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Abstract. We show that any planar straight line graph with n vertices has a con-
forming triangulation by O(n2.5) nonobtuse triangles (all angles ≤ 90◦), answering
the question of whether any polynomial bound exists. A nonobtuse triangulation
is Delaunay, so this result also improves a previous O(n3) bound of Eldesbrunner
and Tan for conforming Delaunay triangulations of PSLGs. In the special case that
the PSLG is the triangulation of a simple polygon, we will show that only O(n2)
triangles are needed, improving an O(n4) bound of Bern and Eppstein. We also
show that for any ǫ > 0, every PSLG has a conforming triangulation with O(n2/ǫ2)
elements and with all angles bounded above by 90◦ + ǫ. This improves a result of
S. Mitchell when ǫ = 3

8
π = 67.5◦ and Tan when ǫ = 7

30
π = 42◦.
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1. Introduction

A planar straight line graph Γ (or PSLG from now on) is the disjoint union of a

finite number (possibly none) of non-intersecting open line segments (called the edges

of Γ) together with a disjoint finite point set (the vertices of Γ) that includes all the

endpoints of the line segments, but may include other points as well.

If V is a finite point set in the plane, a triangulation of V is a PSLG with vertex

set V and a maximal set of edges. If Γ is a PSLG with vertex set V , then a conforming

triangulation for Γ is a triangulation of a point set V ′ that contains V and such that

the union of the vertices and edges of the triangulation covers Γ. We allow V ′ to be

strictly larger than V ; in this case V ′ \ V are called the Steiner points. We want

to build conforming triangulations for Γ that have small complexity (the number of

triangles used) and good geometry (the shape of each triangle; no angles too large or

too small), but these two goals are often in conflict. In this paper, we are interested

in finding the best angle bounds on the triangles that allow us to polynomially bound

the number of triangles needed in terms of n, the number of vertices of Γ.

If we triangulate a 1×r rectangle into a fixed number of elements, it is easy to check

that some angles must tend to zero as r → ∞, so there is no uniform, strictly positive

lower angle bound possible, if we want the number of triangles to be bounded only

in terms of the number of vertices of the given PSLG. Since the angles of a triangle

sum to 180◦, if we had an upper bound of 90◦ − ǫ on the angles of a triangulation,

then we also have a 2ǫ lower angle bound. Therefore, no upper bound strictly less

than 90◦ is possible. Thus nonobtuse triangulation (all angles ≤ 90◦) is the best

we can hope for.

In 1960 Burago and Zalgaller [15] showed that any polyhedral surface has an acute

triangulation (all angles < 90◦), but without giving a bound on the number of

triangles needed. This was used as a technical lemma in their proof of a polyhedral

version of the Nash embedding theorem. In 1984 Gerver [25] used the Riemann

mapping theorem to show that if a polygon’s angles all exceed 36◦, then there exists

a dissection of it into triangles with maximum angle 72◦ (in a dissection, adjacent

triangles need not meet along an entire edge). In 1988 Baker, Grosse and Rafferty [2]

again proved that any polygon has a nonobtuse triangulation, and their construction

also gives a lower angle bound. As noted above, in this case no complexity bound in
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terms of n alone is possible, although there is a sharp bound in terms of integrating

the local feature size over the polygon. For details, see [7], [40] or the survey [18].

A linear bound for nonobtuse triangulation of point sets was given by Bern, Epp-

stein and Gilbert [7], and Bern and Eppstein [6] gave a quadratic bound for simple

polygons with holes (this is a polygonal region where every boundary component is

a simple closed curve or an isolated point). Bern, Dobkin and Eppstein [4] improved

this to O(n1.85) for convex domains. Bern, S. Mitchell and Ruppert [9] gave a O(n)

algorithm for nonobtuse triangulation of simple polygons with holes in 1994 and their

construction uses only right triangles. We shall make use of their result in this paper.

These and related results are discussed in the surveys [5] and [10]. Other papers that

deal with algorithms for finding nonobtuse and acute triangulations include [20], [33],

[35], and [37]. Giving a polynomial upper bound for the complexity of nonobtuse tri-

angulation of PSLGs has remained open (e.g., see Problem 3 of [5]). We give such a

bound by proving:

Theorem 1.1. Every PSLG with n vertices has a O(n2.5) conforming nonobtuse

triangulation.

Maehara [36] showed that any nonobtuse triangulation using N triangles can be

refined to an acute triangulation (all angles < 90◦) with O(N) elements. A different

proof was given by Yuan [55]. In our proof of Theorem 1.1 the triangulation will

consist of all right triangles, but the arguments of Maehara or Yuan then show the

theorem also holds with an acute triangulation, at the cost of a larger constant in the

O(n2.5). As noted above, simple examples give a quadratic lower bound for PSLGs

(see [6]), so a gap remains between our upper bound and the worst known example.

However, this gap can be eliminated in some special cases, e.g.,

Theorem 1.2. A triangulation of a simple n-gon has a O(n2) nonobtuse refinement.

This improves aO(n4) bound given by Bern and Eppstein [6]. We can also approach

the quadratic lower bound if we consider “almost nonobtuse” triangulations:

Theorem 1.3. Suppose θ > 0. Every PSLG with n vertices has a conforming trian-

gulation with O(n2/θ2) elements and all angles ≤ 90◦ + θ.

This improves a result of S. Mitchell [38] with upper angle bound 7
8
π = 157.5◦ and

a result of Tan [47] with 11
15
π = 132◦.
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A triangulation is called Delaunay if whenever two triangles share an edge e, the

two angles opposite e sum to 180◦ or less. If all the triangles are nonobtuse, then this

is certainly the case, so Theorem 1.1 immediate implies

Corollary 1.4. Every PSLG with n vertices has a O(n2.5) conforming Delaunay

triangulation.

This improves a 1993 result of Edelsbrunner and Tan [19] that any PSLG has a

conforming Delaunay triangulation of size O(n3). Conforming Delaunay triangula-

tions for Γ are also called Delaunay refinements of Γ. There are numerous papers

discussing Delaunay refinements including [18], [21], [39], [40], [41] and [45]. The

argument in this paper does not seem to give a better estimate for Delaunay triangu-

lations than for nonobtuse triangulations, nor does the proof appear to simplify in the

Delaunay case. Finding an improvement (either for the estimate or the argument) in

the Delaunay case would be extremely interesting.

An alternative formulation of the Delaunay condition is that every edge in the tri-

angulation is the chord of an open disk that contains no vertices of the triangulation.

We say the triangulation is Gabriel if every edge is the diameter of such disk. It is

easy to check that a nonobtuse triangulation must be Gabriel, so we also obtain a

stronger version of the previous corollary:

Corollary 1.5. Every PSLG with n vertices has a O(n2.5) conforming Gabriel tri-

angulation.

Given a finite planar point set V , and a point v ∈ V , the Voronoi cell corre-

sponding to v is the open set of points that are strictly closer to v than to any other

point of V . The union of the boundaries of the all the Voronoi cells is called the

Voronoi diagram of V . In [42], it is shown that given a nonobtuse triangulation

with N elements, one can find a set of O(N) points so that the Voronoi diagram of

the point set covers all the edges of the triangulation. Thus we obtain

Corollary 1.6. For every PSLG Γ with n vertices, there is a point set S of size

O(n2.5) whose Voronoi diagram covers Γ.

The authors of [42] were interested in a type of machine learning called “nearest

neighbor learning”. Given Γ and S as in the corollary, and any point z in the plane,
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we can decide which complementary component of Γ z belongs to by finding the

element w of S that is closest to z; z and w must belong to the same complementary

component of Γ. Thus the corollary says that a partition of the plane by a PSLG

of size n can be “learned” from a point set of size O(n2.5). This answers a question

from [42] asking if a polynomial number of points always suffices.

Acute and nonobtuse triangulations arise in a variety of other contexts. In recre-

ational mathematics one asks for the smallest triangulation of a given object into

acute or nonobtuse pieces. For example, a square can obviously be meshed with

two right triangles, but less obvious is the fact that it can be acutely triangulated

with eight elements but not seven; see [16]. For further results of this type see [23],

[24], [26], [27], [28], [29], [30], [31], [43], [56], [57], [58], the 2002 survey [60] and the

2010 survey [59]. There is less known in higher dimensions, but recent work has

shown there is an acute triangulation of R3, but no acute triangulation of Rn, n ≥ 4

[14], [32], [34], [50], [51], [52]. Finding polynomial bounds for conforming Delaunay

tetrahedral meshes in higher dimensions remains open.

In various numerical methods involving meshes, a nonobtuse triangulation fre-

quently gives simpler and better behaved algorithms. For example, in [54] Vavasis

bounds various matrix norms arising from the finite element method in terms of the

number n of triangulation elements; for general triangulations his estimate is exponen-

tial in n, but for nonobtuse triangulations it is only linear in n. Other examples where

nonobtuse or Delaunay triangulations give simpler or faster methods include: discrete

maximum principles [12], [17], [53]; Stieltjes matrices in finite element methods [13],

[46]; convenient description of the dual graph [8]; the Hamilton-Jacobi equation [3];

the fast marching method [44]; the tent pitcher algorithm for meshing space-time [1],

[48], [49].

The ideas in this paper are used in a companion paper [11] to obtain conforming

quadrilateral meshes for PSLGs that have optimal angle bounds and optimal worst

case complexity. The precise statement from this paper used in [11] is Lemma 13.1;

this follows from a slight modification of the proof of Theorem 1.3. The result ob-

tained in [11] says that every PSLG has an O(n2) conforming quadrilateral mesh

with all angles ≤ 120◦ and all new angles ≥ 60◦. The angle bounds and quadratic

complexity bound are both sharp.



NONOBTUSE TRIANGULATIONS OF PSLGS 5

Many thanks to Joe Mitchell and Estie Arkin for numerous conversations about

computational geometry in general and the results of this paper in particular. Also

thanks to two anonymous referees for many helpful comments and suggestions on two

earlier versions of the paper; their efforts greatly improved the presentation in this

version.

In Section 2 we recall a theorem of Bern, Mitchell and Ruppert [9] that connects

nonobtuse triangulation to finding Gabriel edges, and we sketch the proof of this

result in Section 3. In Section 4 we use their theorem to give a simple proof of

Theorem 1.2. In Sections 5-8 we discuss propagation paths, dissections and return

regions; these are used in the proofs of both Theorems 1.1 and 1.3. Sections 9–12 give

the proof of Theorem 1.3 and Section 13 summarizes facts from the proof that are

used in the sequel paper [11]. Section 14 gives an overview of the proof of Theorem

1.1 and Sections 15–21 provide the details.

2. The theorem of Bern, Mitchell and Ruppert

Given a point set V and two points v, w ∈ V , the segment vw is called a Delaunay

edge if it is the chord of some open disk that contains no points of V and is called a

Gabriel edge if it is the diameter of such a disk (see [22]). We will call a PSLG Γ

with vertex set V and edge set E Gabriel if every edge in E is Gabriel for V . Given

a PSLG which is not Gabriel, can we always add extra vertices to the edges, making

a new PSLG that is Gabriel? We are particularly interested in the case when P = T

is a triangle. See Figure 1.

Figure 1. A triangle that is not Gabriel and one way to add points
so that it becomes Gabriel.

The connection between Gabriel triangles and nonobtuse triangulation is given by

the following result of Bern, Mitchell and Ruppert [9]. Suppose T is a triangle with
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three vertices V0 = {a, b, c} and suppose V is a finite subset of the edges of T . Then

T \ (V0 ∪V ) is a finite union of segments and we let V ′ denote the midpoints of these

segments.

Theorem 2.1. Suppose we add N points V to the edges of a triangle T , so that the

triangle becomes Gabriel. Assume further that no point of the interior of T is in more

that two of the Gabriel disks. Then the interior of T has a nonobtuse triangulation

consisting of O(N) right triangles and the triangulation vertices on the boundary of

T are exactly the vertices of T and the points in V and V ′.

This follows from the proof in [9], but this precise statement does not appear there,

so in the next section we will briefly describe now to deduce Theorem 2.1 from the

arguments in [9].

We say that one triangulation T1 is a refinement of another triangulation T2, if

each triangle in T2 is a union of triangles in T1. If Γ is a PSLG that is a triangulation

and we add enough points to the edges of Γ to make every triangle Gabriel, then the

resulting nonobtuse refinements of each triangle agree along any common edges (the

set of boundary vertices is e∩ (V ∪ V ′) for both triangles with edge e). Thus we get:

Corollary 2.2. Suppose that Γ is a planar triangulation with n elements, and that

we can add N vertices to the edges of Γ so that every triangle becomes Gabriel. Then

Γ has a refinement consisting of O(n+N) right triangles.

It is fairly easy to see that we can always add a finite number of vertices and

make each triangle Gabriel. Thus nonobtuse refinement of a triangulation is always

possible, but the difficulty is to bound N in terms of n. Since any PSLG with n

vertices can be triangulated using O(n) triangles (and the same vertex set), Theorem

1.1 is reduced to

Theorem 2.3. Given any triangulation with n elements we can add O(n2.5) vertices

to the edges so that every triangle becomes Gabriel.

We will prove this for general planar triangulations later in the paper. We start

with the simpler case of triangulations of simple polygons (Theorem 1.2) in Section

4. The key feature of this special case is that the elements of such a triangulation
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form a tree under adjacency (sharing an edge); this fails for general triangulations,

and dealing with this failure is the main goal of this paper.

In Theorem 2.3 we only need to check that each triangle becomes Gabriel, not that

the point set is Gabriel for the whole triangulation. The difference is that in the

first case if we take a disk D with an edge e as its diameter, we only have to make

sure that D does not contain any vertices belonging to the two triangles that have

e on their boundary. In the second case, we would have to check that D does not

contain any vertices at all. This apparently stronger condition follows from the weaker

“triangles-only” condition, but we don’t need this fact for the proof of Theorem 1.1.

3. Sketch of the proof of Theorem 2.1

As noted above, Theorem 2.1 is due to Bern, Mitchell and Ruppert in [9], but the

precise result is not given in that paper. For the convenience of the reader, we briefly

sketch how our statement is deduced using the argument in [9].

The basic idea in [9] is to pack the interior of a polygon P (which in our case is just

a triangle T ) with disks until the remaining region is a union of pieces that are each

bounded by three or four circular arcs, or a segment lying on the polygon’s boundary.

These are called the remainder regions.

Each remainder region R is associated to a simple polygon R+, called the aug-

mented region of R as follows. Each circular arc in the boundary of R lies on some

circle,and we add to R the sector of the circle subtended by this arc. Doing this for

each boundary arc of R gives the polygon R+. See Figure 2.

Figure 2. The light gray is a 3-sided remainder region R and the
dark gray is the corresponding augmented region R+.
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The augmented regions decompose the original polygon into simple polygons and

the authors of [9] show how each augmented region can be meshed with right triangles.

Moreover, the mesh of R+ only has vertices at the vertices of R+ (the centers of the

circles), the endpoints of the boundary arcs (the tangent points between disks) or on

the straight line segments that lie on the boundary of P = T .

We modify their construction first placing the Gabriel disks along the edge of

the triangle, as shown in Figure 3. The disk packing construction of [9] will only

be applied to the part of the triangle outside the Gabriel disks, hence none of the

remainder regions that are formed will have straight line boundary segments on the

boundary of T .

Figure 3. The white points are the set V that makes the triangle T
Gabriel. The Gabriel disks may intersect in pairs, but we assume that
no three of them intersect.

Whenever two Gabriel disks overlap, we place a small disk D near each of the

intersection points of their boundaries. The disk D is tangent to both overlapping

disks and its interior is disjoint from all the Gabriel disks. See Figures 4 and 5 for

two situations where this can occur: the boundaries of the Gabriel disks (which we

call the Gabriel circles) either have two intersections inside T or they have just one

intersection inside T .

Figure 4 shows what happens when the boundaries intersect at two points. We

place two disks near the intersections points (the dashed disks in the figure), and we

form a quadrilateral by connecting the centers of the four circles. This quadrilateral

is then meshed with 16 right triangles as shown in the figure. The overall structure

is shown on the left, and an enlargement is shown on the right. The black point on
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the right where six triangles meet is the common intersection point of three lines:

the line L0 through the two intersection points of the Gabriel circles, and the two

tangent lines l1, l2 between the dashed disk and the the Gabriel disks. It is proven in

[9] that these three lines meet at a single point, as shown. The center of the dashed

circle in Figure 4 is not necessarily on L0 (although it appears this way in the figure).

Figure 5 shows the case when two Gabriel circles have one intersection inside T (and

the other is at vertex of T ). The proof that all the triangles are right is fairly evident

(see [9]).

Figure 4. Gabriel disks whose boundaries intersect twice inside T .
We add tangent disks as shown (dashed) and triangulate as shown. The
picture on the right shows more detail near one of the added disks. The
point where six triangles meet is the intersection of the line through
the intersection points of the Gabriel circles and the two tangent lines
between the added disk and the Gabriel disks.

From this point the proof follows [9]. Lemma 1 of the paper shows that we can

add disjoint disks until all the remainder regions have three or four sides and that

the number of disks added is comparable to the number of Gabriel disks we started

with. See Figure 6.

Because of the Gabriel disks, none of the remainder regions have straight line

boundary arcs, so all the augmented regions are meshed by right triangles whose

vertices are either interior to T or lie in the set V or in the set V ′ (the centers of the

Gabriel disks) and every such point is used. This gives Theorem 2.1.
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Figure 5. Figure 5 is analogous to Figure 4, but shows that case
when two Gabriel circles have a single intersection inside T (the other
is at a vertex of T ). In this case, the mesh is a sub-picture of the
previous case and only uses 10 right triangles.

Figure 6. After adding the disks (dashed) tangent to the intersecting
Gabriel disks, we pack the remaining region with disjoint disks (gray)
until only circular arc regions with three or four sides remain. This
step and the rest of the proof follow the proof in [9] exactly.
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4. Proof of Theorem 1.2

A PSLG γ is a simple polygon if it is a simple closed Jordan curve. Suppose γ is

a simply polygon and {Tk}N1 is a triangulation of γ with no Steiner points. The union

of the edges and vertices of the triangulation is the PSLG Γ in Theorem 1.2. For

each triangle Tk, let Ck be the inscribed circle and let T ′
k ⊂ Tk be the triangle with

vertices at the three points where Ck is tangent to Tk. Note that the arcs between

points of Ck all have angle measure < π, so T ′
k must be acute. These vertices of T ′

k

will sometimes be called the cusp points of Tk. See Figures 7 and 8.

T T
k

kC
k

Figure 7. The definition of Ck and T ′
k.

Figure 8. A triangulation {Tk} of a simple polygon, the inscribed
circles (dashed) and triangles {T ′

k} (shaded).

Also note that Tk \ T ′
k consists of three isosceles triangles, each with its base as

one side of T ′
k and its opposite vertex a vertex of Tk. Foliate each isosceles triangle

with segments that are parallel to its base (foliate simply means to write a region

as a disjoint union of curves). We call these P-segments (since they are “parallel”
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to the base and they will also allow us to “propagate” certain points through the

triangulation).

Given a vertex v of some T ′
k, this point is either on γ (the boundary of the trian-

gulation) or it is on the side of some other triangulation element Tj , j 6= k. In the

first case do nothing. In the second case, either v is also a vertex of T ′
j or it is not.

In the first case, again do nothing. In the second case, build a polygonal path whose

first edge is the P -segment in Tj that has v as one endpoint. The other endpoint is

a point w on a different side of Tj . If w is on γ, or is a vertex of some T ′
i , i 6= j, then

end the polygonal arc at w. Otherwise, w is on the side of some third triangle Ti and

we can add the P -segment in Ti that has one endpoint at w. See Figures 9 and 10.

a

b

dc

Figure 9. A cusp point (vertex of a shaded triangle) can either be on
γ (the boundary of the triangulation), can be a vertex of another shaded
triangle, or neither. In the last case we can “propagate” the vertex
using a P -segment and continue the process until one the first two
conditions holds. Vertices a and b represent the first two possibilities
and vertices c and d both represent the third case; the dashed lines
show how these points propagate until they hit the boundary.

We continue in this way, adding P -segments to our polygonal path until we either

reach a point on the boundary of the triangulation or hit a point that is the vertex

of some triangle T ′
m. We call the path formed by adjoining P -segments a P -path.

Since our triangles come from a triangulation of a simple polygon, they form a tree

under edge-adjacency and so the P -paths starting at the three vertices of T ′
k must

cross distinct triangles and hence can use at most n − 1 segments altogether. Thus
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Figure 10. Here is the same triangulation as in Figure 9 with all
cusp points propagated until they terminate. This refines the triangula-
tion into acute triangles (shaded) and isosceles triangles and trapezoids
(white). We claim the new vertices make all the original triangles
Gabriel.

every P -path must terminate and all the P -paths formed by starting at all vertices

of all the {T ′
k} can create at most n(n− 1) new vertices altogether.

Lemma 4.1. The set U of vertices created by these P -paths crossing edges of {Tk}
makes every triangle Gabriel.

Proof. Note that U contains every vertex of every T ′
k and we also include in U the all

vertices of all the Tk’s. To prove the lemma, consider a segment e that is a connected

component of Tk \U (so e is a diameter of one of our Gabriel disks). Since U contains

the vertices of T ′
k, e lies on a non-base side of one of the three isosceles triangles inside

Tk. If we reflect e over the symmetry axis of this isosceles triangle we get an edge e′

on the other non-base side. Moreover, e′ is also one of the edges created by adding

U to the triangulation, and the disks D, D′ with diameters e and e′ respectively, are

reflections of each other through the symmetry line of the isosceles triangle. Thus

the boundaries of D and D′ intersect, if at all, on the line of symmetry, so D∩ e′ ⊂ e′

and D′ ∩ e ⊂ e. In particular, the open disk D does not contain the endpoints of e′

and vice versa. This implies D can’t contain any of the points of U that lie on the

same side of Tk as e′. Clearly D does not contain any points of U on the side of Tk

containing e′. Finally, D does not contain any points of U that are on the third side

of Tk because D is contained in the disk D′′, centered at the vertex of Tk where the
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sides containing e and e′ intersect and passing through two vertices of T ′
k, and this

disk does not hit the third side of Tk. See Figure 11. �

D

D

Tk
e

e

D

D

Tk

Figure 11. The points where propagation paths cross triangle edges
define Gabriel edges in each triangle. Note that at most two Gabriel
disks can intersect when the cusp points are included in set of endpoints
(the set V in Theorem 2.1).

This argument also shows that two Gabriel disks can only intersect if they lie on

different non-base sides of one of the three isosceles sub-triangles. Thus no three disks

can intersect and the condition in Theorem 2.1 is automatically satisfied whenever

the set V contains the vertices of T ′
k for every k.

Thus for each triangle Tk, the points U∩Tk makes Tk Gabriel. By Theorem 2.1, TK

has a nonobtuse triangulation with only these boundary vertices and using O(#(U ∩
Tk)) triangles. These triangulations fit together to form a nonobtuse refinement of

the original triangulation of size O(#(U) + n) = O(n2), which proves Theorem 1.2.

We can make a slight improvement to the algorithm above. As we propagated each

vertex, we could have stopped whenever the path encountered any isosceles triangle

with angle ≥ 90◦. In this case, the Gabriel condition will be satisfied no matter how

we add points to a non-base sides of the isosceles triangle, since the corresponding

disks don’t intersect the other non-base side of the triangle. See Figure 12. In some

cases this might lead to a smaller nonobtuse triangulation. This observation will also

be used later in the proof of Theorem 1.1, when it will be convenient to assume we

are dealing only with isosceles triangles that are acute.
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Figure 12. P -paths can be stopped when they hit an isosceles tri-
angle with angle ≥ 90◦ since the corresponding Gabriel disks can’t hit
the other sides of the triangle.

5. Dissections and quadrilateral propagation

We now start to prepare for the proofs of Theorems 1.1 and 1.3. The definitions

and results in this and the next three sections will be used in both proofs.

Suppose Ω is a domain in the plane (an open connected set). We say Ω has a

polygonal dissection if there are a finite number of simple polygons (called the

pieces of the dissection) whose interiors are disjoint and contained in Ω and so that

the union of their closures covers the closure of Ω. A mesh is a dissection where

any two of the closed polygonal pieces are either (1) disjoint or (2) intersect in a

point that is a vertex for both pieces or (3) intersect in a line segment that is an

edge for both pieces. See Figure 13 for an example. A dissection is also called a

non-conforming mesh. A vertex of one dissection piece that lies on the interior of

an edge for another piece is called a non-conforming vertex. If there are no such

vertices, then the dissection is actually a mesh.

Given any convex quadrilateral with vertices a, b, c, d (say in counterclockwise or-

der), there is a unique affine map from [a, b] to [c, d] that takes a to d and b to c.

A propagation segment in the quadrilateral is a segment connecting a point in [a, b]

to its affine image point in [c, d] (or connecting a point in [b, c] to its affine image in

[d, a] under the analogous map for that pair of sides). See Figure 14. In a triangle

A,B,C with marked vertex, say A, propagation paths either connect points on [A,B]

to their linear images on [A,C] or they connect any point on [B,C] to the single point



16 CHRISTOPHER J. BISHOP

Figure 13. On the left is a polygon dissected into quadrilaterals
and triangles and on the right is the standard propagation of the non-
conforming vertices until the propagation paths leave the polygon. If
all the paths terminate, this gives a mesh, as described in the text.

A (this is what we would get if we think of the triangle as a degenerate quadrilateral

A,B,C,D with A = D, i.e., one side of length zero).

Given θ > 0, we say a quadrilateral is θ-nice if all the angles are within θ of 90◦.

In this paper we will always assume θ < 90◦ so the quadrilateral is convex. We say a

triangle with a marked vertex is θ-nice if the two unmarked vertices have angles that

are within θ of 90◦.

a

b

c d

A

C

B

Figure 14. Standard propagation segments for a quadrilateral and
a triangle with a marked vertex (A). In both cases, “θ-niceness” is
preserved by cutting a piece into sub-pieces by such segments.

Lemma 5.1. Suppose θ < 90◦ and that Q is a θ-nice quadrilateral. If Q is sub-divided

by a propagation line, then each of the resulting sub-quadrilaterals is also θ-nice.

Proof. Set at = (1 − t)a + tb and ct = (1 − t)d + tc. Let It = [at, ct] be the segment

connecting these points and let θ(t) be the angle formed by the segments [a, b] and It.
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It suffices to show this function is monotone in t. If it were not monotone, then there

would be two distinct values of s, t ∈ [0, 1] where Is and It were parallel. Because

both endpoints move linearly in t, this implies Ir is parallel to Is for all s ≤ r ≤ t.

Because θ(t) is analytic in t, this means it is constant on [0, 1]. Thus θ is either

strictly monotone or is constant; in either case it is monotone, as desired. �

Similarly (but more obviously), when a θ-nice triangle is cut by such a propaga-

tion segment (of either type) the resulting pieces are θ-nice quadrilaterals or θ-nice

triangles.

Lemma 5.2. Suppose Ω has a dissection into θ-nice pieces (triangles and quadrilat-

erals). Suppose that every non-conforming vertex can be propagated so that it reaches

the boundary of Ω or hits another vertex after a finite number of steps. Then the

resulting paths cut the θ-nice dissection pieces into θ-nice triangles and quadrilaterals

that mesh Ω.

The proof is evident since when we are finished, there are no vertices that are

in the interior of any edge of any piece. See Figure 13. What is not so clear is

whether, in general, the propagation paths have to end; in the proof of Theorem 1.2

every propagation path did end within a fixed number of steps, but in general, the

paths may never terminate (see Figure 15) or may only terminate only after a huge

number of steps. Later in this paper we discuss two ways of “bending” the standard

propagation paths so that they terminate within a certain number of steps, and so

that the pieces formed satisfy certain geometric conditions.

6. Isosceles dissections

Next we discuss a special type of polygonal dissection. An isosceles triangle is

a triangle T with a marked vertex v so that the two sides adjacent to v have equal

length. An equilateral triangle can be considered as isosceles in three ways, but we

assume that if such triangles occur, a vertex is specified.

The side opposite v is called the base of T and the other two sides are the non-

base sides of T . The angle of an isosceles triangle will always refer to the interior

angle at the vertex opposite the base edge. A P -segment is a segment in T with

endpoints on the non-base sides that is parallel to the base. This is a special case of
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Figure 15. The upper lefts shows an isosceles dissection of a region.
The horizontal segment is S = [0, 1] and the six vertices shown on this
segment are (left to right) 0, α

2
, 1
2
, α, 1+α

2
, 1. A path started at a point

x ∈ S will visit x−α mod 1 after propagating once through the upper
half-plane and once through the lower half-plane. The upper right and
lower left pictures show a path after 2 visits to the lower half-plane
and 50 visits for α = 1/

√
2. If α is irrational, then the propagation

path becomes dense in the dissected region. When α is rational, the
propagation paths either connect non-conforming vertices or are loops;
the connecting paths give a mesh but there is no uniform bound on
the number of elements. The connecting paths for α = .7 are shown at
lower right; the resulting tubes are filled with P -loops.

the propagation segments for marked triangles in the previous section. We require the

interior of the segment to be in the interior of T , so the base itself is not a P -segment.

We say a triangle is θ-nice if all its angles are bounded above by 90◦ + θ.

An isosceles trapezoid is a quadrilateral that has a line of symmetry that bisects

opposite sides. This is equivalent to saying that there is at least one pair of parallel
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sides (called the base sides) that have the same perpendicular bisector and the other

pair of sides (the non-base sides) have the same length as each other. We allow

rectangles, but in this case we specify a pair of opposite sides as the base sides. The

angle of an isosceles trapezoid is the angle made by the lines that contain the two

non-base sides; we take this to be zero if these sides are parallel (when the trapezoid

is a rectangle). The vertex of the trapezoid is the point where these same lines

intersect (in the case when they are not parallel; otherwise we say the vertex is at

∞). See Figure 16. We say a quadrilateral is θ-nice if all its interior angles are

between 90◦ − θ and 90◦ + θ (inclusive). This is the same as saying the angle of the

trapezoid is ≤ θ.

w

v
θ

Figure 16. An isosceles trapezoid. The base sides are vertical in
this picture. The vertex is the point v and the width w is the length
of the non-base sides. The angle of the trapezoid is θ.

As with isosceles triangles, we can define P -segments in an isosceles trapezoid as

segments in the trapezoid that are parallel to the base sides (again, these correspond

to propagation segments for quadrilaterals). A P -path is a simple polygonal arc

formed by adjoining P -segments end-to-end.

An isosceles piece is either an isosceles triangle or an isosceles trapezoid. We will

use this term when it is unimportant which type of shape it is. When referring to a

base side of an isosceles piece we mean either base side for a trapezoid and the base

side or the opposite vertex for a triangle; the vertex is considered as a segment of

length 0, so when we refer to the length of the smaller base side of an isosceles piece,

we mean zero if the piece is a triangle.

A Q-segment in an isosceles triangle is a segment joining a point of the base

to the vertex opposite the base. The two non-base sides do count as Q-segments,

and we shall also call these the Q-sides of the isosceles triangle. A Q-segment for
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an isosceles trapezoid is a propagation segment that connects the base sides of the

trapezoids. As with triangles, we count the non-base sides as Q-segments and call

these the Q-sides of the trapezoid. The width of the piece is the length of a Q-side

(both Q sides have the same length). It might be more natural to define the width as

the distance between the base sides, but the definition as given will simplify matters

when we later join isosceles pieces to form tubes.

Suppose that Ω is a domain in the plane (an open connected set). As might

be expected, an isosceles dissection of Ω is a finite collection of disjoint, open

isosceles triangles and trapezoids contained in Ω, so that the union of their closures

covers all of Ω. However, we also require that when two pieces have sides with non-

trivial intersection, these sides are both Q-sides. We do this so that in an isosceles

dissection, a P -path can always be continued unless the path hits a vertex of the

dissection, or hits the boundary of the dissected region. A θ-isosceles dissection is

an isosceles dissection where every piece is θ-nice.

For example, Figure 8 in Section 4 shows a triangulated polygon. Let Ω be the part

of interior of the polygon with the (closed) shaded triangles removed; the remaining

white region it is a union of isosceles triangles that only meet along non-base sides.

Thus Ω has an isosceles dissection; note that it is not a mesh since the isosceles

triangles do not always meet along full edges. When we remove the P -paths generated

by propagating the vertices of the central triangles, we obtain a mesh into isosceles

triangles and trapezoids (as required by Lemma 5.2). See Figure 10. We call this an

isosceles mesh.

Figure 15, upper left, shows an isosceles dissection of a region using 18 triangles.

In that example, if α is irrational, then the P -paths never hit the boundary of the

region and can continue forever without terminating. For α rational the P -paths

starting at non-conforming vertices terminate at other non-conforming vertices and

these paths create an isosceles mesh. However, the number of mesh elements depends

on the choice of α and may be arbitrarily large.

In Figure 17, we show an isosceles dissection using only trapezoids, and an isosceles

mesh generated by propagating non-conforming vertices along P -paths.

A chain in a dissection is a maximal collection of distinct pieces T1, . . . , Tk so that

for j = 1, . . . k − 1, Tj and Tj+1 share a Q-side (the sides are identical, not just
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Figure 17. A domainW dissected by isosceles trapezoids and a mesh
generated by propagating non-conforming vertices along P -paths. The
P -sides of the trapezoids are drawn thicker.

overlapping). If a piece in the dissection does not share Q-side with any other piece,

we consider it as a chain of length one. For example, the dissection in Figure 17 has

chains of length 2,4, 5 and 7 and four chains of length 1. The Q-ends of a chain

are the Q-side of T1 not shared with T2, and the Q-side of Tk not shared with Tk−1.

When T1 and Tk also share a Q-side, then the chain forms a closed loop. We will

call this a closed chain (this case is not of much interest to us since no propagation

paths will ever occur inside such a closed chain.)

Suppose T is an isosceles piece. Given θ > 0, a θ-segment is a segment in T with

one endpoint on each non-base side, and so that the segment is within angle θ of

being parallel to the base. We allow one endpoint of a θ-segment to be a vertex of T ,

but the interior of the segment must be contained in the interior of T , so we don’t

consider base sides of T to be θ-segments. A θ-path is a polygonal arc made up of

θ-segments joined end-to-end. We shall sometimes refer to this as a θ-bent path.

Note that if T is an θ-nice isosceles piece that is cut by a P -segment, then it is cut

into two θ-nice isosceles pieces. If it is cut by a θ-segment, then we get two pieces

(triangles or quadrilaterals) that are 2θ-nice (but not isosceles unless θ = 0). See

Figure 18.

We say that a finite set of points on the Q-sides of an isosceles piece make that

piece Gabriel if the following holds. Each Q side is split into several segments by

these points and we require that the open disks with these segments as diameters do

not contain any of the added points or corners of the piece. See Figure 19.
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< θ < θ

Figure 18. A θ-segment (dashed) makes angle at most θ with P -
segments (solid). A θ-path is made up out of θ-segments.

Figure 19. On the left the points make this piece Gabriel, on the
right they do not.

7. Tubes

Two P -paths γ0, γ1 are parallel if each point of γ0 can be connected to a point

of γ1 by a Q-segment (equivalently, the paths cross the same sequence of isosceles

pieces, in the same order). A tube in Ω is the union of two parallel P -paths γ0, γ1

and all the Q segments that connect the first to the second. The P -paths γ0, γ1 are

called the P -sides or P -boundaries of the tube. See Figure 20.

Suppose the endpoints of γ0 and γ1 are {x0, y0} and {x1, y1} respectively and that

[x0, x1] and [y0, y1] are Q-segments. These segments are called the ends or Q-ends

of the tube. These may or may not be disjoint segments. The two ends of a tube

have the same length, and this common length of each of the two Q-ends is called

the width of the tube (a tube can be thought of as a union of isosceles pieces, all

of the same width, joined end-to-end along their Q-sides). The points {x0, y0, x1, y1}
are the corners of the tube (although in some cases, these need not be four distinct
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points in the plane, e.g. pure spirals that we will discuss later). Opposite corners

of a tube mean either the pair {x0, y1} or the pair {x1, y0}. A maximal width tube

is the union of all P -paths parallel to a given one. If a tube is maximal width, then

each of the P -path boundaries contains segments that are bases for at least one piece

that the tube crosses (otherwise we could widen the tube). See Figure 20.

0
y

1y

1γ

0x 1x

0γ

γ

γ

Figure 20. Given a P -path γ that returns to the same Q-segment,
there is an associated widest return region consisting of all parallel
paths. The P -boundary of this tube consists of the two curves γ0, γ1;
by maximality, each must contain a base edge of a dissection piece
(highlighted with darker edges in the figure). The points x0, y1 form
one pair of opposite corners; x1, y0 the other pair. We are interested in
joining opposite corners by a θ-path crossing the tube (dashed curve
connecting x1 to y0).

We say a path strictly crosses a tube if it is contained in the tube and has one

endpoint on each Q-end. We say a path crosses a tube if it contains a sub-path that

strictly crosses the tube. The P -paths that strictly cross a tube can be parameterized

as γt with t ∈ [0, 1] where γ0 and γ1 are the P -sides of the tube as discussed above

and γt has endpoints xt = (1− t)x0 + tx1 and yt = (1− t)y0 + ty1. Moreover

ℓ(γt) = (1− t)ℓ(γ0) + tℓ(γ1),
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where ℓ(γ) denotes the length of a path γ. This formula is obvious for tubes that

have a single isosceles piece, and it follows in general since a sum of affine functions

is affine. The path with t = 1/2 is called the center path of the tube. Note that

ℓ(γ1/2) =
1

2
(ℓ(γ0) + ℓ(γ1)).(7.1)

The length ℓ(T ) of a tube T is the minimum length of the two P -sides, i.e.,

ℓ(T ) = min(ℓ(γ0), ℓ(γ1)).

It is possible for a tube to have length zero, e.g., when all the pieces are triangles

with a common vertex. See the left side of Figure 21.

The length of an isosceles piece is the length of its shorter base edge (zero for

triangles). If a tube T is made up of isosceles pieces {Tk} then it is possible to have

both ℓ(T ) > 0 and and ℓ(Tk) = 0 for all k. See the right side of Figure 21. We define

the minimal-length of a tube to be

ℓ̃(T ) =
∑

ℓ(Tk),

i.e., we sum over the minimal base length for each piece of the tube, whereas ℓ(T ) is

defined by summing over all segments in one P -boundary of the tube or all segments

in the other. Clearly ℓ̃(T ) ≤ ℓ(T ).

Figure 21. On the left is a tube of length zero. On the right is a
tube with positive length, but zero minimal-length.

As noted above, it is possible to have both ℓ̃(T ) = 0 and ℓ(T ) > 0. However, if we

split a tube into two parallel tubes using the center path then this cannot happen for

either sub-tube:

Lemma 7.1. Let Q be a tube and Q1, Q2 the parallel sub-tubes obtained by splitting

Q by its center path γ. Then ℓ(Q) ≤ ℓ(Q1) and ℓ(Q) ≤ 4ℓ̃(Q1).
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Proof. Let γ1 be the common P -boundary of Q and Q1, and γ2 the common P -

boundary of Q and Q2. See Figure 22. By Equation (7.1), the center path γ of Q

has length between the lengths of γ1 and γ2. Thus

ℓ(Q) = min(ℓ(γ1), ℓ(γ2)) ≤ min(ℓ(γ1), ℓ(γ)) = ℓ(Q1).

This is the first inequality in the lemma.

Q

Q

1

2

γ

γ
1

2

γ

Q

Figure 22. The tube Q is split into two parallel tubes Q1, Q2, by its
mid-path γ.

To prove the second inequality, suppose L = ℓ(Q) is the length of the tube Q and

γ1 is the P -boundary shared by Q and Q1. The length of γ1 is the sum of the lengths

of its segments and we group this sum into two parts, depending on whether or not

the segments are the longer or shorter base sides of the corresponding isosceles pieces

in Q (if the piece has equal length bases, its makes no difference in which sub-sum we

place the segment). Call the two sums L0 and L1 where these give the sums over the

shorter edges and longer edges respectively. By definition L = L0 + L1. If L0 ≥ 1
2
L,

then the short sides of Q (and hence the short sides of Q1) add up to at least 1
2
L1. So

in this case ℓ̃(Q1) ≥ 1
2
L ≥ 1

4
L, as desired. If L0 < 1

2
L, then L1 > 1

2
L and hence the

corresponding mid-segments of the pieces add up to 1
4
L (since the mid-segment has

length as least half the longer base side). But these mid-segments are the shorter base

sides of pieces in Q1, so again ℓ̃(Q1) ≥ 1
4
L, as desired. This proves the lemma. �

The P -segments give an identification between the non-base sides of an isosceles

piece that preserves length. The displacement of a θ-segment [a, b] is |p− b| where
[a, p] is a P -segment. It is easy to check that this is unchanged if we reverse the roles
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of a and b. Similarly, the two ends of a tube are identified by an isometry induced

by the parallel P -paths defining the tube. The displacement of a path that strictly

crosses the tube is |b − p| where a, b are the endpoints of the path and the P -path

starting at a hits the other end at p. The most important estimates in the remainder

of the paper involve how much displacement a path can have, given that it satisfies

certain limitations on its “bending” across each isosceles piece. For Theorem 1.3, the

bending is bounded by a fixed angle θ, and for Theorem 1.1 the amount of bending

depends on the piece and is determined by the Gabriel condition.

8. Return regions

In this section we introduce a collection of regions, one of which must be hit by any

P -path that is sufficiently long (in terms of the number of pieces it crosses). We will

classify the regions into four types, and bound the total number of regions needed to

form such an unavoidable collection.

Suppose, as above, that Ω has an isosceles dissection. A return path is a P -path

that begins and ends on the same Q-side of some piece of the dissection, and that

intersects any Q segment at most three times. Figure 23 shows four ways that this

can happen:

C-curve: both ends of γ hit the same side of S and γ∪S separates the endpoints

of S from ∞,

S-curve: γ starts and ends on different sides of S, crossing S exactly once in

between, and this crossing point separates the endpoints of γ on S,

G1-curve: γ starts and ends on different sides of S, crossing S exactly once,

and this crossing point does not separate the endpoints of γ on S,

G2-curve: γ starts and ends on different sides of S with no crossings S.

When we refer to a G-curve, we can mean either a G1 or a G2-curve.

Lemma 8.1. Suppose n is the number of isosceles pieces in an isosceles dissection.

Every P -path γ with 2n+1 segments contains a sub-path that is a return path of one

of the four types described above.

Proof. A P -path γ with 2n+1 segments must cross some dissection piece three times

by the pigeon hole principle. Therefore γ crosses a non-base side S of such a piece at
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Figure 23. A C-curve, S-curve and the two types of G-curve. Each
is named for the letter it vaguely resembles.

least three times. By passing to a sub-path, if necessary, we can also assume γ does

not hit any Q-side more than three times. Suppose that γ does not contain a C-curve

or a G2-curve as a subpath. Then the sub-path between its first and second visit to

S starts and ends on the same side of S and the same for the sub-path between its

second and third visit (but now it starts and ends on the other side of S). Thus the

subpath formed between the first and third visits is either a S-curve or a G1-curve.

Thus one of the four types of curve must occur as a subpath. �

A tube consisting of parallel return paths will be called a return tube and be

called a C-tube, S-tube, G1-tube or G2-tube depending on the type of curves it

contains (clearly all parallel curves must be of the same type). We want to show that

the length of a return tube cannot be too small compared to its width. We do this by

considering the different types of tubes one at a time. We call a return tube a simple

tube if the two ends have disjoint interiors (they may share a corner); otherwise the

region is called a spiral. A C-tube or S-tube must be a simple tube; a G-tube can

be either be a simple tube or a spiral. As the name suggests, simple tubes are easier

to understand and we start with this case. See Figure 24.

Lemma 8.2. The length L of a C-tube is at least twice its width w.

Proof. The ends of a C-tube are disjoint intervals on the same Q-segment S, so the

length of S is at least 2w. But both P -sides of the tube cover S when projected
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y

y
1

x1

Figure 24. A G-region can form a single tube with disjoint ends (a
simple G-tube) or the two ends can overlap (a spiral).

orthogonally onto the line containing S, so both P -sides have length ≥ |S| ≥ 2w.

The length of the tube is the minimum of these two path lengths, so is also ≥ 2w. �

Lemma 8.3. The length L of a S-tube is at least twice its width w.

Proof. Split the S-tube into four sub-tubes as follows. Each P -path in the tube is

cut by a point where it crosses S and this cuts the tube into two sub-tubes that also

have width w, say U1, U2, which meet end-to-end. Each of these are split into two

thinner tubes by the central P -path γ1/2, giving four sub-tubes called U i
1, U

o
1 , U

i
2, U

o
2 ,

e.g., U i
1 is the inner part of U1 and its endpoints on S separate the endpoints of the

outer part U o
1 on S. See Figure 25. Note that the length of the original S-tube is

at least the minimum of the lengths of the two outer tubes (since they each have a

P -boundary contained in the P -boundary of the S-tube).

w

w
Uo

1

Ui
2

Uo
2

U i
1

Figure 25. The outer tubes of a S-tube are shaded.
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However, the endpoints of the outer P -boundary of an outer part are separated by

at least distance 2w, and each P -boundary of S contains the outer P -boundary of

one of its outer parts. Thus both P -boundaries have length at least 2w. �

Lemma 8.4. The length L of a simple G-tube is at least its width.

Proof. Suppose I and J are the ends of the spiral. If we project either P -side of the

tube orthogonally onto S, then it covers either I or J , so both sides of the tube are

longer than the tube is wide. �

Putting together the last three lemmas we get

Corollary 8.5. The length L of a simple return tube is at least its width w. If the

tube is not a G tube, then L ≥ 2w.

The more interesting and difficult return regions are the spirals: G-tubes where

the Q-ends [x0, x1] and [y0, y1] overlap but are not identical.

Suppose S is a spiral return tube and the corners are ordered on S as x0 < y0 <

x1 < y1 and define Q-segments I0 = [x0, y0] and I1 = [x1, y1]. See Figure 26. There is

a P -path in that starts at y0 and ends at a point z in I1 and is composed of P -paths

in the tube joined end-to-end where they cross S.

If z < y1, then we can remove the simple G-sub-tube with Q-end [z, y1] as shown

in Figure 26 (the dark gray tube). What is left after removing this simple tube a

pure spiral, a union of parallel P -paths that each consist of N P -paths from the

original tube. We call N the winding number of the pure spiral (in this notation

a simple tube has winding number one).

Since a pure spiral is made up of N simple G-tubes all with the same width joined

end-to-end, it is clear that the length of a spiral with N windings should be at least

N times its width. However, we can do better than this, since each turn of the spiral

is longer than the previous one.

Lemma 8.6. A pure spiral with N turns and width w has length at least N2w.

Proof. Without loss of generality we may scale the spiral so the width w = 1. Use the

segment [x0, y1] to cut the entire spiral into N simple G-tubes. The first has length

at least w, because both P -boundaries project orthogonally onto one of the Q-ends.

In general, both the parts of the P -boundary paths of the jth sub-tube have length
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Figure 26. A spiral can always be divided into a simple tube
(shaded) and a pure spiral. The pure spiral can be thought of as many
parallel simple G-tubes that don’t cross S, or as one very long tube
that crosses S multiple times. The pure spiral here has five windings.

at least 2j − 1. To see this, consider the curves in each half-plane defined by the

line L through x0, y1, and project orthogonally onto L. The part in one half-plane

projects to a segment of length at least j − 1 and the other to a segment of length

at least j. See Figure 27. Hence the jth tube has length at least 2j − 1. Summing

1 + 3 + 5 + · · ·+ (2N − 1) = N2 gives the result. �

j

j+1

Figure 27. Estimating the length of a G-curve.

The argument proving Lemma 8.6 will be used again in Section 18. Next we slightly

refine Lemma 8.1

Lemma 8.7. Suppose n is the number of isosceles pieces in an isosceles dissection.

Every P -path γ with 3n+1 segments contains a sub-path that begins and ends on the

Q-end of a chain and is a return path of one of the four types described above (S, C,

G1, G2).
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Proof. Apply Lemma 8.1 to the initial path of 2n + 1 steps, to get a return path of

one of the four types. If the path already begins and ends on the Q-end of a chain

there is nothing to do. If it begins and ends at an interior Q-segment of the chain

then by deleting or extending the paths as shown in Figure 28 we can obtain a path

that begins and ends on the Q-end of the chain. The number of steps added is less

than n, so the new path must be a sub-path of γ. �

C S

G1 G2

Figure 28. A return path ending inside a chain can easily be mod-
ified to start and finish on the Q-end of the chain (the extensions are
shown as dashed lines and follow P -paths). Black dots are the original
endpoints of the path an the white dots are the modified endpoints.

We say that a return region is standard if is of one of the types (C, S, G1, G2)

discussed above and if it begins and ends on segments that are the Q-ends of some

chains (possibly the same chain or two different chains). The following is one of the

key estimates of this paper.

Lemma 8.8. If Ω has an isosceles dissection into n pieces with M chains, then there

are O(M) standard return regions with disjoint interiors so that any P -path with

more than 5n+ 1 segments must hit one of the regions.

Proof. Each chain in the dissection has two P -boundaries. Each of these P -boundaries

may or may not be part of the P -boundary of a standard return region. If it is, then

associate to the P -boundary of the chain the maximal width standard return region
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that contains the P -boundary of the chain in its own boundary. Note that at most

2M return regions can be selected in this way, since there are M chains and each has

two P -boundaries.

We claim that any P -path γ in the dissection with 5n + 1 steps contains a sub-

path that crosses one of the selected return regions. Let γ′ be the path obtained by

deleting n steps from each end of γ. By Lemma 8.7, γ′ contains a sub-path γ′′ that

is a return path of one of the four standard types and which begins and terminates

on the Q-end of a chain. Thus the set of paths parallel to γ′′ forms a standard return

tube T of maximal width. If T is one of the chosen return regions, then we are done

since γ′′ ⊂ γ crosses T .

On the other hand, suppose T is not one of the chosen regions. Since T is maximal,

it contains the P -boundary of some chain C within its own P -boundary. Since T was

not chosen, there must be another return region T ′, at least as wide as T , that was

chosen and T ∩C ⊂ T ′ ∩C. Thus every path crossing T hits T ′. Thus γ′′ hits T ′. If

we add n steps to both ends of γ′′, the new, longer path must now cross T ′, but it

is still a sub-path of γ. Thus γ crosses some return region in the chosen collection.

This proves the claim.

The collection of maximal width return regions defined above may overlap. To get

disjointness, we order the chosen regions R1, . . . , Rm, m = O(M), from widest to nar-

rowest and label the first region “protected” and label the remainder “unprotected”.

At each stage we look at the first unprotected region Rk in the current list and see if

there are any P -paths strictly crossing it that intersect a protected region (anything

earlier in the list). If there is no such path, then label Rk protected, and move to the

next region.

If there is a P -path γ strictly crossing Rk that hits a protected region Rj, then

remove from Rk any P -paths that hit Rj. Since Rj is at least as wide as Rk, removing

these paths gives a connected return region R′
k ⊂ Rk (possibly empty). Now re-sort

the list by width. R′
k either stays where it is or moves later in the list; the protected

regions all stay where they are. Since two regions will never overlap after the first time

they were compared, this process stops after at most m2 steps, and gives a collection

of return regions with disjoint interiors. Moreover, once a region is protected, it is

never modified again and is part of the final collection.
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Finally, we have check that every long enough P -path hits one of the disjoint

regions. If γ is any path with 5n + 1 segments then it crossed some region in the

original list. Suppose Rγ is the first region on the original sorted list that is crossed

by γ. If a part of Rγ containing γ is deleted in the construction, then γ must hit

a protected return region. Thus γ hits a return region in the final collection, as

desired. �

This lemma is used in the proofs of both Theorems 1.1 and 1.3. In both cases we

will reduce to meshing a region Ω that has an isosceles dissection. We will propagate

the non-conforming vertices until they either hit the boundary of Ω or hit the Q-end

of a return region. By Lemma 8.8, one of these two options must occur with O(n)

steps. The proofs of the two theorems differ mostly in how we construct Ω and how

we mesh inside the return regions.

9. Proof of Theorem 1.3: reduction to a meshing lemma

This is the first of four sections that construct the almost nonobtuse triangulation

in Theorem 1.3. Unlike the proofs of Theorems 1.1 and 1.2, the proof of Theorem 1.3

does not make use of Theorem 2.1 to create the triangulation; we shall construct the

triangulation directly. However, we will use the result of Bern, Mitchell and Ruppert

[9] that any simply n-gon has a nonobtuse triangulation with O(n) triangles. We will

also make use of return regions and bending paths, both ideas we shall use again in

the proof of Theorem 1.1.

As in the proof of Theorem 1.2, we start with a PSLG that is a triangulation. In

that earlier proof we divided each triangle T into a central triangle and three isosceles

triangles. Here we will replace the single central triangle by a simple polygon that

approximates a triangle with circular edges.

Given a triangle T with vertices v1, v2, v3, let C be the inscribed circle and let

z1, z2, z3 be the three points where this circle is tangent to the triangle (numbered so

that zk lies on the side of T opposite vk). Any pair of the z’s are equidistant from one

of the vertices of T and hence are connected by a circular arc centered at this vertex.

This defines a central region bounded by three circular arcs, each pair of arcs tangent

where they meet (see the shaded area on the left of Figure 29). We will replace each

of these circular arcs by a polygonal path inscribed in the arc. For example, let γ1
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be a polygonal arc inscribed in the circular arc connecting z2 and z3. If γ1 consists

of m equal length segments, then the angle subtended from v1 by these segments is

less than π/m, (since γ1 subtends at most angle π). If we then connect the vertices

of γ1 to v1 we obtain a chain of isosceles triangles all with angle ≤ θ = π/m. See the

right side of Figure 29. Taking the union of these isosceles triangles over all T in the

original triangulation gives the region Ω, that clearly has a θ-nice isosceles dissection

with O(n) chains and O(n/θ) pieces.

v2

v3

z1

z2

γ
1

3z

v1

Figure 29. We define a simple polygon by inscribing polygon arcs
on circular arcs as shown above. If we use m evenly points on each arc
then remaining region clearly has a θ-isosceles dissection for θ = π/m.

Lemma 9.1. Suppose Ω is a region that has a θ-nice isosceles dissection (both trian-

gles and quadrilaterals are allowed). Assume that the dissection has O(n) chains and

O(n/θ) pieces. Then there is a mesh of Ω using O(n2/θ2) θ-nice quadrilaterals and

triangles. Moreover, each dissection piece T contains at most O(n/θ) mesh elements

and every mesh element Q contained in T is bounded by at most two sub-segments of

the Q-sides of T (possibly points) and at most two θ-paths in T (possibly the vertex

of T , if T is a triangle).

We will prove this in the next three sections. We can deduce Theorem 1.3 from

Lemma 9.1 as follows. By a result of Bern, Mitchell and Ruppert, each central polygon

has a nonobtuse triangulation with at most O(1/θ) triangles. This triangulation may

place extra vertices on the edges of the central polygon, but not more than O(1/θ)

vertices in total. Each such edge e is the base of one of the isosceles triangles T in
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the dissection, and we connect the extra vertex on e to the opposite vertex of T by

a Q-segment S. See Figure 30.

Figure 30. Each isosceles triangles T in the dissection of Ω is meshed
by at most O(n/θ) quadrilaterals and triangles (here a chain of four
triangles is shown). Connecting “extra” vertices (white dots) on the
base of T to the opposite vertex thus creates at most O(n/θ) extra
mesh pieces per dissection triangle.

This creates a new θ-nice quadrilateral or triangle for each θ-path that S crosses.

Since there are at most O(n/θ) such paths per piece, each extra vertex on e creates

at most O(n/θ) new elements of the mesh. Since there are O(n) central polygons

and each has at most O(1/θ) extra boundary points coming from its nonobtuse

triangulation, at most O(n2/θ2) extra pieces are created overall.

As the final step, we add diagonals to the quadrilateral pieces of the mesh, getting

a triangulation. Since all the quadrilaterals are θ-nice, the resulting triangles have

maximum angle 90◦ + θ, which proves Theorem 1.3.

Our application of Lemma 9.1 to Theorem 1.3 only needs to apply to dissections

consisting entirely of triangles, but has been stated for more general isosceles dissec-

tions which may use both triangles and quadrilaterals. The extra generality does not

lengthen the proof at all, but it is useful for the application to optimal quad-meshing

given in [11]. That application involves an isosceles dissection that uses only trape-

zoid pieces; the precise variant of Lemma 9.1 that is needed in that paper will be

stated and proved in Section 13.
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10. Proof of Lemma 9.1: outside the return regions

We continue with the proof of Theorem 1.3, by starting the proof of Lemma 9.1.

In this section we will mesh the part of Ω that is outside the return regions.

Let {Rk}N1 be the disjoint return regions for Ω given by Lemma 8.8. Since there

are O(n) chains there are O(n) return regions. For each triangle Tk, and each of the

three vertices of T ′
k on its boundary, construct the P -path starting at this point and

continued until it hits another cusp point, leaves Ω or enters a return region. Lemma

5.2 says these paths cut the isosceles pieces of the dissection into isosceles pieces that

form a mesh. By Lemma 8.8, each P -path we generate terminates within O(n/θ)

steps and there are less than 3n of these paths (at most three per triangle), so a total

of O(n2/θ) mesh pieces are created outside the return regions. Moreover, each such

path crosses a single dissection piece at most O(1) times. Thus each dissection piece

can be crossed at most O(n) times but such paths.

Next we place O(1/θ) evenly spaced points on both Q-sides of each return region

(the reason for this will be explained in the next section). Each of these points is

propagated by P -paths outside the return region it belongs to, until it runs into the

boundary of Ω or hits the Q-side of some return region (possibly the same one they

started from). As above, this generates a θ-nice mesh outside the return regions.

There are O(n) return regions and O(1/θ) points per region to be propagated. Each

path continues for at most O(n/θ) steps, so at most O(n2/θ2) mesh elements are

created in total. Moreover, each dissection piece is crossed at most O(1) times by

each path, so is crossed O(n/θ) times in total by such paths.

11. Proof of Lemma 9.1: the simple tubes

Next, we have mesh inside the return regions. In this section, we deal with the

return regions that are simple tubes and in the next section we deal with spirals.

For the first time we will use θ-paths rather than P -paths (recall that a θ-path is

made up of segments that are within θ of parallel to the base of the isosceles piece;

when we cut a θ-nice piece by a θ-path we get two 2θ-nice pieces). We need the

following lemma.

Lemma 11.1. Suppose Q is a tube whose width w is at most sin θ times its minimal-

length ℓ̃. Then opposite corners of Q can be connected by a θ-path inside the tube.
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Proof. Suppose T is a θ-nice isosceles piece and x, y are the endpoints of a P -segment

S = [x, y] crossing T . Then any point z on the same side as y and within distance

sin(θ)|x−y| can joined to x by a θ-path. See Figure 31. Thus if {Tk} is an enumeration

of the pieces making up the tube and ℓk is the minimal base length of the kth piece,

then we can create a θ-path that crosses the tube and whose endpoints are displaced

by
∑

k ℓk sin θ = ℓ̃ sin θ with respect to a P -path. This proves the lemma. �

yθ

q

p

x

w

Figure 31. Clearly |p− y| ≥ |q − y| = |x− y| sin θ ≥ ℓ̃ sin θ where q
is the closest point to y on the line making angle θ with the segment
xy.

Corollary 11.2. If R is return region that is a C-tube, S-tube or simple G-tube, then

we can cut R into O(1/θ) parallel sub-tubes and connect opposite corners of the each

tube by a θ-path contained in that tube.

Proof. Suppose the return region R has length L and width w. Choose an even integer

M ≥ 4/sin θ and split the return region R into the disjoint union of M thinner tubes

{Tj} of width w/M . By Lemmas 8.2, 8.3 and 8.4 each of these new tubes has length

that is at least w and width equal to w/M . Thus each has length that is at least M

times as long as its width.

Since M ≥ 2, each of our thin tubes is half of a thicker tube that is still inside the

given tube R. By Lemma 7.1

ℓ̃(Tj) ≥
1

4
ℓ(Tj) ≥

1

4
ℓ(R) ≥ 1

4
w.

On the other hand, the width of Tj is w/M . Hence the minimal-length of each tube

Tj is more than M/4 = 1/ sin θ times its width, so the previous Lemma 11.1 applies

to Tj , as desired. �
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We can now continue with the proof of Lemma 9.1. We then cut the return region

into O(1/θ) parallel tubes as described above, and divide each tube by a θ-path

connecting opposite corners. This meshes each tube using 2θ-nice pieces. Any P -

path hitting a Q-end of one of these tubes is then propagated to a corner on the

opposite end of the tube by standard quadrilateral propagation paths. This gives a

2θ-nice mesh of the tube that is consistent with all the meshes created outside the

tube.

Since there were at most O(n/θ) P -paths that might terminate and each return

region has at most O(n/θ) isosceles pieces, at most O(n2/θ2) 2θ-nice triangles and

quadrilaterals are created inside all the return regions. Moreover, each dissection

piece is crossed by at most O(n/θ) paths (there are O(1/θ) paths per return region

and O(n) return regions), so it contains at most this many mesh pieces.

12. Proof of Lemma 9.1: the spirals

This is the final section in the proof of Theorem 1.3. Here we prove Lemma 9.1

inside the spiral return regions.

Since any spiral can be divided into a simple G-tube and a pure spiral, and we can

treat the simple tube as above, it suffices to deal with the pure spirals. Let N be the

winding number of the spiral; we may assume N ≥ 2, since otherwise the spiral can

be treated as a tube and can be triangulated as in the previous section. Let p be the

number of isosceles pieces that are hit by the spiral (this is the number of steps it

take to complete one winding of the spiral).

The spiral can be divided into N tubes joined end-to-end, each starting and ending

on the same Q-edge of some isosceles pieces. We divide the first and last of these

tubes into O(1/θ) parallel thin tubes. Then any P -path that enters the tube from

either end can be θ-bent so that it terminates at the corner of one of the thin tubes

after winding once around the spiral.

If N = O(1/θ), then we simply propagate all the interior corners of the thin tubes

at one end of the spiral around the spiral until they run into the corners of the thin

tubes at the other end. This generates O(N · p · θ−1) = (pθ−2) new vertices. See

Figure 32.



NONOBTUSE TRIANGULATIONS OF PSLGS 39

Figure 32. Cut the inner and outer tubes into O(1/θ) parallel nar-
row tubes and θ-bend all entering P -paths so they terminate inside
these narrow tubes. The corners of the narrow inner tubes are then
propagated around the N turns of the spiral until they hit the corners
of the narrow outer tubes. This creates a 2θ-nice mesh of the spiral
using O(nN/θ) pieces. The figure shows p = 9 and N = 6.

If N & 2θ−1 ≥ 1/ sin(θ) then after O(θ−1) spirals, we can create a θ curve that is

a closed loop and we let the paths generated by the interior corners of the inner thin

part hit this closed loop. We create another θ-bent closed loop at radius N−2 and let

the paths generated by the corners of the outer thin tubes hit this. No propagation

paths enter the region between the two closed loops and a total of O(pθ−2) vertices

are used. See Figure 33.

The propagation paths cut the spiral into 2θ-nice triangles and quadrilaterals.

Moreover, as in the case of simple tubes, it is easy to check that each dissection piece

is crossed by at most 1/θ paths in the construction of each spiral. Since there are

O(n) spirals, this means there are at most O(n/θ) such crossings of a dissection piece

in total. The propagation paths that enter each spiral cross each dissection piece at

most once, and there are O(n/θ) such paths in total, hence O(n/θ) such crossings of

each piece.

This completes the proof of Lemma 9.1, and hence the proof of Theorem 1.3.

13. A lemma for quadrilateral meshing

We now restate our conclusions in a form that is useful for proving the theorem on

optimal quad-meshing in [11]. Readers interested only in Theorem 1.1 may skip this

section.
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Figure 33. If the winding number is much larger than 1
θ
, then after

O(1/θ) windings we can create a closed θ-bent loop (the dashed curve).
We then propagate the corners of the narrow inner tunes until they hit
a vertex of this closed loop. We can also create a θ-bent loop one
winding in from the outer tube and use it similarly to propagate the
corners of the narrow outer tubes until they hit a vertex of this loop.

Theorem 13.1. Suppose that W is a polygonal domain with an isosceles trapezoid

dissection with n pieces. Suppose also that 0◦ ≤ θ ≤ 15◦ and that every dissection

piece is θ-nice. Finally, suppose the number of chains in the dissection is M . Then

we can remove O(M/θ) θ-nice quadrilaterals of uniformly bounded eccentricity from

W so that the remaining region W ′ has a 2θ-nice quadrilateral mesh with O(nM/θ)

elements. At most O(M/θ) new vertices are created on the Q-boundary of W ′. At

most O(M) vertices are created on the P -boundary of W ′, and no more than O(1)

vertices are placed in any single P -side of any dissection piece of W ′. For this quad-

mesh, any boundary point on a Q-side of W ′ propagates to another boundary point

after crossing at most O(n) quadrilaterals.

Proof. The proof is exactly the same as the argument of the last few sections, except

for some slight modifications inside the return regions.

For each return region we place O(1/θ) equally space points along the two Q-

sides of the region and propagate these outside the return regions until they hit the

boundary of Ω or hit the Q-side of some return region. There are O(M/θ) such

paths and they generate at most O(Mn/θ) quadrilaterals and O(M/θ) endpoints on

Q-sides of ∂Ω.
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First consider return regions that are simple tubes. As before, split each such

region into O(1/θ) parallel sub-tubes and so that in each sub-tube we can connect

opposite corners by a θ-path. Now, however, we remove a small quadrilaterals at

a pair of opposite corners of the tube. These quadrilaterals have one edge on a P -

boundary of the tube, one edge on a Q-end of the tube, one vertex in the interior of

the tube and the two edges adjacent to this vertex are chosen to lie a P -segment and

a Q-segment. See Figure 34.

Figure 34. We place quadrilaterals (shaded) at opposite corners of a
tube, and connect the internal corners by a θ-path. Every path entering
tube either immediately hits the shaded quadrilateral at that end, or
propagates to hit the shaded quadrilateral at the other end. We also
have to propagate the interior corner of the shaded quadrilateral along
a Q-path. This gives a mesh of every tube by 2θ-nice quadrilaterals.

We then connect the interior corner of each of the two quadrilaterals by a θ-curve.

This requires less displacement than connecting the corners, so it is clearly possible

to do this (to make it easier to see, we could always increase the number of tubes

and decrease their width by a fixed factor). We have freedom in choosing the size

of the quadrilaterals, and so we can arrange for all the quadrilaterals chosen in the

same dissection trapezoid to have sides along the same Q-segment. Thus when we

Q-propagate the corners of the quadrilaterals, only two extra points will be created

on the P -side of the dissection piece containing such a quadrilateral.

If we apply quadrilateral propagation to each P -path entering the tube from either

end, it crosses the tube and hits a Q-side of the removed quadrilateral at the other
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end of the tube. See Figure 34. This gives a 2θ-nice quadrilateral mesh inside the

modified tubes.

Inside the spirals we do a similar thing. In the previous proof, paths inside spirals

were terminated by bending them in a sub-tube of the spiral until they hit a corner

on the opposite side of the tube from where they entered, in order to form a loop.

so the same construction works. Outside the return regions, the P -paths convert the

θ-nice dissection into a θ-nice quadrilatal mesh (previously the only triangles created

by the P -paths were in triangular pieces of the dissection, which we now assume don’t

exist). See Figures 35 and 36. �

Figure 35. For spirals with ≫ θ−1 windings, we can make a θ-path
loop in the jth spiral when j & 1/θ (solid thick curve). Then place
a quadrilateral as shown with one edge on the loop; one corner is θ-
propagated around the spiral once to hit the center of a side of the
same quadrilateral (thin dashed curve). The boundary of the spiral is
θ-bent to hit the other corner (thick dashed curve).

14. Overview of the proof of Theorem 1.1

The remainder of the paper gives the proof of Theorem 1.1. In this section we

give the overall strategy of the proof and we will provide the details in the following

sections.

The proof combines ideas already seen in the proofs of Theorems 1.2 and 1.3 but

requires a different displacement estimate in tubes and a more intricate construction
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Figure 36. The quadrilateral construction near the outside of a large
spiral. This is similar to the construction in Figure 35, but we can do it
in the sub-tube adjacent to the outermost one. The two constructions
give a 2θ-nice mesh of the entire spiral (minus the two quadrilaterals).

in the spirals. As explained in Section 2, it suffices to prove Theorem 2.3: assume

Γ is a triangulation and show we can place O(n2.5) points along the edges so that

each triangle becomes Gabriel. As in the proof of Theorem 1.2 we start taking the

dissected domain Ω to be the original triangles {Tk} with the central triangles {T ′
k}

removed (recall the vertices of Tk are the three points where the inscribed circle

touches the triangle Tk). We do not use the “approximate circular-arc triangles” that

were used in the proof of Theorem 1.3.

For each triangle Tk, remove the closed triangle T ′
k as in Section 4. As before,

Tk \ T ′
k is a union of three isosceles triangles. Keep the isosceles triangles with angle

< 90◦; as explained at the end of Section 4, isosceles triangles with angles ≥ 90◦ can

be ignored because adding any set of points to the Q-edges will make the triangle

Gabriel. The remaining region Ω thus has an isosceles dissection by O(n) acute

triangles. We construct return regions for Ω just as before.

Each vertex of each T ′
k are propagated by P -paths until then leave Ω or hit the

Q-side of a return region. This creates O(n2) crossing points on Γ.

If a return region has k isosceles pieces then we will place O(
√
k) even spaced points

in each Q-end of the region and propagate these until they leave Ω or hit a return

region. Since k = O(n), this creates at most O(n2.5) new points. If different return
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regions had to use distinct isosceles pieces this estimate would be O(n2) instead. Im-

proving the exponent in Theorem 1.1 seems to be entirely a matter of understanding

the behavior of distinct return regions that share isosceles pieces.

Why do we split theQ-ends of the return regions intoO(
√
k) pieces? When we bend

the P -paths inside the return regions, we must verify that the Gabriel condition is

satisfied by the points that we generate. This is a more restrictive condition than the

θ-bending of the earlier proof, so paths can be bent less and hence take a more steps

to terminate. The difference is illustrated in Figure 37. The left side shows the range

of options for a θ-segment crossing a single rectangle; the allowable displacement is

roughly θ|a− b|. The center and right pictures of Figure 37 show the restrictions on

a Gabriel path. Note that there are two such restrictions: the exit point b must be

between the Gabriel disks tangent at a and the entrance point a must be between the

disks tangent at b. This restricts b to an interval of length approximately |a− b|2/w,
where w is the width of the piece. This estimate will be made more precise in the

next section; the main point is that it shrinks quadratically with |a − b| whereas
the estimate for θ-paths decreased linearly. Thus the proof of Theorem 1.1 requires

longer, narrower tubes than the proof of Theorem 1.3.

To illustrate the idea, consider a simple case: a square divided into k thin parallel

rectangles. See Figure 38. A Gabriel path crossing the square takes k steps, each

with displacement ≃ 1/k2, so the total displacement is ≃ 1/k. At first glance, this

seems to say we should cut the square into O(k) parallel tubes; then we could get all

entering paths to terminate before hitting the far side of tube. This works, but leads

to the estimate O(n3) in Theorem 1.1.

We can do better. Cut the square into
√
k tubes instead. Now the tangent disks

have diameter k−1/2 and the cusp regions where we choose our next point have height

≃ 1√
k
( 1√

k
/ 1
k
)2 = k−3/2. Thus a Gabriel path takes k steps, each with displacement

≃ k−3/2, for a total displacement ≃ k−1/2, which is the approximate width of the

tube. Thus using only O(
√
k) tubes, we can bend Gabriel paths enough to hit the

far corner of the tube (and thus terminate).

We shall prove in the next two sections this holds for any return regions that are

simple tubes, not just squares with rectangular pieces. Each return region that is a

C-tube, S-tube or simple G-tube will be split into O(
√
k) narrow parallel tubes and
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a
b

a b
a

b

Figure 37. A θ-bent path can reach any point defined by a cone
with angle 2θ, but a Gabriel bent path can only reach points defined
by the cusp between two tangent disks. Moreover, this is a two part
condition: the exit point must be the cusp defined by the entrance
point and the entrance point must be in the cusp defined by the exit
point.

Figure 38. A Gabriel-bent path must stay outside certain pairs of
tangent disks. When we cut a unit square into 1

k
× 1 rectangles then

a Gabriel path has total displacement at most O(1/k). If we cut the

square into O(
√
k) horizontal tubes, paths in each tube take k steps

with displacement of k−3/2 and hence total displacement of 1/
√
k. Since

this is also the width of the tube, we can Gabriel-bend a path to hit
the side of a tube before leaving it.

the entering propagation paths will be Gabriel bent until they a far corner of the

tube; here k is the number of isosceles pieces forming the tube.
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We also place O(
√
k) narrow parallel sub-tubes at the two ends of spiral return

regions, i.e., we subdivide the innermost and outermost windings of the spiral. As

with simple tubes, all paths entering the spiral can be bent within these narrow tubes

to terminate within O(k) steps. But then we have to propagate both the external

and internal corners of the narrow tubes. The external corners propagate outside the

spiral until they terminate just as described for the corners for narrow tubes in the

previous paragraph.

The most difficult part of the proof of Theorem 1.1 is dealing with the
√
k internal

corners that propagate through the spiral; since we have no bound for the number

N of windings of the spiral in terms of n, this could produce arbitrarily many new

vertices. Thus propagation paths of the internal corners must be bent to terminate

earlier. Consider the case of paths that start near the inner end of the spiral (the

outer part is handled in the same way, but is easier, since the windings of the spiral

are longer). We consider what happens for very large spirals (where the number of

windings N is bigger than the number k of isosceles pieces in the spiral; for smaller

values of N we truncate the construction at the appropriate stage.)

We first bend the propagation paths so that adjacent paths merge, and then merge

adjacent merged paths, and continue until all the propagation paths generated by the

O(
√
k) internal corners have merged into a single path. This occurs around winding

k1/3. This path is then propagated as a P -path out to winding k1/2. See Figure 39.

At this stage we have enough freedom to bend the curve to hit itself, forming a

closed loop that wraps once around the spiral. This is similar to what we did in the

proof of Theorem 1.3, but in this case, in order for this closed loop to be Gabriel, there

must be another (larger) closed loop parallel to it. This did not occur in Theorem

1.3. This constraint requires us to construct a sequence of parallel closed loops in the

spiral between windings k1/2 and k. The closed loops gradually can become farther

and farther apart; only O(
√
k) loops are used in all. At winding k, there is no need

for a “next” loop and the sequence of closed loops ends. The part of the spiral

beyond winding k is an “empty” region until we reach a closed loop coming from the

analogous construction in the outer half of the spiral.

In the remainder of the paper we give the details of the argument sketched above.
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Figure 39. This illustrates the stages in the spiral construction.
First (light gray), we divide the tube into thinner tubes and entering
paths are bent to hit the sides of these. Next (white), the thin tubes
are bent and collapsed in pairs; in this figure four tubes are merged
into one after two windings. In the third stage (gray), the single tube
is propagated until we can bend it to intersect itself. Next (white)
comes a sequence of closed loops that gradually grow further apart.
Finally we reach the empty region (gray), where no paths propagate.
This figure gives a rough idea of the construction, but scales have been
drastically compressed to make all the stages visible in the same picture.

15. Gabriel bending in isosceles pieces

This section contains the main estimate used in proof of Theorem 1.1.

Suppose a and b are endpoints of a P -path in an isosceles piece T . If we keep

a fixed, how far we can move b and still have the Gabriel condition hold? More

precisely, can we find an ǫ > 0 so that all points on the same Q-side as b that are

within distance ǫ of b can be connected to a by a Gabriel segment? If this holds we

say that the allowable displacement for the piece is at least ǫ.
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Lemma 15.1. Suppose T is an isosceles piece of width w. Suppose [a, b] is a P -

segment crossing T and R is the distance of a from the vertex of the piece (R = ∞ if

the piece is a rectangle). Then if c is a point on the same Q-side as b and is within

distance

ǫ =
|a− b|2

4
max(

1

w
,
1

R
),(15.1)

of b, then [a, c] is a Gabriel segment crossing T . In particular, the allowable displace-

ment is at least ǫ.

Proof. First suppose the isosceles piece is a rectangle (R = ∞). Consider disjoint

sub-segments of the Q-side containing a that have a as a common endpoint and

consider the disks D1, D2 with these segments as diameters. See Figure 40. Assume

these disks have radii r and s. The diameters of these disks are disjoint segments

that both lie on the same non-base side of an isosceles piece, so their length adds up

to be less than the width of the piece, i.e., 2r + 2s ≤ w. Thus max(2r, 2s) ≤ w.

sr

a

bc d

w

D D1 2

Figure 40. The segment [a, b] is a P -segment for a rectangular piece.
A simple estimate shows |c− b| ≥ |a− b|2/r and |d− b| ≥ |a− b|2/s.

Suppose [c, d] is the Q-segment containing b that is disjoint from these disks (again,

see Figure 40). We want to estimate |c − b| and |d − b| from below. Such a lower

bound gives the desired lower bound on the allowable displacement.

If the disk D1 is too small, i.e., r < |a − b|, then the disk D1 does not hit the

Q-side containing b and the Gabriel condition is automatically satisfied. Thus we

may assume r ≥ |a− b|. Then by the Pythagorean theorem

|c− b| = r −
√

r2 − |a− b|2,
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or (using 1−√
1− y ≥ y/2 on [0, 1]),

1

r
|c− b| = 1−

√

1− |a− b|2
r2

≥ |a− b|2
2r2

so |c − b| ≥ |a − b|2/2r. The calculation for the other disk is identical, so the two

disks omit all points within distance

ǫ = |a− b|2 min(
1

r
,
1

s
) ≥ |a− b|2

2w
.

of b. Since 1/R = 0 in this case, this implies (15.1).

Next we consider what happens when the piece is not a rectangle. To be concrete,

we assume one Q-side lies on the real axis, the vertex of the piece is at −R and the

P -path connects a = 0 to b in the upper half-plane. Suppose the piece has angle

θ. Some elementary trigonometry shows that the disk D1 does not hit the Q-side

containing b if (see Figure 41)

r < (R− r) sin θ.

r

s

θ
a

b
c

d

R

R−r

R+s

Figure 41. If r, s are small enough then the Gabriel disks for one
Q-side don’t hit the other Q-side.

Since |a− b| = 2R sin θ/2, this is equivalent to

r < R
sin θ

1 + sin θ
=

|a− b| sin θ
2 sin(θ/2)(1 + sin θ)

.(15.2)

By the double angle formula, for 0 ≤ θ ≤ π/2 we have sin θ = 2 sin θ
2
cos θ

2
, so

sin θ

2 sin(θ/2)(1 + sin θ)
=

cos θ/2

(1 + sin θ)
≥ cos π/4

(1 + sin π/2)
=

1

2
√
2
.(15.3)
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Hence (15.2) holds if r < |a − b|/2
√
2. If this condition holds, then the point c is a

corner of the piece T , so the estimate holds trivially to the left of b. Therefore we may

assume r ≥ |a− b|/2
√
2 in what follows. Note also that this implies w ≥ |a− b|/

√
2

since r ≤ w/2.

A similar calculation shows D2 does not hit the opposite Q-side if

s <
|a− b| sin θ

sin(θ/2)(1− sin θ)
= 2|a− b| cos θ/2

1− sin θ
.

See Figure 41. The trigonometric function on the far right is increasing for θ ∈ [0, π/2]

(compute the derivative), so it takes its minimum value 1 at θ = 0. Hence D2 does

not hit the opposite Q-side if s < 2|a − b|. In this case d is a corner of the isosceles

piece and the lemma holds trivially to the right of b. Therefore we may assume

s ≥ |a− b| in what follows.

Now suppose we have an isosceles piece with angle θ > 0. We normalize the picture

as in Figure 42 with one Q-side along the real axis, the vertex of the piece at −R.

The other Q-side is labeled L. We consider a P -path with one endpoint at the origin

and the other endpoint (labeled b in the figure) on L in the upper half-plane. We

also consider disks D0, D1, D2 centered at points −R,−r, s on the real line that are

tangent at the origin. We let [c, d] be the segment of L \ (D1 ∪D2) that contains b.

See Figure 42.

0D

2D1D

R

θ

r
s

b

=0a

c d

L

Figure 42. We want a lower bound on |b − c| and |b − d| in terms
of |a − b|, r, s and R. We prove this by applying the transformation
z → 1/z to this picture, to get the picture in Figure 43.
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2s
1

2r
1

b

L

c d

D1 D2

D0

> 1/(4r)
> 1/(2s)

1
2R

0

Figure 43. This is the inversion of Figure 42. The point a = 0
maps to a′ = ∞ and the circles through 0 map to vertical lines, whose
distance apart is easy to compute. The line L maps to a circle L′.

Now apply the map z → 1/z. The origin is mapped to infinity and the circles

centered on the real line passing through 0 now map to vertical lines. (The map

z → 1/z is a linear fractional transformation that maps 0 to ∞, so circles through 0

map to circles through ∞, i.e., lines.) See Figure 43. The boundary of D1 maps to

L1 = {x = −1/2r}, the boundary of D2 maps to L2 = {x = 1/2s} and the boundary

of D0 maps to L0 = {x = 1/2R}. Since R ≥ 2r, we have the distance between L0

and L1 is at least 1/4r.

The line L is distance ρ = R sin θ from the origin, whereas |a − b| = 2R sin(θ/2),

so by a similar calculation to (15.3), we get

ρ =
|a− b| sin θ
2 sin(θ/2)

≥ |a− b|√
2

,

since we assume 0 ≤ θ ≤ π/2. This means that on the line L, the derivative of 1/z

is bounded above by 2/|a− b|2. Therefore the image of the segment [c, b] has length
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at most 2|c− d|/|a− b|2. Thus

|c′ − b′| ≤ 2
|c− d|
|a− b|2 .

However, the image of this segment is a circular arc that connects the lines L1 and

L0 and hence has length at least

|c′ − b′| ≥ | 1
2r

− 1

2R
| ≥ 1

4r

since r ≤ R/2. Combining these inequalities gives

2
|c− b|
|a− b|2 ≥ 1

4r
.

Since r ≤ w/2 and r ≤ R/2 this gives

|c− b| ≥ |a− b|2
8r

≥ max(
|a− b|2
4w

,
|a− b|2
4R

).

Similar calculations show
2|d− b|
|a− b|2 ≥ |b′ − d′|,

and

|b′ − d′| ≥ 1

2R
+

1

2s
≥ 1

2R
+

1

w

from which we deduce

|d− b| ≥ |a− b|2
4

(
1

R
+

1

w
) ≥ |a− b|2

4
max(

1

R
,
1

w
).

�

16. Gabriel bending in tubes

Next we apply the Cauchy-Schwarz inequality to our displacement estimate for

pieces, to get a displacement estimate for tubes:

Lemma 16.1. Suppose T is a tube of width w, minimal-length L = ℓ̃(T ) and consists

of p isosceles pieces. Let a, b be points on opposite ends of T that are connected by a

P -path in T . Then a can be connected by a Gabriel path to any point on the opposite

end of T that is within distance d = L2/(4pw) of b.
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Proof. For the jth piece in the tube, let ℓj be the length of the piece (the shorter

of its two base lengths, zero for triangles). Then L =
∑

j ℓj by definition. By the

Cauchy-Schwarz inequality

L2 = (
∑

j

ℓj)
2 ≤ (

∑

j

12) · (
∑

j

ℓ2j) = p
∑

j

ℓ2j .

The allowable displacement of each piece is at least ℓ2j/4w, so the total allowable

displacement is at least

∑

j

ℓ2j
4w

≥ L2

4pw
.

�

Corollary 16.2. If T is a tube with minimal-length L, width w composed of p pieces

and w ≤ L/2
√
p, then opposite corners of the tube can be connected by a Gabriel path

inside the tube.

Proof. By assumption we have L ≥ 2w
√
p so the allowable displacement is at least

(2w
√
p)2

4wp
≥ w,

where w is the width of the tube. Thus opposite corners can be connected. �

Corollary 16.3. Suppose T is a C-tube, S-tube or simple G-tube composed of p

isosceles pieces and we cut T into M parallel, equal width sub-tubes with M ≥ 8
√
p.

Then the opposite corners of each sub-tube can be connected by a Gabriel path in that

sub-tube.

Proof. Since M ≥ 2, each sub-tube is half of a wider tube inside T and hence has

length that is at most four times its minimal length by Lemma 7.1. Moreover, the

length of each sub-tube is bounded below by the length of T . By Corollary 8.5 every

simple return tube has length that is at least its width w and hence its minimal-length

is at least w/4. Thus each sub-tube has minimal-length at least M/4 ≥ 2
√
p times

longer than its width. The conclusion then follows from Corollary 16.2. �
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17. Gabriel bending in spirals

Finally we have to consider bending in pure spirals. This is the final, but most

complicated, step in the proof of Theorem 1.1, and we break the construction into

several steps described in different sections.

Lemma 17.1. Suppose S is a pure spiral made up of at most k isosceles pieces.

Then we can mesh the interior of the spiral using at most O(k1.5) quadrilaterals and

triangles so that the added vertices make every isosceles piece in the spiral Gabriel.

Also, every path entering the spiral can be Gabriel bent to terminate within one wind-

ing. The bound on the number of points added is independent of N , the number of

windings of the spiral.

Without loss of generality we will assume the bound k on the number of isosceles

pieces is a power of 4, k = 4K = 22K and that it is at least 16 times larger than

that actual number of isosceles pieces in the spiral. We do this so that we can apply

Corollary 16.3 with the valueM =
√
k instead ofM = 16

√
k. This will make notation

slightly easier and does not affect the statement of the lemma.

For simplicity, we rescale so that the entrance and exit segments of the spiral have

length 1, i.e., the width of the tubes in the spiral is w = 1. The spiral is a topological

annulus, with one bounded and one unbounded complementary component. The

two ends of the spiral corresponding to these two regions will be called the inner-

end and outer-end respectively. The spiral is a union of N simple G-tubes joined

end-to-end. We number these consecutively starting at the inner-end and denote

them T1, . . . , TN . We will call T1 and TN the innermost and outermost tubes (or

windings) respectively.

If the number of windings satisfies 1 < N ≤ 100 then we can treat the spiral like

a simple tube. We divide both T1 and TN into
√
k = 2K parallel sub-tubes just as

we did for simple G-tubes. We call these the narrow tubes. Then every P -path

entering the innermost tube either hits a corner of one of the narrow tubes, or it

enters one of the narrower sub-tubes. In the latter case, it can be Gabriel bent to

hit a far corner of this narrow sub-tube. Similarly for paths entering the outermost

tube. The
√
k corners of the narrow tubes are propagated as P -paths through the
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spiral until they hit the corners of the narrow tubes at the other end. This creates

at most O(k1.5) vertices in the spiral. See Figure 44.

Figure 44. For small spirals (less than 100 windings) we divide the

tubes into
√
k narrow sub-tubes. Every entering path can be Gabriel

bent to terminate within one winding. Here we show N = 2.

For larger N there are four different types of construction we will use, divided

by certain “phase transitions” in our ability to bend curves as N increases. The

transitions occur at N ≃ k1/3, k1/2 and k, as described in the next few sections.

18. 100 < N ≤ 16k1/3 : Dyadic merging of paths

We now consider the case 100 < N ≤ 16k1/3. As above, we subdivide the innermost

and outermost tubes into
√
k = 2K narrow, parallel sub-tubes, we terminate all

entering paths within these narrow sub-tubes and we propagate the 2K corners of

the narrow sub-tubes through the spiral. However, if we propagate each corner of a

narrow tube as a separate path all the way through the spiral we will generate too

many new vertices. The solution is to merge paths as they propagate through the

spiral.

The general idea is to take pairs of adjacent paths and bend them towards each

other until they meet; this reduces the number of paths from
√
k to

√
k/2. We

then define new adjacent pairs and bend these towards each other, until they merge,

creating
√
k/4 paths. We continue merging pairs of paths, reducing the number of

paths by a factor of two each time, but needing more steps to accomplish this each

time. Since each pair of paths to be merged at some stage starts twice as far apart
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as pairs in the previous stage, we need a total displacement that is twice as long as

before. Moreover, since the tubes are twice as wide, the allowable displacement is

half as large per piece. Since the formula for displacement in Lemma 16.1 involves a

factor of L2, the length only needs to double to merge the next set of tubes.

However, this does not mean we need twice as many windings. Since the windings

of the spiral become longer as we move outwards, fewer windings are needed to achieve

a given length, so the number of pieces crossed grows, but does not double, i.e., it

grows at a geometric rate that is strictly less than 2. This will allow us to obtain the

desired bound. We do the same construction starting at both ends of the spiral, so

that when paths meet at the center of the spiral, the surviving paths from both ends

match up. Next we give the details about how the merging and matching process

works. See Figure 45.

If N is even write N = 2M ; otherwise write N = 2M + 1. We will give the details

for the merging process in the inner-half of the spiral, i.e., T1 ∪ · · · ∪ TM . The same

procedure is used in the outer half TN−M ∪ . . . TN ; these tubes are all longer than the

corresponding tubes in the inner half of the spiral, and so the allowable displacements

will be larger; thus any displacement that can be achieved in the inner half can also

(more easily) be attained in the outer half. Thus we can assume the merged paths

in the inner half terminate at the same points as the merged paths in the outer half

when N is even and that they can be joined by P -paths in TM+1 when N is odd.

Let λ = 22/3 < 2 and let λj be the integer part of λj. Let Sj = Tλj+1 ∪ · · · ∪ Tλj+1
,

i.e., this is a sub-tube of the spiral that goes from winding λj to winding λj+1. By

the argument proving Lemma 8.6 this part of the tube has length at least

λj+1
∑

i=λj+1

(2i− 1) ≥ λ2
j+1 − (λj + 1)2 ≥ (λj+1 − 1)2 − (λj + 1)2

= [λ2j+2 − 2λj+1 + 1− λ2j − 2λj − 1]

= λ2j[λ2 − 2λ−j+1 − 1− 2λ−j]

An explicit calculation shows that for j = 5

λ2 − 2λ−j+1 − 1− 2λ−j ≈ 1.00644 ≥ 1,

and since this function is increasing in j, we deduce that Sj has length ≥ λ2j if j ≥ 5.

Moreover λ10 = 220/3 ≈ 101.594 ≥ 100.
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Figure 45. Between windings 100 and 16k1/3 we merge the paths
generated by the internal corners of the narrow tubes at the entrances
to the spiral. Here we show four tubes merging into two tube in the first
winding and the remaining two tubes merging into one in the second
winding. (In general though, it will take more windings to merge wider
tubes.)

Suppose Sj is divided into 2m parallel sub-tubes of width w = 2−m. By Lemma

16.1 a path entering one of these sub-tubes can be Gabriel bent within the tube to

hit either of the far corners of the tube if

w ≤ L2

4pw
.

In this case L ≥ λ2j , p = kλj (each piece is repeated in the tube kλj times; once per

spiral), and w = 2−m, so this inequality becomes

2−m ≤ (λ2j)2

4λjk2−m

and this occurs iff

4k2−2m ≤ λ3j.

Since 22j = λ3j and k = 22K , this is equivalent to

2−m ≤ 2j−1/
√
k = 2j−1−K .

So for j ≥ 5 we divide Sj into 2K−j+1 parallel sub-tubes. The tube Sj shares an

end with Sj−1. The corners of the narrow sub-tubes of Sj on this end form a subset

of the corners of the narrow sub-tubes of Sj−1 on the shared end. The remaining

corners are mid-points of one end of the narrow tubes in Sj and can be propagated
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by Gabriel paths through the narrow sub-tubes of Sj so that they hit far corners of

these sub-tubes, merging another set of paths.

The total number of vertices created in Sj is therefore O(λj · 2K−j · k) (the number

of windings of the tube, times the number of paths propagating through the tube,

times the number of pieces crossed in each winding). The inner half of the spiral

contains tubes S5, . . . , Sm as long as λm = 22m/3 < M , or m ≤ 3
2
log2 M . Summing

over all j ∈ [5,m] gives the upper bound

O(

3

2
log2 M
∑

j=5

λj2K−j22K) = O(23K
∞
∑

j=5

2
2

3
j−j) = O(23K) = O(k1.5).

Therefore if N = O(k1/3), we can terminate every path entering the spiral using only

O(k1.5) new vertices in the spiral.

19. 16k1/3 < N ≤ 8k1/2 : a single path

If 16k1/3 < N ≤ 8k1/2 we duplicate the construction of the previous section up

to and including SK+5 and after this point we simply let the single remaining path

propagate as a P -path. Since the path winds around the spiral at most
√
k times,

at most O(k1.5) new vertices are created between 2k1/3 and k1/2, and the path in the

inner half eventually hits the analogous path from the outer half of the spiral.

20. 8k1/2 < N ≤ k : multiple closed curves

When j = 8
√
k we hit a new transition point: Sj now has length 8

√
k = 2K+3,

hence minimal length ≥ 2
√
k. Hence Lemma 15.1 says that if j ≥ 8

√
k, then the

allowable displacement in Sj is at least

ℓ̃(Sj)

4k
=

(2j)2

4k
≥ 1,

i.e., the allowable displacement is larger than the width of the tube, so we can connect

opposite corners of Sj by a Gabriel path (Gabriel assuming the tangent disks have

diameter 1, the width of the tube).

The idea is that for j ≥ 8
√
k we cut the spiral by closed curves γj in Sj. See Figure

46. If we choose one such curve from every Sj for
√
k ≤ j ≤ k then we generate ≃ k

curves, each with k vertices, giving a total of k2 new vertices. This will eventually

lead to a O(n3) estimate in Theorem 1.1 (still a polynomial bound, but larger than we
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want). Instead, we will select a subsequence of tubes {Sjp} to contain closed curves.

We want to choose at most O(
√
k) indices between

√
k and k and we want γjp to be

Gabriel with respect to annular region bounded between γjp−1
and γjp+1

. The length

of the Q-segments connecting these two curves is exactly δp ≡ jp+1 − jp−1 and the

minimal-length of Sjp is at least 1
4
jp, so by Lemma 16.1, (taking L = jp/4, p = k,

w = δp) the Gabriel condition can be met if

(jp/4)
2

4kδp
≥ 1,

or equivalently

δp ≤
j2p
64k

Figure 46. Between windings k1/2 and k we use closed Gabriel loops
that start with unit spacing near k1/2 and eventually reach spacing ≃ k.
We shall see in the next section that beyond radius ≃ k, no more loops
are needed.

Suppose we have an increasing sequence of integers {ji}Pi=1 with

(1) j1 =
√
k = 2K ,

(2) jP = k = 22K ,

(3) P = O(
√
k),

(4) ji+1 − ji ≤ 1
128k

j2i .

The fourth condition implies

|ji+1 − ji−1| ≤ |ji+1 − ji|+ |ji − ji−1| ≤
1

128k
(j2i + j2i−1) ≤

1

64k
j2i ,
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since ji−1 ≤ ji. So if we can find such a set of integers, we will have constructed the

desired closed loops.

We divide the interval [
√
k, k] = [2K , 22K ] into geometrically increasing blocks

[2K , 2K+1], . . . , [2K+q, 2K+q+1], . . . , [22K−1, 22K ].

In the qth block we can take our sequence to be separated by gaps of size 1
128k

(2q
√
k)2 =

22q−7 and hence 2K+7−q evenly spaced integers suffice to cross this block with the de-

sired spacing. Summing over all q’s shows that at most

K
∑

q=0

2K+7−q ≤ 27 · 2K = 128
√
k,

integers jp are needed. Thus at most O(k1.5) new vertices are created in this phase

of the construction.

21. N > k : the empty region

In the previous section we created Gabriel loops in the spiral, assuming there were

other loops nearby to prevent the Gabriel disks from getting too large; thus we needed

a sequence of larger and larger loops. However, once j ≥ k, we no longer need to

limit the size of the Gabriel disks and this sequence of loops can end. More precisely,

Lemma 21.1. Suppose the spiral has k pieces and the spiral has more than k/4

windings. Then each sub-tube Tj with j ≥ k/4 is crossed by a closed loop so that the

vertices of the loop make each isosceles piece Gabriel.

Proof. As above, we assume Tj has width 1. Lemma 15.1 implies that the allowable

displacement for an isosceles piece is at least |a− b|2/4R, where R is the distance to

the vertex of the piece. We also have |a − b| = 2R sin(θ/2) where θ ∈ [0, π) is the

angle of the piece. Since sin(θ/2) ≥
√
2θ/π, the allowable displacement for such a

piece is at least

R sin2(θ/2) ≥ R
2

π2
θ2.

If we only bend the path for pieces where the vertex direction points towards the

center of the spiral, the sum of the angles is at least 2π, so by the Cauchy-Schwarz

inequality, the sum of the angles squared is at least (2π)2/k. Hence the total allowable

displacement in the tube Tj is at least 8R/k times the minimal-length of Tj. In Tj
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every piece with vertex towards the center of the spiral has R ≥ m − 1 ≥ m/2,

(since all our pieces have angle ≤ π/2, there are at least 4 of them) so the allowable

displacement is at least 4m/k ≥ 1, the width of Tj. �

Up to this point, we have divided the spiral into inner and outer halves, but at this

stage this is not necessary. The outermost tube contains a Gabriel curve that connects

opposite corners, forming a loop and every entering path can be Gabriel propagated

to hit this same corner. The region between this loop and the loop formed in Sk is

left empty.

The number of points created in a spiral constructed from k isosceles pieces is

O(k1.5) with a constant that is bounded independent of N , the number of windings.

Since for each spiral k = O(n) (n recall that n is the number of vertices in the PSLG)

and since there can only be O(n) spirals (each is a return region and there are only

O(n) return regions), the total number of points added due to all spirals is O(n2.5).

This completes the proof of Theorem 1.1.
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