppose we are given a tree T . The root vertex (labeled by the empty string) is

associated to E0 = I∅ = [0, 1]. In general, suppose En is a compact subset of [0, 1]

whose connected components are a countable number of points labeled by strings

of length < n, and a countable number of non-trivial closed intervals Is labeled by

strings of length n. All strings that occur as labels of intervals in En correspond to

labels of vertices in level n of T , and for each such label, 2n intervals in En will have

that label. To construct En+1 from En, we keep every point component from En (and

leave the label the same) and replace each interval component Js labeled by a string

s of length n by LS(AS), where S is the set of integers that can be appended to S to

give a length n+1 string in T (i.e., these correspond to the edges leading out of vertex

s), where AS is as above, and where LS is a linear map from J to Js. Since each An

consists of two intervals, each nth generation interval with a given label gives rise to

two intervals in the next generation with identical labels. Let ET = ∩En. Since the

En are nested compact sets, this is a non-empty compact subset of [0, 1].

If T as an infinite branch, then following this branch through the construction gives

a Cantor subset of E, hence E is uncountable. Conversely, if E is uncountable, then

E ∩ J1 must be uncountable for one of the countably many connected components

of E1. Then E ∩ J2 must be uncountable for one of the countably many components

of E2 contained in J1. Continuing in this way, we obtain nested, non-degenerate

components J1 ⊃ J2 ⊃ J3 ⊃ . . . whose labels form an infinite branch of T , so T is

not well-founded. �
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The endpoints of all the components of En in the previous proof are rational

numbers. Thus the sets E that arise from well-founded trees are subsets of Q, and

we could reformulate the result to say that compact subsets of Q ∩ I are co-analytic

complete in 2I . Theorem 5.3 also gives a rather concrete example of a non-Borel set

in [0, 1]. Let {rn} be an enumeration of Q ∩ [0, 1] and for K ∈ 2I define

f(K) =
∑

rn 6∈K

3−n.

Clearly f is 1-to-1 (since distinct sums of powers of 3 are distinct). The sets {K :

f(K) > α} are easily checked be open in 2I , so f is Borel. Thus

X = {f(K) : K ⊂ Q ∩ [0, 1] and is compact } ⊂ [0, 1],

cannot be Borel.

6. A-removable sets are co-analytic complete

We start with a well known fact from complex analysis.

Lemma 6.1. If E ⊂ [0, 1] has positive length, then it is H∞-non-removable.

Proof. If E is an interval, then we simply apply the Riemann mapping theorem to

conformally map the complement of I (on the sphere) to the unit disk. This gives a

non-constant bounded holomorphic function on the complement.

The general case was proven by Ahlfors and Beurling in [1] (or see Section I.6 of

Garnett’s book [19]). Note that

F (z) =

∫

E

dz

z − w
=

∫

E

t− x

(t− x)2 + y2
+ i

∫

E

y

(t− x)2 + y2

is holomorphic on Ω = Ec, has imaginary part in [−π, π], and Laurent expansion

c1/z + c2/z
2 + . . . near infinity satisfies c1 = ℓ(E). Thus G = exp(F/2) takes values

in the right half-plane, and (G − 1)/(G + 1) maps Ω holomorphically into the disk

and one can compute its leading Laurent coefficient asc1 = ℓ(E)/4. �

Extending this result from subsets of R to subsets of graphs of real Lipschitz func-

tions was a major breakthrough by Alberto Calderon which led to many important

developments in in harmonic analysis and geometric measure theory over the last

fifty years, including Tolsa’s result, discussed in Section 2. For some of the related

history, see [17], [41], [50], [51].
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The following is stated and proved on page 117 of Carleson’s 1951 paper [13]:

Theorem 6.2. If E1, E2 ⊂ [0, 1] are compact and if E2 has positive Lebesgue measure,

then E = E1 × E2 is A-removable iff E1 is countable.

Proof. For completeness, we recreate Carleson’s proof. Let Q0 = [0, 1]2. Suppose f

is continuous on the sphere and holomorphic off E = E1 × E2. Then f is uniformly

continuous on the whole sphere; thus its modulus of continuity

ω(f, δ) = max
|z−w|≤δ

max
z,w∈Q0

|f(z)− f(w)|

tends to zero uniformly with the diameter of Q. Near infinity f(z) = c0 + c1/z +

c2/z
2 + . . . .

Now fix ǫ > 0. If E1 is countable, enumerate it as E1 = {xn} and for each n choose

an open interval In that contains xn and so that ω(f, 2|In|) < ǫ2−n. We can do this

since f is continuous at x. Since E1 is compact, a finite number of these intervals

cover E1. For each In used in this finite cover, In × [0, 1] can be covered by at most

O(1/|In|) closed squares of side length |In| and disjoint interiors, so and so that each

square projects vertically onto In. Doing this for each In in the covering of E1 gives

a covering of E by squares {Qk}.

Let Ω be the union of the squares {Qk}. This is finite union of rectangles. Since f

is holomorphic on the complement of Ω, the Cauchy integral formula implies

∫

∂Ω

f(z)dz =

∫

|z|=R

f(z)dz

for large R. The right hand side is 2πic1, since near infinity f(z) = c0+c1/z+c2/z
2+

. . . and the series converges uniformly on large circles. Thus

|c1| =
1

2π

∫

∂Ω

f(z)dz =
1

2π

∣

∣

∣

∣

∣

∑

k

∫

∂Qk

f(z)dz

∣

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∣

∑

k

∫

∂Qk

f(z)− f(zQ)dz

∣

∣

∣

∣

∣
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where we have used the fact that integrals over common sides of the squares cancel,

and constants have dz integral zero around a square. Therefore,

|c1| ≤
1

2π

∑

Q

∫

∂Q

|f(z)− f(zQ)||dz|

= O

(

∑

Q

diam(Q)ω(f, diam(Q))

)

= O

(

∑

n>0

ω(f, 2diam(In))

)

= O

(

ǫ
∑

n>0

2−n

)

= O(ǫ).

Since ǫ > 0 was arbitrary, we deduce c1=0. But the same argument applies to

f1 = z(f(z)− c0) = c1 + c2/z + . . . to show c2 = 0. Continuing in this way, we see f

is constant, and hence E is A-removable.

Conversely, if E2 has positive length, then there is a non-constant bounded analytic

function f on the complement of iE2 by Lemma 6.1. If E1 is uncountable, then it

supports a non-atomic, positive, finite measure µ. Then F (z) =
∫

f(z + x)dµ(x) is

continuous on the sphere and holomorphic off E = E1 × E2. We may assume c1 6= 0

(otherwise recursively replace f by z(f(z) − c0) until this happens). Then the fact

that

1

z − x
=

1

z
+ (

1

z − x
−

1

z
) =

1

z
+

x

z(z − x)
,

implies F also has non-zero Laurent coefficient and hence is non-constant. Therefore

E is A-non-removable. �

Corollary 6.3. The A-removable compact subsets of S = [0, 1]2 are co-analytic com-

plete in 2S, hence not Borel.

Proof. We already know this set is co-analytic by Corollary 3.5. To prove co-analytic

completeness, note that the mapping E 7→ E × [0, 1] is continuous between the

respective Hausdorff metrics and hence reduces the set of countable compact subsets

of [0, 1] to the set of A-removable sets. Since the former is co-analytic complete, so

is the latter. �
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7. A-removable Jordan curves are co-analytic complete

A case of particular interest among compact planar sets are the closed Jordan

curves. Let Homeo(X, Y ) ⊂ C(X, Y ) denote the 1-to-1 continuous maps of X into

Y . It is easy to see that this subset is neither open nor closed in C(X, Y ). However,

a map f : T → C is 1-to-1 if and only if any two disjoint closed dyadic intervals have

disjoint images (an open condition) and hence Homeo(T,C) is a Gδ set in C(T,C).

We can think of closed Jordan curves elements of Homeo(T,C)/Homeo(T,T), i.e.,

modulo re-parameterizations. Thus f, g ∈ Homeo(T,C) are equivalent if f = g ◦ ρ

for some ρ ∈ Homeo(T,T). We can define a metric between equivalence classes as

d([f ], [g]) = inf{‖f − g ◦ ρ‖∞ : ρ ∈ Homeo(T,T)},

although Jordan curves are not complete in this metric. A complete metric on Jordan

curves separating 0 and ∞ is described by Pugh and Wu in [43], where they attribute

the idea to Thurston (one takes conformal maps of S \ T to S \ Γ normalized to fix

0 and ∞ respectively and that have positive derivative at these points, and then use

the supremum metrics between conformal maps).

Theorem 7.1. The collection of A-removable Jordan curves contained in S = [0, 1]2

is co-analytic complete in 2S.

Proof. We will construct a continuous map from trees into Jordan curves. As in

earlier arguments, it suffices to show that the preimage of the removable curves is

precisely the set of well-founded trees.

To simplify some formulas, we work in [−1, 1]2 instead of [0, 1]2. We start with

a map from trees to compact subsets of [−1, 1] that maps well-founded trees into

countable sets, using a slightly different map than we did in the proof of Theorem

5.3. For n ⊂ N, we define

An = {x :
1

4
+

1

2n+ 1
≤ |x| ≤

1

4
+

1

2n
},

and for S ⊂ N

AS = {±
1

4
}
⋃⋃

n∈S

An ⊂ [−1, 1].

This is similar to what we did before, except that now the pairs of intervals An

converge to two different points ±1/4, instead of a single point. However, the rest
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of the construction is the same, and associates to each tree T a compact set ET that

is countable if and only if T is well-founded. Recall that each string s of length n

is associated to 2n intervals which we label Ijs , j = 1, . . . 2n. We assume these are

numbered left to right.

Next we construct a Cantor set K = ∩nKn ⊂ [−ii] of positive Lebesgue measure

where each Kn is a union of 2n equal length closed intervals which we denote {Kk
n},

k = 1, . . . , 2n. We assume the components are numbered left to right.

Our Jordan curves will be constructed using a template closed set Γ0, consisting

of countable union of polygonal arcs, rectangles and copies of K. The rectangles are

all of the form I × J where I is a component interval of one of the sets En defined

above, and J is a component of one of the sets Kn (but possibly for different indices

n). The template is illustrated in Figure 2.

Figure 2. The basic template for the construction. Each column of
rectangles corresponds to a positive integer.

We attempt to describe Figure 2 in words. Γ0 has two copies of the Cantor set

K, positioned in the vertcal lines {x = ±1/4} near the center of the picture. There

are a countably many rectangles, arranged in vertical columns which accumulate

on the two Cantor sets from the left and right respectively. Each positive integer k

corresponds to 2k+1 rectangles arranged in two columns. The integer 1 corresponds to
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the two leftmost and two rightmost rectangles in Figure 2. The integer 2 corresponds

to the eight rectangles in the two columns adjacent to the first two, and so on.

More precisely, the 2k+1 rectangles associated to the integer k are the components

of Ak ×Kn. The set Ak has two components and Kk has 2k components, giving the

correct number of rectangles in the product. Each rectangle is then connected to

three other rectangles in the two adjacent columns, and to one other rectangle in the

same column, all as shown in Figure 2. (Slightly different arcs are used to connect

the outermost rectangles to each other, as shown in Figure 2.)

Given this template, we construct a Jordan curve Γ as an intersection Γ = ∩nΓn of

compact connected sets each consisting of a countable union of rectangles, polygonal

arcs and copies of the Cantor set K. The steps of the construction are controlled by

the choice of a subtree T of NN, and is designed so that Γ will be A-removable if and

only if T is well-founded.

So suppose T is fixed. The construction always starts with a copy of Γ0 that has

two short polygonal arcs added at the far left and far right, to join the upper and

lower halves of the template set, making it connected. These are shown in Figure 2,

but are given in several of the following figures.

We will induct over levels of the tree, starting at the root vertex (labeled by the

empty string) and at each stage of the construction, we will have a set Γn consisting

of a countable collection of rectangles joined by polygonal arcs and accumulating on

translates of the set K. At the nth stage, each rectangle R is labeled by a n-long

string of positive integers that is a label of some vertex v of the tree T . To go from

Γn to Γn+1,we replace each rectangle R in Γn by a rescaled copy of the template

(rescaled affinely to exactly fit into R). If vertex v is a leaf of T (i.e., it has no

children), then every rectangle R′ in the rescaled copy of the template is replaced by

a pair of horizontal line segments that connect the vertical sides of R′ exactly at the

points where arcs of the template connect R′ to other rectangles in the template. If

v is not a vertex then there is a set of positive integers that when appended to the

label of v give labels of its children. For the template rectangles corresponding to

these integers we leave the rectangle alone. For the other integers (those that do not

correspond to children of v, we replace the corresponding rectangles with horizontal
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line segments, as above. Doing this for every rectangle in Γn gives a closed connected

subset Γn+1 ⊂ Γn.

The simplest case is when the tree T has only one vertex (labeled by the empty

string). Then every rectangle of the template Γ0 is replaced by pair of horizontal

segments. The result is illustrated in Figure 3. Here, Γ1 is a closed Jordan curve

that is a countable union of polygonal arcs and two copies of the Cantor set K, and

is clearly an A-removable set.

Figure 3. The curve corresponding to the 1-vertex tree, labeled by
the empty string. This is a countable union of line segments and two
linear Cantor sets and hence is A-removable. It is the “simplest” curve
in our collection.

The next easiest case is when we have a rooted 2-vertex tree, say with root labeled

by the empty string and the single leaf labeled by “1”. If we replace the four rectangles

in Γ0 that correspond to the integer “1” with rescaled copies of Γ0, the result is shown

in Figure 4. Any curve that corresponding to a tree that contains the edge connecting

the root to vertex “1”, will be the a subset of the illustrated set. When T consists only

of this one edge, then every rectangle in Figure 4 is replaced by a pair of horizontal

edges, giving the closed Jordan curve shown in Figure 5. If the second vertex were

labeled “k” instead, the replacements would occur in corresponding columns of the

template.
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Figure 4. The four rectangles corresponding to “1” in the template
have been replaced by rescaled copies of the template. Any curve con-
taining the vertices {∅, 1} will contain these arcs.

Figure 5. The curve corresponding to the tree with vertices {∅, 1}.

Finally, we have to observe that the resulting curve is A-removable if and only if

the associated tree T is well-founded. If T is well-founded, then the final curve is
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Figure 6. The curve corresponding to the tree with vertices {∅, 1, 2}.
There are countably many segment and 10 copies of the linear Cantor
set K.

a countable union of line segments and linear Cantor sets and hence is A-removable

by one direction of Carleson’s theorem. If T has an infinite branch then the curve

contains a copy of E × K, where E is a Cantor set depending on the branch, and

thus it is non-A-removable by other direction of Carleson’s theorem.

The map from trees to curves is continuous from the product topology to the

Hausdorff metric because if two trees have the same set of vertices in [1, . . . , N ]N

then the two curves will agree except on a union of rectangles with small diameter

(tending uniformly to zero with N) and each contains at least one point inside each

of these rectangles; thus the curves are close in the Hausdorff metric. Therefore the

set of well-founded trees is the preimage of the set of A-removable curves under a

continuous map from trees into the hyperspace of [−1, 1]. Hence this collection of

A-removable curves is co-analytic complete and, in particular, it is not Borel. �
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8. CH-removable sets are co-analytic complete

The following is due to Fred Gehring [21] in 1960. We include a proof for the

reader’s convenience.

Lemma 8.1. For compact sets E ⊂ [0, 1], E × [0, 1] is CH-non-removable if and

only if E is uncountable.

Proof. If E is compact and uncountable then it supports positive, finite, non-atomic

measure µ. By restricting µ to an appropriate subset set E0 of zero Lebesgue measure

and multiplying by an appropriate constant we may assume µ is singular to Lebesgue

measure, is supported in an interval J = [a, b] ⊂ [0, 1], has total mass equal to half

the length of J . Fix a constant c ∈ [0, 1] and define hc(x) = x outside J and

hc(x) = x+ c

(
∫ x

0

dµ(t)−
x− a

2

)

,

inside J . It is easy to check this is a homeomorphism that is linear with slope 1− c
2

on each component of J \ E0. On the other hand, hc maps E0 to a set of length

cℓ(J)/2 > 0. Let g(y) = max(0, 1
2
− |x− 1

2
|) and define

F (x, y) = (hg(y)(x), y).

See Figure 7. This is a homeomorphism of the plane that is the identity off J × [0, 1],

and for any component K of J \E0 F is a skew linear map on J × [0, 1
2
] and J × [1

2
, 1]

with uniformly bounded dilatation. Thus F is quasiconformal off E0 × [0, 1]. It

is not quasiconformal on the whole plane because the zero length set E0 × {y} is

mapped to a set of positive length for each 0 < y < 1, and thus E0 × [0, 1] is a set

of zero area that is mapped to positive area; this is impossible for quasiconformal

maps, see e.g., [2]. Using the measurable Riemann mapping theorem, we can find a

quasiconformal mapping ϕ of the whole plane so that ϕ◦F is conformal off E× [0, 1]

but not quasiconformal everywhere, hence not conformal everywhere. Thus E× [0, 1]

is CH-non-removable.

If E is C-non-removable with witness f and if z0 6∈ E, then

g(z) = f(z)− f(z0)/(z − z0)
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Figure 7. If E is a Cantor set there is homeomorphism h of C that
is quasiconformal off E × [0, 1] and maps E × [0, 1] to a set of positive
area. This can’t happen if E has zero length and h is quasiconformal
on the whole plane.

is continuous and bounded on the plane and holomorphic off E, so E is also A-non-

removable. If E is compact and countable, then Carleson’s Theorem 6.2 show that

E × [0, 1] is A-removable, and the previous sentence implies E is CH-removable. �

Corollary 8.2. CH-removable sets in S = [0, 1]2, are co-analytic complete in 2S.

The proof is the same as for A-removable sets, except using Gehring’s result in

place of Carleson’s. On the other hand, I have been unable to give an analogous

construction to Theorem 7.1:

Question 1. Are the CH-removable curves co-analytic complete?

One approach to this question would be to use a theorem of Robert Kaufman [29],

who proved that whenever E ⊂ [0, 1] is compact and uncountable, E× [0, 1] contains

the graph of a continuous function f defined on E that is a CH-non-removable set.

Extending f to be continuous on R and linear on the complementary intervals of

E, gives a graph that is Jordan curve containing a CH-nonremovable graph, and

hence is non-removable itself. Thus we might try to prove CH-removable curves are

co-analytic complete by mapping trees to graphs of continuous functions (instead

of product sets) and using Kaufman’s theorem (instead of Carleson’s or Gehring’s).

However, I have not yet seen how to make this work.

The difficulty is that Kaufman’s construction starts by choosing a positive, non-

atomic measure µ (all points have mass zero) on the uncountable set E ⊂ I = [0, 1].
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So it seems that we need a Borel map from trees to probability measures so that

the non-well-founded trees are the preimage of the non-atomic measures. However,

it is easy to see that the non-atomic measures are co-analytic in P ([0, 1]), so such a

map is impossible, since the preimage of a co-analytic set under a Borel map must

be co-analytic. The space P (I) of probability measures on I = [0, 1] can be made

into a Polish space using the dual Lipschitz metric

d(µ, ν) = sup
f

|

∫

fdµ−

∫

fdν|,

where the supremum is over all 1-Lipschitz functions. This metrizes the weak* topol-

ogy on measures; see Appendix A.3 of [11].

Question 2. Are CH-removable continuous graphs co-analytic complete in 2S?

We also recall some questions from the introduction:

Question 3. Do CH-removable sets form a σ-algebra? Is the union of two CH-

removable sets removable?

Recently, Dimitrios Ntalampekos [39] has suggested a characterization of CH-

removable sets that is closely related to the characterization of S-removable sets due

to Ahlfors and Beurling. Given two continua F1, F2 inside an open planar domain Ω,

we consider the family Γ of rectifiable paths connecting F1 to F2. Given set E ⊂ C,

we can consider the sub-family ΓE of Γ consisting of paths that miss E. If for every

Ω, F1, F2 as above, the extremal length of ΓE is the same as the extremal length of

Γ then we say E is negligible for extremal distances, or “NED” for brevity. Ahlfors

and Beurling [1] proved that a compact set E is S-removable if and only if it is NED.

Ntalampekos calls a set CNED (countably negligible for extremal distances) if Γ

always has the same extremal length as the sub-family consisting of paths that hit

E in at most countably many distinct points (we do not care how often each point

of E is hit by a path). In [39] he shows that several known families of CH-removable

sets are special cases of CNED sets, and conjectures that closed CNED sets are the

same as CH-removable sets.
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9. How hard is conformal welding?

We recall some definitions from the introduction. If Γ is a closed Jordan curve in the

plane, the Riemann mapping theorem gives conformal maps f and g from the inside

and outside of the unit circle to the inside and outside of Γ. By Carathéodory’s

theorem these maps extend to be homeomorphisms of T to Γ (this was actually

first proven by his student Marie Torhorst in her 1918 doctoral dissertation using

Carathéodory’s theory of prime ends, so perhaps it is more appropriate to call it the

Carathéodory-Torhorst theorem; see [45] for some of the history). Thus h = g−1 ◦ f :

T → T is a homeomorphism, and circle homeomorphisms that arise in this way are

called conformal weldings.

Not every homeomorphism is a welding. Consider the graph of sin(1/x) for x 6= 0,

together with the limiting segment [−i, i]. See Figure 8. This is closed set X dividing

the plane into two simply connected domains and one can show that the conformal

maps form either side of T to either side of X still define a circle homeomorphism h.

However, h cannot correspond to any Jordan curve Γ; if it did, one could conformally

map the two sides of X to the two sides of Γ so that the maps agree along the graph

of sin(1/x). Since this smooth curve is removable for conformal homeomorphisms

the map extends to be conformal from the complement [−i, i] to the complement

of a point. Since the complement of the segment is conformally equivalent to the

unit disk, we would get conformal map between the disk and the plane, which would

violate Liouville’s theorem. Thus this homeomorphism is not a conformal welding.

f f

gg

1

1

2

2

Figure 8. An example of a non-welding homeomorphism. If f1, g1
map the two sides of T to the two sides of a sin(1/x) curve γ, then
h = g−1

1 ◦ f1 is a homeomorphism, but is not a conformal welding, as
explained in the text.
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It is a long standing, and apparently very difficult, problem to characterize confor-

mal weldings among circle homeomorphisms. We explained in Section 7 that circle

homeomorphisms are a Gδ set in C(T,T), and hence a Polish space.

Question 4. Are conformal weldings Borel in the space of circle homeomorphisms?

It’s not hard to show

Lemma 9.1. The set of conformal weldings is analytic in Homeo(T,T).

Proof. Briefly, each closed curve gives a conformal welding and the mapping is con-

tinuous, so conformal weldings are the continuous image of a Polish space, hence

analytic. However, there is actually a family of conformal weldings associated to

each curve, so we have to be slightly more careful.

For each 1-to-1 map γ : T → C (the parameterization of a closed Jordan curve),

let Fγ ⊂ C(C,C) be the homeomorphisms of the plane that are holomorphic on D

and map T to Γ = γ(T), and let Gγ ⊂ C(C,C) be the homeomorphisms that are

analytic outside Γ and map Γ to T. Then, since uniform limits of holomorphic func-

tions are holomorphic, {(γ,Fγ ,Gγ)} is a closed set inside the product Homeo(T,C)×

Homeo(C,C) × Homeo(C,C). Map this closed set into T × T × T by (γ, f, g) 7→

(z, f(γ(z)), g(γ(x))). The projection of the image onto the latter two coordinate is

the graph of a conformal welding homeomorphism, and every welding occurs for some

choice of (γ, f, g) so the set of conformal weldings is the continuous image of a closed

set in a product of Polish spaces, hence is analytic. �

The best known sufficient condition for being a conformal welding (due to Pfluger

[42]) is quasisymmetry: h is M -quasisymmetric if

1

M
≤

|f(I)|

|f(J)|
≤ M,

whenever I, J are adjacent arcs on T of the same length, and |I| denotes the length of

an arc. For a fixed M , this is clearly a closed condition, so taking M → ∞ along the

integers shows quasisymmetric homeomorphisms are a Fσ set inside Homeo(T,T).

Quasisymmetric weldings correspond precisely to closed curves that are quasicircles.

i.e., images of the unit circle under quasiconformal maps of the plane. There are

numerous characterizations of this class of curves, e.g., any two points z, w ∈ γ
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are connected by a subarc with diameter bounded by by O(|z − w|). See [2]. It is

easy to see M -quasisymmetric maps are nowhere dense, so the set of quasisymmetric

homeomorphisms is first category in the space of all circle homeomorphisms.

A more recent (and somewhat more obscure) sufficient condition is that h be log-

singular, i.e., that there exist a set E ⊂ T of logarithmic capacity zero so that T\f(E)

also has logarithmic capacity zero. In [10] it is proven that h is log-singular if and only

if the curve is flexible; this implies that the set of curves corresponding to h is dense

in the space of all closed curves with the Hausdorff metric. See [10] for the precise

definition. Quasisymmetric and log-singular circle homeomorphisms are easily seen to

be disjoint sets (QS homeomorphisms preserve sets of zero logarithmic capacity). Re-

cently, Alex Rodriguez proved that any circle homeomorphism is the composition of

two log-singular homeomorphisms, and hence any circle homeomorphism is the com-

position of two conformal weldings [46]. However, his proof decomposes even “nice”

homeomorphisms as the composition of two highly singular maps. Is this necessary?

Can a homeomorphisms with some given modulus of continuity be decomposed into

welding with similar estimates?

Question 5. Is any bi-Hölder circle homeomorphism the composition of bi-Hölder

welding maps?

If γ is a closed curve with complementary components Ω1,Ω2, we say x ∈ γ is

rectifiable accessible from Ωk, k = 1, 2 if it is the endpoint of a rectifiable curve in

Ωk. By a result of Gehring and Hayman ([22] or Exercise III.16 of [20]) this occurs iff

the hyperbolic geodesic ending at x has finite Euclidean length. A result of Charles

Pugh and Conan Wu [43] says there is a residual set of closed curves γ so that no

point on γ is rectifiably accessible from both sides at once. In their terminology, γ in

not pierced by any rectifiable arc. By a result of Beurling the set of points that are

not rectifiably accessible from Ωk, k = 1, 2 is the image of zero logarithmic capacity

set on T under any conformal map D → Ωk; see [7], Exercise III.23 of [20], or [5]. If

follows that every curve in this Gδ set has a conformal welding that is log-singular.

Theorem 9.2. The collection of CH-non-removable closed curves is residual in the

space of all closed Jordan curves.
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Question 6. Is the set of log-singular homeomorphisms residual in the space of all

circle homeomorphisms?

Question 7. What is the Borel complexity of the log-singular homeomorphisms?

It is not hard to show that they are at least analytic: h is log-singular if for

every n ∈ N there is a compact set such that both E and h(Ec) have logarithmic

capacity less than 1/n (Lemma 11 of [10]). Thus the log-singular maps are a countable

intersection of projections of the Borel sets {(h,E) : cap(E), cap(h(Ec)) < 1/n} in

Homeo(T,T)× 2T. Can analytic be improved to Borel?

Recall that we say Γ′ is a CH-image of Γ if Γ′ = f(Γ) where f is a homeomorphism

of the sphere that is conformal off Γ. We will say this is a strict CH-image if f is

not a Möbius transformation, and say it is a very strict CH-image if f(Γ) is not a

Möbius image of Γ. It is tempting to say that a strict image is also very strict, but

this is not true. Maxime Fortier Bourque pointed out that the image of Γ under a

non-Möbius homeomorphism of the sphere might coincidentally agree with its image

under some Möbius map. Moreover, Malik Younsi [53] has constructed a curve with

a strict CH-image that agrees with itself. In Younsi’s example, there are also very

strict CH-images that are not Möbius images, so it is possible that a very strict

image exits whenever a strict image does.

Question 8. Is the map from (equivalence classes of) curves to (equivalence classes

of) conformal weldings 1-to-1 exactly on the CH-removable curves?

I expect this is true. The following is a stronger version.

Question 9. Does every CH-non-removable curve have a CH-image of positive area?

The following special case may be easier.

Question 10. Does every log-singular circle homeomorphism have an associated

curve of positive area?

Question 11. Is the map from equivalence classes of curves to equivalence classes

of weldings always either 1-to-1 or uncountable-to-1?

Question 12. Are CH-images of a curve a connected set in the Hausdorff metric?
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If a curve has positive area, then by scaling a non-zero dilatation supported on the

curve, we can produce a 1-parameter family of non-removable curves, none of which

is a Möbius image of the others.

Question 13. Is there a 1-parameter family of zero-area, non-CH-removable curves

that is continuous in the Hausdorff metric, so that no element is a Möbius image of

any other member of the family?

Question 14. The CH-images of a flexible curve are dense in the space of closed

Jordan curves, and hence are not a closed set. Is it Borel? (It must be analytic.) Is

it connected? Can it be totally disconnected? (Not if the answer to Question 10 is

yes.)

Yet another sufficient condition for being a welding map is given in Guy David’s

paper [16]. Roughly, it says that h is a welding if it has diffeomorphic extension H

to the disk whose dilatation µ = Hz/Hz satisfies |µ| > 1 − ǫ only on a set of area

O(exp(−O(1/ǫ))). These are also called trans-quasiconformal homeomorphisms. Are

these a Borel subset of all circle homeomorphisms? See also Lehto’s solution of

certain degenerate Beltrami equations in [35]. Both David’s and Lehto’s approaches

are discussed in [4].

10. What are natural ranks for removable sets?

This section requires greater familiarity with the transfinite ordinals than did ear-

lier sections. Very briefly, each ordinal is a well ordered set (each element has a

successor, although some elements have no predecessor). The ordinals themselves are

well ordered and there is a first well ordering of an uncountable set, which is denoted

ω1. Every ordinal that becomes before ω1 is, by definition, the well ordering of some

countable set. The continuum hypothesis is the claim that ω1 = c, where c is the

cardinality of R, and is well known to be independent of ZFC.

If X is Polish and A ⊂ X is co-analytic, then there is always a co-analytic rank on

A. This is a function ρ on X that assigns each each point of X to some ordinal ≤ ω1

and such that

(1) A = {x ∈ X : ρ(x) < ω1},

(2) {(x, y) ∈ A× A : ρ(x) < ρ(y)} is co-analytic in X ×X,
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(3) {(x, y) ∈ A× A : ρ(x) ≤ ρ(y)} is co-analytic in X ×X.

Given such a function ρ, one can show that for every countable ordinal α, every set

Aα = {x ∈ A : ρ(x) ≤ α} is a Borel set and every analytic subset of A is contained in

some Aα. Moreover, A is Borel if and only if every co-analytic rank of A is bounded

above by some countable ordinal.

The standard example (dating back to Cantor and motivating his invention of

transfinite ordinals) involves the derived sets of a compact set in R. Given a compact

K, the derived set K ′ is K with it isolated points removed; this is a compact subset

of K, with at most countably many point removed. If K was finite then K ′ = ∅, and

otherwise we can repeat the process to get the second derived set K ′′. Continuing, we

get a nested sequence of sets that either becomes empty after n < ∞ steps (in which

case we set ρ(K) = n) or we get an infinite, strictly decreasing sequence of nested

compact sets whose intersection is a non-empty compact set Kω. If the derived set

of Kω is empty, then set ρ(K) = ω, and otherwise continue as before. We proceed

with this using transfinite induction. If K is countable, then since we remove at least

one point at each stage, we must reach the empty set at some countable ordinal, and

take this ordinal to be the rank of K. Since we remove only countably many points

at each stage, starting with an uncountable sets never gives the empty set at any

countable ordinal. For such sets the rank is defined to be ω1. This defines a rank for

the co-analytic set of countable, compact subsets of [0, 1].

In [32] Kechris and Woodin describe a natural rank on the set of everywhere differ-

entiable functions in C([0, 1]). See also [33], [34], [44], for comparisons between their

rank and other ranks on the same set. A thesis of [32] is that “natural” co-analytic

sets should have natural ranks.

Question 15. What is a natural rank on the space of conformally removable sets?

For the special case of product sets E × [0, 1] with E countable, we can just take

the usual rank on countable compact sets described above.

Question 16. Can the derived set rank on E × [0, 1] be extended to a co-analytic

rank on all removable sets in [0, 1]2?
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