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Abstract. We show that any planar PSLG with n vertices has a conforming
triangulation by O(n2.5) nonobtuse triangles, answering the question of whether a
polynomial bound exists. The triangles may be chosen to be all acute or all right. A
nonobtuse triangulation is Delaunay, so this result improves a previous O(n3) bound
of Eldesbrunner and Tan for conforming Delaunay triangulations. In the special
case that the PSLG is the triangulation of a simple polygon, we will show that
only O(n2) elements are needed, improving an O(n4) bound of Bern and Eppstein.
We also show that for any ǫ > 0, every PSLG has a conforming triangulation with
O(n2/ǫ2) elements and with all angles bounded above by 90◦ + ǫ. This improves a
result of S. Mitchell when ǫ = 3

8
π = 67.5◦ and Tan when ǫ = 7

30
π = 42◦.
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1. Introduction

A planar straight line graph (or PSLG from now on) is the union of a finite number

(possibly none) of non-intersecting open line segments together with a disjoint finite

set that includes all the endpoints of the line segments, but may include other points

as well. See Figure 1 for some examples of PSLGs.

Figure 1. Some PSLGs: a simple polygon, a triangulation, a polygon
with holes, a point cloud, a random tree, a percolation graph, random
line segments, a structured grid and a self-intersecting 200-gon.

If Γ is a PSLG, let V be the vertices in Γ and let n = |V | be the number of vertices.

Suppose V ′ is a point set containing V . We say a triangulation of V ′ conforms to Γ

if the edges of the triangulation cover the edges of Γ. We want to build conforming
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triangulations for Γ that have small complexity (the number of elements) and good

geometry (the shape of each element), but these two goals are often in conflict and

we must sometimes choose which is more important in a particular situation. In

this paper we are primarily interested in complexity and in proving bounds that

depend on n but not on the particular geometry of Γ. Simple examples show that we

cannot require a positive lower bound on angles, or an upper bound that is strictly

less than 90◦. Linear complexity for nonobtuse triangulations of simply polygons is

already known [10], as is a quadratic lower bound for PSLGs (see [7]), but giving a

polynomial upper bound for nonobtuse triangulation of PSLGs has remained open

(e.g., see Problem 3 of [6]). We give such a bound by proving:

Theorem 1.1. Every PSLG has a O(n2.5) conforming nonobtuse triangulation. The

triangles may be taken to be either all acute or all right.

Corollary 1.2. Every PSLG has a O(n2.5) conforming Delaunay triangulation.

The corollary improves a O(n3) bound of Edelsbrunner and Tan [24]. Their result

actually gives a bound O(m2n) where m is the number of edges in the PSLG and n

is the number of vertices. If we apply Theorem 1.1 to the sub-PSLG of all edges and

their endpoints, we get a O(m2.5) nonobtuse triangulation and we shall see that the

additional O(n) isolated vertices can be inserted at a total cost of O(mn) triangles.

Thus the proof of Theorem 1.1 gives the bound O(m2.5 + mn). The gap between

O(n2) and Theorem 1.1 can be decreased in some special cases, e.g.,

Theorem 1.3. A triangulation of a simple n-gon has an O(n2) acute refinement.

This improves a O(n4) bound given by Bern and Eppstein in [7]. We can also

approach the quadratic lower bound if we consider “almost nonobtuse” triangulations:

Theorem 1.4. Every PSLG has a conforming triangulation with O(n2/ǫ2) elements

and all angles ≤ 90◦ + ǫ.

This improves a result of S. Mitchell [46] with upper bound 7
8
π = 157.5◦ and a

result of Tan [58] with 11
15
π = 132◦.

The techniques in this paper are used in a companion paper [12] to obtain optimally

sized quadrilateral meshes with optimal angle bounds for PSLGs:
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Theorem 1.5. Every PSLG has an O(n2) conforming quadrilateral mesh with all

angles ≤ 120◦ and all new angles ≥ 60◦.

The angle bounds and quadratic complexity bound are both sharp. In fact, the

argument in [12] shows that for any ǫ > 0 there is a O(n2/ǫ2) conforming quadrilateral

mesh with all new angles between 60◦ and 120◦, but only O(n/ǫ) elements have an

angle outside [90◦ − ǫ, 90◦ + ǫ]. Thus the mesh is “mostly rectangular”.

Acute and nonobtuse triangulations arise in a variety of contexts. In recreational

mathematics one asks for the smallest triangulation of a given object into acute or

nonobtuse pieces. For example, a square can obviously be meshed with two right

triangles but less obvious is the fact that it can be acutely triangulated with eight

elements but not seven, [21]. For further results of this type see [29], [30], [32], [33],

[35], [36], [37], [38], [53], [67], [68], [69], the 2002 survey [71] and the 2010 survey

[70]. There is less known in higher dimensions, but recent work has shown there is an

acute triangulation of R3, but no acute triangulation of Rn, n ≥ 4 [17], [40], [42], [62],

[63], [61]. Finding polynomial bounds for conforming Delaunay tetrahedral meshes

in higher dimensions remains open. In numerical methods such as the finite element

method, a nonobtuse triangulation frequently gives simpler and better behaved algo-

rithms, and often allows one to prove a discrete maximum principle. There is a large

literature on such results and some examples are listed in Appendix B.

In 1960 Burago and Zalgaller [18] showed that any polyhedral surface has an acute

triangulation, but without giving a bound on the number of triangles needed. This

was used as a technical lemma in their proof of a polyhedral version of the Nash

embedding theorem. [19] is a 1995 sequel to this paper. In 1984 Gerver [31] used the

Riemann mapping theorem to show that if a polygon’s angles all exceed 36◦, then

there exists a dissection of it into triangles with maximum angle 72◦ (in a dissection,

adjacent triangles need not meet along an entire edge). In 1988 Baker, Grosse and

Rafferty [3] again proved that any polygon has a nonobtuse triangulation, and their

construction also gives a lower angle bound. In this case no complexity bound in

terms of n alone is possible, although there is a sharp bound in terms of integrating

the local feature size over the polygon. For details, see [8], [50] or the survey [23].

Other papers that deal with algorithms for finding nonobtuse and acute triangulations

include [26], [41], [43], and [45].
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A linear bound for nonobtuse triangulation of point sets was given by Bern, Epp-

stein and Gilbert in [8], and Bern and Eppstein [7] gave a quadratic bound for simple

polygons with holes (this is a polygonal region where every boundary component is

a simple closed curve or an isolated point). Bern, Dobkin and Eppstein improved

this to O(n1.85) for convex domains in [5]. Bern, S. Mitchell and Ruppert [10] showed

O(n) works for nonobtuse triangulation of simple polygons with holes in 1994 and

their construction uses only right triangles. These and related results are discussed

in the surveys [6] and [11].

Maehara [44] showed that any nonobtuse triangulation with N triangles can be

refined to an acute triangulation with O(N) elements. A different proof was given

by Yuan in [66].

Nonobtuse triangulations occur in the theory of machine learning; [52] describes a

nearest neighbor learning algorithm in which a polygon is “learned” by finding two

point sets E,F so that the interior of the polygon is

{z ∈ R
2 : dist(z, E) < dist(z, F )}.

The authors of [52] show that a nonobtuse triangle can be learned with 9 points and

reduce learning any simply polygon P to finding a nonobtuse triangulation of the

PSLG formed by adding the boundary of the convex hull of P to P . Essentially,

their method is to find a point set whose Voronoi diagram covers P . At least n2

points are needed in some cases (see [52]) and finding the minimal size of such a

point set is known to to NP-hard (see [34]). Our result, combined with the argument

in [52], shows:

Corollary 1.6. If Γ is a PSLG of size n, then there is a collection of O(n2.5) points

whose Voronoi diagram covers Γ.

A triangulation is called Delaunay if whenever two triangles share an edge e, the

two angles opposite e sum to 180◦ or less. If all the triangles are nonobtuse, then

this is certainly the case, so Theorem 1.1 immediate implies Corollary 1.2. This

implies the 1993 result of Edelsbrunner and Tan [24] that any PSLG has a conforming

Delaunay triangulation of size O(n3). Conforming Delaunay triangulations for Γ

are also called Delaunay refinements of Γ. There are numerous papers discussing

Delaunay refinements including [23], [27], [47], [50], [51] and [56].
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Given a point set V and two points v, w ∈ V , the segment vw is called a Delaunay

edge if it is the chord of an open disk that contains no points of V . It is called a Gabriel

edge if it is the diameter of such a disk (see [28]). The set of Delaunay edges defines

the Delaunay triangulation mentioned above. The Gabriel edges contain the minimal

spanning tree, so they connect the points of V , but they might not triangulate V . A

conforming Gabriel graph of a PSLG Γ is obtained by adding points (if necessary) to

the vertex set of Γ so the set of Gabriel edges for the new vertex set covers Γ. Every

edge of an nonobtuse triangulation is a Gabriel edge (see Figure 2) so Theorem 1.1

implies

Corollary 1.7. Every PSLG has a O(n2.5) conforming Gabriel graph.

a b
dc

Figure 2. Nonobtuse triangulations have Gabriel edges. If not,
some edge I = [a, b] has a vertex in an open half-disk with base I.
Choose the vertex v that maximizes the angle subtended by I and
choose a strict subinterval [c, d] that subtends angle π/2 from v. Since
the triangulation is nonobtuse, there must be another vertex in the
right triangle formed by v and [c, d], which contradicts maximality of
v.

Although stated as a corollary of Theorem 1.1, we will actually prove Corollary 1.7

first and deduce the theorem from it using the ideas of Bern, Mitchell and Ruppert

from [10].

Suppose V is a finite point set and 0 < β ≤ 1. Let θ = π− arcsin(β). We say that

an edge e between points v, w ∈ V is in the β-skeleton of V if the angle ∠vpw is ≥ θ

for all p ∈ V \ {v, w}. This requires that a certain open symmetric crescent with axis

e contains no points of V . See the third picture in Figure 3. When β = 1, this is the

same as the Gabriel condition.
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Figure 3. An edge (dashed) is included in the Gabriel graph if the
disk with this diameter contains no other vertices. It is a Delaunay
edge if it is the chord of some disk that contains no other vertices. For
0 < β < 1, the edge is included in the β-skeleton if a certain crescent is
empty. For β > 1 circle based skeletons require a certain union of disks
to be empty and crescent based skeletons require a certain crescent to
be empty.

Theorem 1.8. For 0 < β < 1, every PSLG has a conforming β-skeleton with at

most O(n2/(1− β)) vertices.

If β > 1 then there are (at least) two different definitions of the β-skeleton in

the literature: circle based and crescent based. For circle based β-skeletons the

empty region is the set of points where the angle subtended by [v, w] is less than

θ = arcsin 1
β
. See [25]. This region is a union of two equal sized disks that have [v, w]

as a common chord. See the fourth picture in Figure 3. For circle based skeletons

there is no bound in terms of n alone for the number of vertices needed to construct

a conforming β-skeleton (see Appendix A).

In crescent based β-skeletons, the empty region is the intersection of two disks of

radius β|v −w| with centers that lie on the line through v, w and are distance β − 1
2

from 1
2
(v + w), as in the last picture in Figure 3. See [20]. It is easy to see that the

diameter segment of a Gabriel disk can be subdivided into O(β) equal subintervals

that are each in the crescent based β-skeleton (see Figure 34). Thus any PSLG has

an O(n2.5β) conforming crescent based β-skeleton for 1 ≤ β < ∞.

Why is nonobtuse triangulation for PSLGs more difficult than for simple polygons?

Roughly speaking, the problem is that adding a new vertex often forces a new edge,

which, in turn, produces a new vertex. Thus vertices “propagate” until they run into

the convex hull boundary or an existing vertex. A couple of examples illustrate the
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problems that arise. In Figure 4, the left picture shows a PSLG that is already acutely

triangulated. On the right we add a single new vertex (the black dot). However, to

nonobtusely triangulate the new PSLG requires adding many more lines (the dashed

triangulation drawn is not necessarily optimal; can the reader do better?). Figure 5

shows the problem that arises when we want to simultaneously triangulate the inside

and outside of a polygon P . We first nonobtusely mesh the inside, but this may create

new vertices on P . Then we mesh the outside incorporating these new points, but

create even more vertices on P . This forces us to remesh the interior to incorporate

the new vertices. Can we nonobtusely mesh the inside and outside using exactly the

same polynomially sized set of vertices on P? We will show that this is possible.

Figure 4. Small changes to a PSLG (such as adding a single vertex)
can require large changes to the triangulation.

Figure 5. Naively triangulating two sides of a polygon one at a time
creates new vertices (black dots) at each stage, which force another
refinement of the other side. Can we eventually mesh one side without
creating new vertices on the polygon?

The rest of the paper is organized as follows:

Section 2: We prove any triangulation of a simple n-gon has an acute refine-

ment with O(n2) elements. The proof of this introduces the framework for the
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rest of the paper and shows that finding a nonobtuse triangulation reduces to

finding a certain kind of conforming Gabriel graph.

Section 3: We define thin regions and propagation paths.

Section 4: We define return regions and show there are only O(n) such regions.

Section 5: We consider bendings of propagation paths that preserve the Gabriel

property and estimate how far we can bend a path.

Section 6: We build traps in each return region.

Section 7: We complete the proof of Theorem 1.1.

Section 8: We prove Theorems 1.4 and 1.8.

Section 9: We pose questions for further research.

Appendix A: We give lower bounds for the problems we consider.

Appendix B: We give some references in the numerical analysis literature

where acute and nonobtuse triangulations arise.

2. Acutely refining a triangulation

To give an introduction to the rest of this paper, we start by proving Theorem

1.3. This offers an opportunity to review important facts from [10] and [66] that

we will use (and slightly modify in a few cases). This section also reduces Theorem

1.1 to finding a conforming Gabriel graph; the remainder of the paper deals with

constructing that graph.

Let T be some collection of triangles in the plane. Suppose we have a equivalence

relation on the collection of edges and assume that each equivalence class has one

or two elements; in the latter case both edges must have the same length and are

identified by an isometry. The space X obtained by taking the disjoint union of the

triangles with their edges identified as above will be called a triangulated surface. Its

boundary, ∂X, consists of all edges that are not identified with any other edge. The

identified edges are called interior edges of the triangulation.

Theorem 2.1. Any finite triangulated surface can be nonobtusely triangulated with

either all acute or all right triangles.

This is not a new result and can be proven in various ways going back at least to

Burago and Zalgaller in [18]. The proof we give here, however, can be adapted to
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give estimates of the number of triangles needed. Theorem 1.3 will be an immediate

corollary and Theorem 1.1 will follow from more extensive modifications.

A sector is a region in the plane that is similar to {reiθ : r1 < r < r2, 0 < θ < θ0}
where 0 ≤ r1 < r2 < ∞ and 0 < θ0 ≤ 2π. Each sector has two straight sides

and either one or two circular arc edges (depending on whether r1 = 0 or r1 > 0).

When we have to distinguish these two cases we will call the r1 = 0 case a “proper

sector” and the r1 > 0 case a “truncated sector”. The meeting point of the lines

containing the straight sides is called the vertex of the sector and θ0 is the angle of

the sector. Every sector has two obvious orthogonal foliations: the E-foliation by

circular arcs concentric with the vertex and the N-foliation by radial line segments

(E for “equidistant”; the leaves stay a constant distant apart and N for “normal to

E”). The straight sides of a sector will be called the N-sides (since they lie in the N-

foliation) and the curved sides will be called the E-sides. See Figure 6. Later, we will

also want to consider a rectangle as special type of truncated sector, corresponding to

angle θ = 0. In this case the E and N foliations consist of straight segments parallel

to the sides of the rectangle. For the proof of Theorem 1.1 we only need to consider

proper sectors; we introduce truncated sectors in order to verify our arguments still

work in this more general case, so they can be quoted in [12].

Figure 6. Proper and truncated sectors with E and N foliations.

We begin the proof of Theorem 2.1 by dividing each triangle T into three disjoint

proper sectors (called the thin parts) whose vertices are the vertices of T , and the

remaining central region (called the thick part) as illustrated in Figure 7. (This is

a special case of the thick/thin decomposition of a general polygon as described in

[13], [14], but we don’t need the general definition in this paper. Here we shall only

need the case of triangles, which is much simpler.)

The center of the inscribed C for T is also the meeting point of the three angle

bisectors. If we take circles centered at the vertices of T and meeting T where C
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Figure 7. We divide a triangle into three thin parts and one thick
part. We choose the thick part to hit the triangle in segments that
have positive length, but are short enough so that the corresponding
half-disks in T are disjoint. Points on each side of T are either stopping
points or can be propagated to another side along the E-foliation.

hits T , then these circles are pairwise tangent and the tangent lines also meet at the

center of C. Removing these three disks from T leaves a shaded central region that

meets each side of T at a single point. See the upper left of Figure 7. However, for

the current proof we remove strictly smaller sectors, so that the central region meets

T in segments of positive length called the central segments. The central segments

are chosen to be short enough so that the three half-disks in T with these segments as

bases are disjoint. See lower left of Figure 7. The endpoints of the central segments

are called the vertices of the thick part.

A point is called a stopping point if it is either on ∂X or is on a central segment

of some triangle. Given any point in any thin part there is an E-leaf containing it.

Where the E-leaf meets the boundary of the triangle, it either hits a stopping point

or it can be continued into a thin part of an adjoining triangle.

Lemma 2.2. If every central segment has positive length then every E-path is either

a closed loop or has two endpoints that are stopping points.
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Proof. Let ǫ be the length of the smallest stopping segment in X. Suppose γ is a

propagation path that never stops and suppose that γ hits an edge e twice at points

x, y within an interval of length < ǫ and that x is the first of the two points to be hit

(γ has a natural direction starting from its initial point). Consider the propagation

path γx starting at x with the same direction at γ and the parallel path γy starting

at y. Since the paths are < ǫ apart and neither ever hits a stopping point, they must

encounter exactly the same sequence of thin parts. This means the paths stay the

same distance apart forever.

If γ crossed e at x and y in opposite directions then γx and γy must meet half-way

between x and y on γ, which contradicts the observation that they remain a constant

distance apart. Thus γ crosses e at x and y in the same direction. Eventually the path

from x reaches y and the path from y reaches a new point z so that |z− y| = |y− x|.
Either z = x or z 6= x. In the first case γ is a closed loop and so hits e only finitely

often. In the second case we can repeat the construction forever, obtaining an infinite

number of distinct, equally spaced points on e; an obvious impossibility. �

In the last paragraph of the preceding proof, in the case z = x, the loop that is

created bounds a Möbius strip, which is impossible for a planar domain. Thus a

closed foliation path in a triangulated planar domain cannot hit the same triangle

side at two distinct points within ǫ of each other.

The lemma shows that propagating the O(n) vertices of the thick regions gives

O(n) terminating propagation paths. These paths cut the thin part W of X into

O(n) tubes. Each tube has a fixed width and the intersection of each tube with a

N-segment is the diameter of a disk contained in the tube. The ends of the tubes are

segments in the boundaries of the thick pieces (or the boundary of the triangulation)

and hence disks with these segments as diameters do not contain any vertices. Thus

intersection points of the propagation paths with the triangulation edges cut the

triangulation edges into Gabriel edges. See Figures 8 and 9.

Next we want to turn this collection of edges into a nonobtuse triangulation. This

part of the argument closely follows the arguments of Bern, Mitchell and Ruppert in

[10]. For the convenience of the reader (and because we want to make a few changes

to their arguments) we will describe the process in detail.
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Figure 8. The tube edges remain a fixed distance apart and are
filled by disks tangent to the sides of the tube. In particular, every
intersection of a side of a thin piece with a tube is a Gabriel edge.

For a fixed triangle, the propagation paths (including endpoints) break the edges

of T into finitely many segments {Ij}. At each vertex of T there are two adjacent

segments of equal length, i.e., these are radii of a circle centered at the vertex. Remove

the corresponding sectors from T . Also remove the half-disks in T with diameters

{Ij}. What remains of T is bounded by circular arcs. These arcs must be tangent

where they meet on the boundary of T , but may overlap at intersections points inside

T .

Near each point where two bounding circular arcs meet we add a small disk whose

interior is disjoint from all the other disks and that is tangent to the two touching

disks (these may be either tangent or overlapping). See the bottom left picture in

Figure 9. This forms a 3-sided region that is is bounded by circular arcs. Following

[10] we call this a 3-gap. These new disks are called protecting disks since they

insure that all the original intersection points on the triangle boundary are on the

boundaries of 3-gaps. When we have finished adding these protecting disks, all the

remaining regions (those that are not 3-gaps) are bounded by tangent circular arcs

and none has a boundary that intersects the boundary of T . See Figure 9.

Suppose one such connected region is bounded by K arcs. By the arguments of

[10] we can add O(K) new disks so that the remaining regions R are all bounded by

either 3 or 4 tangents circular arcs (called 3-gaps and 4-gaps). The augmented region

R+ consists of R and the sector of the bounding disks defined by the boundary arcs.
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Figure 9. Divide each triangle into thick (shaded) and thin (white)
parts and propagate the vertices until they reach a stopping point. The
bottom pictures show what happens next in a single triangle T . We
keep an arc at each vertex and the Gabriel disks along the boundary
of T . The left picture shows the added protecting disks (shaded); this
insures the boundary of T is covered by augmented regions of 3-gaps.
Also note that where two boundary disks overlap, the common chord
lies on a line that separates the centers of the circle (this will be used
later). On the right we add disks until only 3-gaps and 4-gaps are left.
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The triangle is the union of the augmented regions of all the 3-gaps and 4-gaps it

contains. See Figure 10.

Figure 10. Given a region R bounded by tangent circular arcs (dark
shading), the augmented region R+ (all shading) consists of R together
with the sector of each circle defined by the arc on the boundary of R
(the convex hull of the arc and the center of the circle).

Theorem 2.3 (Bern-Mitchell-Ruppert, [10]). Suppose R is a 3-gap or 4-gap and

let R+ be the corresponding augmented region. Then R+ can be triangulated by at

most 28 right triangles so that no new vertices are added to the boundary of R+.

Alternatively, we can use nonobtuse triangles that satisfy

(1) Any two right triangles that share an edge share an edge of the the same type

(either leg-leg or hypotenuse-hypotenuse).

(2) Any right triangle that has a side on ∂R+ has only one side on ∂R+ and that

side is its hypotenuse.

The first claim is proven in [10]. The alternative conclusions will be useful later

when we want to refine our nonobtuse triangulation to an acute triangulation, and

they require only a few minor changes (we will add a few extra right triangles and

convert a few right triangles to acute triangles). We sketch these changes below.

Proof. The first change is in triangulating 3-gaps. In [10] the center of the inscribed

circle of R+ is connected to the centers of the circle and to the points of tangencies

between the circles. This gives six right triangles whose legs lie on the boundary of

R+. However, condition (2) does not hold, so we add the three chords connecting
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the points of tangency, and get twelve right triangles so that only hypotenuses lie on

∂R+. Moreover, adjacent triangles only shared edges of the same type, as desired.

See Figure 11.

Figure 11. The triangulation of 3-gaps in [10] uses six right triangles,
but has legs on ∂R+. We add the dashed triangle to form twelve right
triangles with only hypotenuses on ∂R+. The reader should verify that
the central dot is indeed inside the dashed triangle.

Before triangulating 4-gaps, recall that the four vertices all lie on a single circle.

This is Lemma 3 of [10]. That lemma also states that the angle measure of the four

boundary arcs sums to 2π, so that at most one of the arcs can be reflex (have angle

measure > π).

In [10] the 4-gaps are split into several cases. The first occurs when:

(1) R is centered, that is, the center of the circle C∗ passing through the four

points of tangency is inside the convex hull of these points and,

(2) none of the arcs in ∂R is reflex.

If both these conditions hold, then the triangulation given in [10] has the desired

properties (R+ is divided into kites by connecting the center of C∗ to the four tangent

points. Each kite is triangulated by adding its diagonals). See Figure 12.

The next case is when one of the four arcs is reflex. Suppose C2 is the circle with

the reflex arc and it is opposite C4. The authors of [10] insert a new disk C5 centered

on the segment connecting the centers of C2 and C4 and tangent to both. This creates

two new 4-gaps, neither with an reflex arc, since they both contain an arc of measure

π. However, the new disk may intersect one of the other two. See Figure 13. The
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Figure 12. If R is centered and every arc is non-reflex, then R+ is
a union of sixteen right triangles with the desired properties.

fact that the new disk is on the segment connecting the centers of C2 and C4 means

that if it intersects, say, C3, then the common chord of C5 and C3 separates the

centers of C5 and C3. The proof of this is left to the reader. Similarly if it intersects

C1. This chord-separated property implies the associated augmented region can be

triangulated by sixteen right triangles as on the left of Figure 14.

C3

C4

C5

C1 C2

Figure 13. If R reflex, then add an extra disk (shaded) centered
on the segment connected the non-reflex circle to its opposite. If this
disk intersects one of the two other disks bounding the region, the line
containing the common chord must them separate the centers of the
overlapping circles. The picture on the right shows that the chord need
not separate the centers in general.

Some of the right triangles on the left side of Figure 14 have legs on ∂R+. We will fix

this by making these triangles acute. Suppose the circles are C1, C2, C3, C4 with C2, C4

intersecting at points x, y and let c1, c2, c3, c4 be the centers of the corresponding
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Figure 14. A non-reflex but overlapping 4-gap. On the left is the
triangulation from [10]. We modify this by sliding the white points
to make some of the right triangles acute (these are shaded in the
enlargement on the right). The remaining right triangles only have
hypotenuses on the boundary of the augmented region.

circles. If C2 and C4 have equal radius, then c1, c3 both lie on the line through c2, c4.

If C2 has smaller radius than C4, then both c1, c3 are closer to c2 than they are to c4.

Thus both c1, c2 lie of the same side of the line bisecting c2, c4, i.e., the line containing

x and y. Similarly, if C2 has larger radius than C4, both c1, c3 lie on the same side of

this line.

Let v1, v3 be the vertices of degree six in the triangulation (the white dots in Figure

14). Slide v1 by amount ǫ > 0 on the ray from c1 through v1 away from c1. This gives

a new point v′1. Slide v3 on the ray from c3 through v3 away from c3 to get a point

v′3. The distance we slide v3 is chosen so the segment [v′1, v
′
3] is parallel to [v1, v3]. For

any small enough ǫ this makes the four right triangles with legs on ∂R+ acute and

leaves all the remaining triangles right. Moreover, ∂R+ now contains no legs and any

two adjacent right triangles share an edge of the same type.

The final case is when all the arcs of the 4-gap have angle ≤ π, but the center of the

circle defined by the four tangent points is not in the convex hull of these points. The

authors of [10] show that a fifth disk can be added, tangent to two opposite circles,

creating two new centered 4-gaps (one possibly self-intersecting) and such that the

union W of the two augmented regions can be written as a union of seven kites, and

each is triangulated by its diagonals. This causes the boundary of W to contain only

hypotenuses and for all adjacencies to be of matching type. See Figure 15. This

completes the proof of Theorem 2.3. �
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Figure 15. A non-centered 4-gap is split into two centered 4-gaps
by the shaded disk. It is proven in [10] that such a disk exists and we
use the same triangulation as given there.

The argument so far produces a nonobtuse triangulation of a triangulated surface.

To refine it to an acute triangulation we use an idea of Yuan from [66]:

Theorem 2.4. Let T be a right triangle. Form a 12-gon P by adding the midpoints

of each edge of T and then adding the midpoints of each of the resulting 6 sides. This

polygon has a triangulation by 24 triangles: 22 acute and 2 right triangles. The two

right triangles T1, T2 contain the two acute angles of T . For any small enough ǫ > 0,

the entire triangulation can be made acute by sliding two vertices of P by ǫ along the

sides of T . Either we can slide the vertices of T1, T2 that lie on the hypotenuse of T

by ǫ towards the acute vertices of T , or we can slide the vertices of T1, T2 that lie on

the legs of T by ǫ away from the acute vertices of T .

Proof. The proof is basically a series of pictures; see Figure 16. Divide T into a

rectangle and two right triangles by connecting the midpoint of the hypotenuse to

the midpoints of the legs. Then repeat this in the two triangles. Acutely triangulate

the large rectangle as shown. Then move the marked interior vertices as shown in

the top of Figure 16. This makes all the triangles acute except for the two containing

the acute angles of T . These can be made acute by sliding vertices as described in

the theorem (see bottom of Figure 16).

�
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Figure 16. The proof of Yuan’s theorem. The shaded triangles
in each picture are acute. Moving the white dots in the indicated
directions makes some of the incident right triangles acute; a small
enough move leaves acute triangles acute.

Corollary 2.5. Any nonobtuse triangulation in which adjacent right triangles only

share edges of the same type (leg or hypotenuse) has an acute refinement with at most

24 times as many triangles.

Proof. First subdivide every triangle by connecting the midpoints of each side. Sub-

triangles of right triangles are right and subtriangles of acute triangles are acute. Then

repeat the midpoint subdivision on each resulting triangle. This gives a nonobtuse

refinement of the original nonobtuse triangulation. To make it an acute triangulation

we “fix” all the right triangles by sliding vertices as described in Theorem 2.4. If the

edge where we slide is shared with an acute triangle, choose ǫ so small that it remains

acute. If the edge is shared with another right triangle, the shared edge must be of

the same form (leg or hypotenuse), so sliding in one direction fixes both triangles at

once. �

This proves Theorem 2.1 because ifX is a triangulated surface, we have constructed

a nonobtuse triangulation in which any adjacent right triangles share edges of the

same type. This is immediate if the adjacent right triangles are in the same augmented
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region. Otherwise the common edge must be on the boundary of one of the original

triangles, and hence is on the boundary of an augmented region, and hence must be

a hypotenuse.

Corollary 2.6. Suppose X is a triangulated surface. Suppose the dual graph of X is

a tree. Then X has an acute triangulation with O(n2) elements. This occurs if X is

the triangulation of a simple planar polygon, so this implies Theorem 1.3.

Proof. If the dual is a tree, then the propagation paths can never return to the same

triangle twice. Hence each propagation path generates at most O(n) new vertices

and there are only O(n) such paths. �

In general, the thick part of a triangle has six vertices, but in this corollary we

can take thick parts that have only three vertices, giving a slightly better bound. In

Lemma 2.2 we needed six vertices to make sure propagations paths ended, but in the

corollary they end because the dual is a tree, so we can use the thick parts shown in

the upper left of Figure 7.

If a triangulation has shortest side ℓ and all angles ≤ 180◦ − θ, then the central

sides of the thick parts can all be taken to be at least ≃ ℓθ. Thus the argument of

Lemma 2.2 proves that any propagation path can hit any triangle side of length Lj

at most O(Lj/(ℓθ)) times. Thus any triangulation always has an acute refinement

with at most O(n
∑

j Lj/ℓθ) = O(n2 maxj Lj

ℓθ
) triangles.

3. Thin Regions and Tubes

Next we start on the proof of Theorem 1.1. The first step is to note that it suffices

to replace a PSLG with n vertices by a connected PSLG containing it and having

m = O(n) vertices. The most obvious way to do this is to replace the PSLG with

a triangulation of itself (this increases the number of edges, but not the number of

vertices and every PSLG can be triangulated in time O(n log n), see [6]). So from

this point on, we may assume Γ is a triangulation of n points and we let {Ωj} be a

list of the open triangles. For each of these we define thick and thin parts as before

and define the E and N foliations in the thin parts. We let W denote the union of

all the thin parts.

Since the thin part of a triangle is a proper sector (see notation at the beginning of

Section 2), W is a union of proper sectors. However, we will carry out the argument
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in the slightly more general situation whenW is a union of both proper and truncated

sectors (including rectangles). Why? The added generality is needed for the proof

of Theorem 1.5 in [12]. In the proof of that theorem, we also start by replacing the

given PSLG by a connected one containing it. However, Theorem 1.5 gives a lower

angle bound, and no new angles < 60◦ may be created. It we simply triangulate

the PSLG as above, small angles may be formed. Instead, we connect the PSLG by

adding O(n) new vertices and edges without creating any angles < 60◦. The bounded

complementary components {Ωj} of the new PSLG are simply connected polygonal

domains, but need not be triangles. They still have a decomposition into O(n) thick

and thin parts, but the thin parts now may be either proper or truncated sectors and

so the corresponding W is a union of both types. The argument we give in this paper

will be valid in this slightly more general setting, so it can be quoted directly for the

proof of Theorem 1.5 in [12] (in Section 8 of this paper we will state Lemma 8.2 that

contains the precise conclusions needed in [12]).

We now resume the proof of Theorem 1.1. As above, W denotes the union of all

the thin parts of all the Ωj’s and we call it the thin region. If Γ has n vertices then

there are at most O(n) thin parts in W . Clearly W is foliated by piecewise circular

arcs consisting of the E-leaves in each thin part (some of these arcs might be line

segments in the general case, but abusing notation, we take “circular arc” to mean

“circular arc or line segment” unless otherwise noted). We call this the E-foliation

of W . Similarly, W has an orthogonal N-foliation consisting of line segments. A

connected arc on a leaf of the E-foliation will be called an E-path. A connected arc of

the N-foliation is always a straight line segment, and we will call these N-segments.

A maximal path is called a leaf of the foliation.

Each connected component of W is a Jordan domain that consists of straight

segments in Γ and piecewise circular arcs in the complement of Γ. We let ∂NW =

∂W ∩Γ and call this the N-boundary of W . The rest of ∂W is called the E-boundary

of W and is denoted ∂EW .

We say that two paths I, J in the E-foliation are parallel if for every x ∈ I there is

a y ∈ J so that the segment [x, y] is contained in an N-segment. If this is the case,

then the distance |x − y| is the same for every pair. This is obviously true for each

thin piece and the general case follows immediately.
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A tube is a region that a union of two parallel E-paths and all the N-segments

with both endpoints on these paths. It plays the role of a rectangle if we think of the

E and N foliations as defining horizontal and vertical directions. A tube’s boundary

is divided into four arcs: two E-paths and two N-segments. These will be called the

E-sides and the N-sides of the tube. The width of the tube is the common length

of the N-sides. The length L of the tube is the length of the shorter E-side of the

tube. This can be zero, even if the tube has nonempty interior, if the tube is a proper

sector itself.

When an E-path crosses from one thin part to the next, the tangent direction is

perpendicular to corresponding N-segment from both sides, so E-paths are actually

C1. Thus a directed E-path γ has a well defined change in the tangent direction

between its endpoints. When γ crosses a thin piece of angle θ, we define the change

in direction to be +θ if the corresponding vertex is on the left of the path and is

−θ if the vertex is on the right. Note that two parallel directed E-paths must have

the same change in tangent direction. Also, if we reverse the direction of a path, the

change in direction changes sign.

Suppose S is a tube with N-sides [a, b] and [c, d] so that a and c are connected by

an E-side and so are b and d. Let γt be the E-path in D that connects (1− t)a+ tb to

(1− t)c+ td. Thus γ0 is the E-side connecting a to c and γ1 is the E-side connecting

b to d. We assume the vertices are labeled so that the tube is on the left of γ0 as we

go from a to c. Let θ denote the change in direction for γ0 as it goes from a to c (it

would be the same for any γt since they are all parallel).

Lemma 3.1. With notation as above, ℓ(γt) = ℓ(γ0)− tθ.

Proof. This is obvious for sectors and the general case is just a sum of sectors. �

The E-path that connects the midpoints of the two N-sides will be called the mid-

path of the tube and its length is denoted L1/2. The lemma implies ℓ(γt) is an affine

function of t and hence ℓ(γt) = (1− t)ℓ(γ0) + tℓ(γ1). See Figure 17. In particular,

L1/2 = ℓ(γ1/2) =
1

2
(ℓ(γ0) + ℓ(γ1)) ≥ min(ℓ(γ0), ℓ(γ1)) = L.(3.1)

Given two parallel E-paths, we can continue them until the first time they fail

to be parallel. This can happen either because one of the paths ends (i.e., it hits

∂NW ) or they become separated by a component of ∂W ; in this case there is a last
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ab

d

c

Figure 17. In a sector, the length of an E-leaf is a multiple of its
radius, hence is linear. For a general tube, the length of γt is a sum of
lengths in each sector so is affine in t. Here the midpath is shown as a
dashed curve.

connecting segment [x, y] with x, y ∈ W , and [x, y] contains a component of ∂NW .

There are only finitely many such components of ∂NW , so there is a minimal length

ǫ0 for such a component. Thus if two parallel paths in the E-foliation are less than ǫ0

apart, they cannot stop being parallel unless one of them terminates on ∂NW . Thus

the argument we gave in the last section to prove propagation paths terminate also

shows:

Lemma 3.2. Every E-path is either a closed curve or has two endpoints on ∂NW .

4. Return Regions

The idea for proving Theorem 1.1 is to propagate all the vertices of the thick parts

along the E-foliation until then terminate on ∂W . This cuts Γ into Gabriel segments

and we obtain a nonobtuse triangulation as in Section 2. The main problem is

bounding the number of Gabriel edges. There are O(n) vertices and O(n) thin parts,

so if each propagation path only hit each thin part once, we would create only O(n2)

new vertices which gives Theorem 1.1 with a O(n2) bound. However, it is possible

for the propagation paths to twist and turn and cross the same thin part arbitrarily

many times. See Figure 18 for examples of how this can happen. To prove Theorem

1.1 with a geometry independent bound we must “bend” the propagations paths so

that they terminate more quickly, while maintaining the Gabriel condition. We will

show we can terminate every path before it crosses O(n) thin parts, although we will
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have to add O(n1.5) new vertices to do this (and propagate them as well), giving the

O(n2.5) bound in the theorem.

This plan will take several steps to accomplish. In this section we will describe

“return regions” in W that every sufficiently long E-path must enter. In the following

sections we will describe how to “bend” the propagation paths inside the return

regions so that their intersections with Γ still define Gabriel edges, but so that each

path only crosses each thin part a bounded number of times.

Figure 18. Two ways in which propagation paths can recross the
same thin parts many times. The bottom picture shows a spiral; a
propagation path in a spiral can hit the same edges arbitrarily often.

We start with the following simple fact (the proof is left to the reader):

Lemma 4.1. Suppose I is a line segment and γ is a C1 Jordan arc in the plane

minus I with both endpoints in the interior of I and normal to I at both endpoints.

Then the total change in the tangent direction along γ has absolute value π, 2π or 3π.

Suppose I is an N-segment and γ is an E-path with both its endpoints on I and no

other points on I. We call this a simple returning curve for I. We call γ a U-curve,

G-curve or C-curve depending on whether the total change in direction has absolute

value π, 2π or 3π respectively (the names comes from the shapes of the paths in
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Figure 19). Now suppose γ is an E-path with its endpoints on I and also one interior

point on I. Suppose that neither of the proper subpaths that are simple I-paths is

a G-curve or C-curve. Then they must both be U-curves. If we give then consistent

directions (the initial point of one is the terminal point of the other), then either

the change of direction has the same sign for both paths or it has different signs.

The first case we call a G-curve (or a G-curve of the second type if we ever need to

distinguish it from the previous sort). The second case we call a S-curve. See Figure

19. Thus any E-path that hits I three times contains subpath that is a return curve

for I. Thus if m = O(n) is the number of thin parts, any E-path that crosses 2m+1

thin parts must hit some N-segment three times and must contain one of the types

of return paths described above.

Figure 19. A C-curve, S-curve and two types of G-curve. Each is
named for the letter it vaguely resembles.

Suppose γ is a returning curve for some N-segment I. A tube consisting of paths

parallel to γ is called a return region for I. The tube consisting of all the curves

parallel to γ is called a maximal return region for I. Return regions will be named

according to the type of curve γ is: C-regions, S-regions and G-regions. Given the

returning curve γ, we can construct the corresponding maximal return region in O(k)

steps if γ crosses k thin parts. Starting with the first thin part, we simply measure

the distance from γ to each end of the thin part along the N-foliation and remember

the minimum in each direction (to the left and right of γ). See Figure 20.

We say an E-path has k steps if it crosses k thin parts. We say that it crosses a

tube if its intersection with the tube hits every N-segment in the tube.
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Figure 20. Once we have a path that crosses a return region, we
can construct the entire return region in time O(k), if the region uses
k thin pieces.

Lemma 4.2. Let m be the number of thin parts. There is a collection of O(n) return

regions so that any E-path that crosses > 4m thin parts must cross one of these return

regions.

Proof. Each maximal return region contains a boundary point of W on both of its

E-sides (otherwise it would not be maximal). Choose one of these points and consider

the widest return region associated to this point. Since there are only O(n) boundary

vertices in W and only one widest return region for each vertex, this defines a collec-

tion of O(n) return regions. Fix one of them. Any narrower return region associated

to the same vertex has the property that any E-path that crosses it also crosses the

wider return region and the two crossing subpaths overlap. Since any path with

2m + 1 steps (a step refers to crossing a thin part) crosses some return region, any

path with 4m+ 1 steps must cross one of our chosen “widest” return regions. �

5. Bending propagation paths

The Gabriel condition gives us a little freedom to change the propagation paths

due to the fact that the thin pieces have positive thickness. Consider Figure 21. On

the left it shows three propagation paths; suppose we want to shift the middle path

without changing the top or bottom path. We can move the righthand vertex on the

middle path up or down on the thin edge, as long as it does not enter the shaded

disks centered on the other thin edge. Moreover, the new disks formed by moving

the point should not contain the middle vertex on the left segment. In this section
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we estimate how much we can bend an E-path and still have the Gabriel property.

This is the key calculation in the proof of Theorem 1.1.

Figure 21. We can slightly alter a propagation path and maintain
the Gabriel condition. The new point on the right segment has to stay
outside the shaded disks in the left picture and the old point on the
left segment must be outside the shaded disks in the right picture. The
situation is enlarged in the bottom pictures.

We can always subdivide a thin sector of angle θ into k sectors of angle θ/k and

increase the number of thin parts by a factor of k. Fix an angle 0 < θ0 < 30◦ and

assume that we have done this, where necessary, so that all the thin sectors have

angle ≤ θ0.

A Gabriel path γ in a tube S is defined as follows. First, γ is a path in S with

its initial endpoint on an N-side of the tube. Let V be the set of points where γ

crosses an open N-segment. Each N-segment contains at most one point of V and

whenever an N-segment I does contain a point v ∈ V the two components of I \ {v}
are diameters of disks in S that contain no points of V . Each N-segment I that does

not intersect V is itself the diameter of a disk not hitting V . See Figure 22.



28 CHRISTOPHER J. BISHOP

Figure 22. Replacing a E-path (top) by a terminating Gabriel path
(middle). If we later add more paths to the tube, the disks get smaller
and hence the Gabriel condition still holds (bottom).

Clearly any E-path crossing S is a Gabriel path. We want to show that if the tube

is long and narrow then any E-path crossing S can be replaced by a Gabriel path

with the same starting point but ending somewhere inside S.

Lemma 5.1. There is a constant M < ∞ so that the following holds. Suppose S is

a tube of width w, length L and is a union of k sectors. Suppose that L ≥ Mw
√
k.

There is a N-segment I of the tube so that any E-path γ that enters the tube can be

replaced by a Gabriel path γ′ with the same starting point, but that terminates without

crossing I.
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If one E-path in a tube can be replaced, then any number of E-paths can be

replaced, since further subdivision of the N-segments only makes it easier for the

Gabriel condition to hold.

The proof of Lemma 5.1 will proceed in several steps. The first observation is that

if the tube contains a “fat” sector then there is nothing to do.

Lemma 5.2. Let η = (sin θ0)/(θ0(1 + sin θ0)). Suppose S is a truncated sector with

angle θ ≤ θ0. Suppose the N-sides of S have length w and the longer E-side has length

ℓ. If w ≤ 2ηℓ then any half-disk with base on one N-side of S does not intersect the

other N-side.

Proof. Consider Figure 23. Let R = |a− d| so that ℓ = Rθ and r = (R− r) sin θ, so

r =
R sin θ

1 + sin θ
= ℓ

sin θ

θ(1 + sin θ)
≥ ℓ

sin θ0
θ0(1 + sin θ0)

= ℓη.

Note that η → 1 as θ0 → 0. If w ≤ 2ηℓ then w ≤ 2r and any halfdisk with base on

the N-side of the sector can’t hit the opposite N-side. �

θ

c

da
r

wR

b
r

Figure 23. If w ≤ 2ηℓ then disks centered on an N-side of a sector
don’t hit the other N-side. Gabriel paths end if they hit such a sector.

If an E-path encounters a fat sector then we can terminate the path there without

bending. So next we have to bend propagation paths assuming every sector in the

tube satisfies w > 2ηℓ. How far can we bend a path in each sector? Consider Figure

24. Suppose S is a proper sector with vertex A, angle θ > 0 and sides L1, L2. Let

B,C,D be points on L1 so that D1 = D(C, r1), D2 = D(D, r2) are two disjoint disks

that are tangent at the point B and neither open disk contains the vertex A. Let

R = |A−B|. The disk D1 does not contain A, so r1 ≤ R/2. The point a is the point

of ∂D1 ∩ L2 farther from A, b is ∂D(A,R) ∩ L2, c is where the perpendicular to L1
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Figure 24. The figure estimates how much we can perturb a Gabriel path.

through B hits L2 and d is the point of ∂D2 ∩ L2 closer to A. Let e be the point

where the segment [C, c] crosses ∂D1. Let x = |c− B|. Then

x = R tan θ = ℓ
tan θ

θ
≤ ℓ

tan θ0
θ0

= ℓµ.

Since we are assuming ℓ ≤ w/(2η) = r1/2, we get x ≤ µℓ ≤ wµ/(2η) = r1µ/η.

By the mean value theorem we have for y > 0

√
y +

x

2
√
y + x

≤ √
y + x ≤ √

y +
x

2
√
y
.

Since θ ≤ 30◦ we have x ≤ 1
2
R and hence

|b− c| =
√
R2 + x2 −R ≥ R +

1

2

x2

√
R2 + x2

−R ≥ 1√
5

x2

R
(5.1)

and

|b− c| =
√
R2 + x2 −R ≤ R +

1

2

x2

√
R2

−R ≤ x2

2R
.

Thus

1√
5

x2

R
≤ |b− c| ≤ 1

2

x2

R
.

Since [e, c] is perpendicular to ∂D1 we have

|a− c| ≥ |e− c| ≥
√

r21 + x2 − r1 ≥
1

2

x2

√

r21 + x2
≥ 1

2λ

x2

r1
.
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where λ =
√

1 + (µ
η
)2. We want λ < 2. A simple calculation shows this happens

exactly when

η2 + µ2 < 4η2

µ <
√
3η

tan θ0
θ0

<
√
3

sin θ0
θ0(1 + sin θ0)

1 + sin θ0 <
√
3 cos θ0

θ0 < 30◦,

which is why we choose θ0 as we did. Thus

|a− b| = |a− c| − |b− c| ≥ 1

2λ

x2

r1
− 1

2

x2

R
≥ (

1

2λ
− 1

4
)
x2

r1

so setting c = ( 1
2λ

− 1
4
), we have

|a− b| ≥ c
x2

r1
≥ c

x2

R
.

For the other disk, similar calculations to (5.1) give

|b− d| = |b− c|+ |c− d| ≥ 1√
5

x2

R
+

1√
5

x2

r2
(5.2)

if 2r2 ≥ ηℓ.

Proof of Lemma 5.1 . Suppose S is a tube of width w and length L (this is the

length of the shorter E-side). For the jth sector let ℓj be the length of the mid-path

of the sector and let Lj be the length of the longer E-side of the sector. Note that

ℓj ≤ Lj and
∑

j ℓj = L1/2 ≥ L by Lemma 3.1.

If the tube has a fat sector (i.e., Lj ≥ w/2η) then we simply end E-paths when they

hit it. Otherwise, there are no fat sectors, so ℓj ≤ Lj ≤ w/(2η) for every j. Since we

may assume 1
2
< η < 1, we can deduce that if L ≥ 8w, then ℓj ≤ w/(2η) ≤ 1

8
L ≤

1
4
L1/2. Thus we can split the tube into two tubes joined end-to-end at an N-segment

I so that
∑

ℓj ≥ 1
4
L, in each sub-tube.

Since there are no fat sectors, the calculations above show that the we can create

a Gabriel path by shifting by cℓ2j/w in the jth sector. Thus the Cauchy-Schwarz
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inequality implies that summing over each of these tubes gives

1

16
L2 ≤ (

∑

j

ℓj)
2 ≤ k

∑

j

ℓ2j ,

where k is the number of sectors in the tube. Thus
∑

j

ℓ2j
w

≥ 1

16
L2 1

k

1

w
≥ (M

√
kw)2

16kw
≥ Mw

16
,

so if M ≥ 16/c, we can make the Gabriel path hit either side of the tube. �

6. Laying the traps

In this section we lay traps in each return region. Each region has a slightly

different form of trap, but each involves placing
√
n parallel E-paths in the return

region to form long narrow tubes and bending each propagation path that enters a

tube so that it terminates in the tube. Thus all of the original propagations paths

terminate before crossing O(n) thin parts, creating O(n2) vertices. However, we have

created O(n1.5) tubes and the endpoints of these tubes are propagated for O(n) steps

as well, creating a total of O(n2.5) new vertices. We consider each type of return

region separately. Recall that the width of a tube is the length of its N-sides and the

length of the tube is the length of its shorter E-side.

Lemma 6.1. The length L of a C-region is at least twice its width w.

Proof. By definition, the N-sides of a C-region are disjoint intervals on the same N-

segment J , so the length of J is at least 2w. But both E-sides of the region cover J

when projected orthogonally onto the line containing J , so L ≥ |J | ≥ 2w. �

By Lemma 5.1 we now get

Corollary 6.2. Suppose a C-region consists of k sectors. Divide it into ⌈2M
√
k⌉

equal width tubes. Then every E-path that enters the region from either side can be

bent to hit the side of one of the tubes before it is halfway through the region.

This gives the traps for C-regions. Next we turn to S-regions, each of which we

split into four sub-tubes as follows. Suppose Y is a S-region of width w. Then Y is

associated to two U-regions, U1, U2, which meet end-to-end. Each of these are split

into two thinner tubes by the central E-path. The longer sub-tube is called the outer
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part and the shorter is called the inner part. The four resulting regions are denoted

U i
1, U

o
1 , U

i
2, U

o
0 . Note that the inner part of U1 meets the outer part of U2 along a

common N-segment. See Figure 25. Thus every E-path that enters Y , must enter

one of the two outer parts.

Ui
1

Uo
1

Ui
2

Uo
2

Figure 25. The outer regions of a S-region are shaded. These are
where we place the traps.

Lemma 6.3. The length of U o
j , j = 0, 1 is at least πw/2.

Proof. Each outer part is separated by the corresponding inner part from thin part

vertices whose angles sum to at least π. Since the inner part has width w/2, the

common E-edge of the inner and outer parts has length ≥ πw/2 (by Lemma 3.1) and

the other E-edge of the outer part has length at least πw. �

Corollary 6.4. Suppose Y is a S-region with k sectors. Divide U o
1 and U o

2 into

⌈M
√
k⌉ equal width tubes. Then every E-path that enters Y can be bent to hit a side

of a tube.

Next we turn to G-regions. This is the most complicated case. A G-region has two

ends I, J on the same N-segment. If I and J are disjoint then the region is a tube

whose length is at least its width. See the left side of Figure 26. In this case we add

O(
√
n) even spaced trapping paths just as for C-regions.

The more interesting case is when I and J overlap, then the G-region is a spiral:

we can extend the inner E-boundary as a E-path that spirals in the region until it

eventually leaves through J (or hits an endpoint of J). See Figure 26. Any E-path
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the enters the spiral will enter it across one of the segments I \ J or J \ I and can be

propagated until it leaves through the other one. The number of times the E-path

spirals is called the radius R of the spiral (this is approximately the ratio of |I| to
|I \ J |) and may be arbitrarily large, independent of n. Thus we must be careful not

to let a path spiral all the way through a G-region. A spiral is shown in Figure 18.

J

I

Figure 26. A G-region can form a single tube with disjoint ends
(left) or the two ends can overlap can overlap. In this case, extending
the inner boundary creates a spiral in the region. This path may hit
the endpoint of the outer E-boundary (center) or may hit the interior
of the exit segment (right). By removing a tube from the outermost
spiral, we can always reduce the second case to the first case.

If the G-region is a spiral, then construction of the traps is more complicated and

breaks into five stages, depending on how large R is:

(1) R = O(1).

(2) R = O(n1/3).

(3) R = O(n1/2).

(4) R = O(n).

(5) R ≫ n.

The whole spiral is divided at R/2 into an inner and outer part. The construction

below is given for the inner part, but is replicated on the outer part (where it is easier

since all the spirals are much longer). For a given value of R we first construct all

the previous stages (so each stage adds onto the previous ones). For simplicity we

rescale so that the entrance and exit segments have length 1.
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Stage 1: If R = O(1), we simply place O(n1/2) equally spaced leaves in the spiral

and treat the serial like a C-region or S-region. Every path entering the spiral is

perturbed to terminate on a trap leaf within 1 turn of the spiral. See Figure 27.

Figure 27. In the first spiral we introduce
√
n trapping paths and

bend all entering paths to hit one of these.

Stage 2: In the next phase we start to merge the remaining O(n1/2) trapping

leaves. Suppose there are M = O(n) trapping curves in the first spiral and that they

are 1/M apart. In the next spiral we can merge pairs of adjacent leaves, leaving M/2

distinct paths that are now 2/M apart. We can merge each of these after two spirals,

leaving 2−2M paths that are 2k/M apart. In general when we have 2−kM parallel

leaves distance 2kM−1 apart, we can merge pairs of them after 2k more spirals. At

each stage the number of vertices generated is most

n×#spirals×#leaves = n · 2k · 2−kM = O(n1.5).

The number of stages is O(log n1/2) = O(log n). Thus the total number of new

vertices is O(n1.5 log n). See Figure 28.

This is a little bigger than we want, but we can get rid of the log n by being more

careful. The argument above assumes it takes 2k spirals to merge leaves that are

≃ 2kn1/2 apart. This is correct if each spiral has the same length, but the farther out

we go, the longer the spirals become (the jth spiral has length ≃ j), so fewer spirals

are needed to merge the paths.

Let λ = 22/3. Suppose at the radius ∼ λk we have 2−kM paths, about distance

2k/M apart. The tube that spirals from radius λk to λk+1 crosses O(λkn) thin parts,
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Figure 28. In Stage 2, we bend the trapping paths towards each
other. After one spiral we cut the number in half. After two more
spirals we remove half of the remaining ones. Clearly we can reduce
the number by a factor of 2−k after 2k spirals, but because the spirals
get longer as we move out, we can actually do better, as described in
the text.

and has length comparable to

λk+1

∑

j=λk

j ∼ λ2k.

Therefore, by Lemma 5.1, we can merge adjacent paths if

λ2k ≫ C
√
λkn2k/M.

Since M ∼ √
n, we need λ2k ≫ λk/22k, which implies we want λ > 22/3. Thus the

total number of new vertices is

n

⌈ 1

2
log2 n⌉
∑

k=1

2−kMλk = O(n1.5)
∞
∑

k=1

2−k2
2

3
k = O(n1.5).

Moreover, the total number of spirals used is

≤
⌈ 1

2
log2 n⌉)
∑

k−1

λk = O(λ
1

2
log2 n) = O(2

2

3

1

2
log2 n) = O(n1/3).

Thus when we reach radius n1/3 we have merged the original M trapping paths into

a single path.

Stage 3: The third phase is easy: just take the single path created in the last stage

and propagate it from n1/3 to n1/2 along the E-foliation. This introduces O(n1.5) new

vertices. See Figure 29.
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Figure 29. In Stage 3 (left), we let a single curve spiral around
O(

√
n) times, after which it can be bent to hit itself. In Stage 4 (right)

we fill the region with closed paths. Spacing between the closed loops
is ∼ 1 near radius

√
n and grows to ∼ n near radius n.

Stage 4: At radius n1/2 we can finally perturb the propagation curve to hit itself,

assuming we put another closed propagation curve at most distance 1 further out. We

now form closed loops along a sequence of radii {rk}. The annular regions between

the closed loops have width w ≃ rk+1 − rk, so our estimates in Section 5 say we can

do this if rk+1 − rk = w ≃ rk
2/n. Suppose rk = nβk . Then this estimate becomes

nβk+1 − nβk ≃ n2βk−1, which is the same as,

nβk+1 = nβk +O(n2βk−1) = nβk(1 +O(nβk−1)),

or taking logs and dividing,

βk+1 = βk +O(
nβk−1

log n
).(6.1)

Since βk ≥ 1
2
, this is satisfied if we take steps of size βk+1 − βk = O(n

−1/2

log n
), and this

implies we reach βk = 1 after O(n1/2 log n) steps. Thus O(n1/2 log n) closed curves

are placed between spirals
√
n and n, creating a total of O(n1.5 log n) vertices. As

before, we have to work a little harder to get rid of the log n term.

We want βk to increase from 1
2
to 1 in only

√
n steps, while satisfying (6.1). To

do this we divide the interval [1
2
, 1] into m = log2 n subintervals of the form Ij =

[1
2
+ 2−j , 1

2
+ 2−j+1], for j = 2, 3, . . . m (without loss of generality we can assume

n = 2m is a power of 2). We let β0 = 1
2
and β1 = 1

2
+ n−1/2

logn
. In general, if βk is

in Ij we define βk+1 = βk + n−

1
2
+2

−j

logn
. It then takes 2−jn

1

2
−2−j

log n steps for βk to

“march across” Ij. Let M = ⌊log2 m⌋ − 4. The total number of steps needed for βk
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to increase from 1
2
to 1 is

m
∑

j=2

2−jn
1

2
−2−j

log n =
√
n log n

m
∑

j=2

2−j2−m2−j

=
√
n log n(

M
∑

j=2

2−j2−m2−j

+
m
∑

j=M+1

2−j2−m2−j

)

=
√
n log n(I + II),

where I and II denote the two sums. To handle sum II we simply use 2−m2−j ≤ 1 to

get

II ≤
m
∑

j=M+1

2−j = O(2−M) = O(
1

log n
).

To estimate sum I, we use the ratio test from calculus: the ratio of the (j− 1)st term

divided by the jth term is

2−j+1−m2−j+1

2−j−m2−j = 21−m(2−j+1−2−j) = 21−m2−j ≤ 21−24 ≪ 1

2

where the final inequality holds since j ≤ M in the sum, so 2−j ≥ 2−M ≥ 2− log2 m−4 ≥
1
m
24. Thus the series is geometrically increasing and is dominated by a multiple of

its last term j = M . This gives

logm
∑

j=2

2−j−m2−j

= O(2−M−m2−M

) = O(
1

m
) = O(

1

log n
).

Thus
√
n log n(I + II) = O(

√
n), which is the desired estimate: only O(

√
n) closed

loops are needed to fill the region between radii
√
n and n.

Stage 5: Once we reach R ≃ n, we can take the width of the outer tube to be ∞
and still perturb to a closed curve by (5.2). Thus no further vertices need be added

beyond this. The spiral is empty until we come within O(n) of the outer boundary

and reach the innermost closed path constructed starting from the outer edge of the

spiral.

The construction above is given starting from the inner boundary and working

outward. A similar construction is possible starting at the outermost spiral and

working inward, but is easier since each spiral is longer than the corresponding one

in the inner part of the G-region. Near the center of the spiral, the two constructions
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have to be joined. The details of this depend on which stage the construction is in,

but is easy in every case.

7. Proof of Theorem 1.1

We can now complete the proof of Theorem 1.1. Given a PSLG we triangulate

it and let Γ be the resulting PSLG. For each triangle, compute the thick and thin

parts. Find the O(n) maximal return regions and construct the O(
√
n) traps per

region. Take the collection of all vertices on the N-sides of the thin region together

with the trapping vertices, i.e., the endpoints of all traps. This is O(n1.5) points and

each point has a associated direction along the E-foliation (into the thin part for

boundary vertices and away from the trapping edge for the return region vertices).

For each point, follow E-foliation until it either hits the boundary of W or enters a

return region by crossing an N-side of the that region (because return regions may

overlap, a trapping vertex may start in the interior of a return region, but we wait

until the E-path starting there enters a new region through its N-side). This takes at

most O(n) steps for one of these alternatives to happen (a step is crossing one thin

part). If the E-path hits the boundary we stop and declare the path we created to

be fixed.

Otherwise, the path enters a return region. When the path enters a tube of a return

region we begin bending it towards a side the tube (to be concrete, we bend to the

right with respect to the path’s direction). Continue until the path hits a previously

fixed path and then stop. This may either be the side of the tube, or an E-path that

was created earlier. Since we know we will hit the side of the tube before crossing

all the way through the return region, the path must stop within O(n) steps. The

stopped path is then declared to be fixed.

Every vertex is thus propagated and stopped after at most O(n) steps, creating

at most O(n2.5) new vertices. The intersections of these paths with the sides of the

thin parts define Gabriel edges by the construction of each path (and the addition

of more paths later in the construction does not change this). Thus we can acutely

triangulate each triangle using the argument of Section 2. This proves Theorem 1.1.

Following Corollary 1.2 we stated that our arguments give the bound O(m2.5+mn)

for a PSLG with m edges and n vertices. We will now sketch the necessary changes.



40 CHRISTOPHER J. BISHOP

Start by applying Theorem 1.1 to the sub-PSLG Γ′ of edges and their endpoints.

This produces a nonobtuse triangulation of the convex hull of Γ′ with O(m2.5) ele-

ments. Now we have to add the remaining O(n) isolated vertices. Each of these is in

one of three regions:

(1) outside the convex hull of Γ′,

(2) inside the convex hull, and in the thick part of the triangulation of Γ′,

(3) inside the convex hull, but in the thin part of the triangulation of Γ′

The first two cases are added using the circle packing technique of Bern, Mitchell and

Ruppert. This adds only O(1) new elements per vertex, and may produce O(1) new

points on the boundary of the thin parts. It does not matter in these cases whether

the new points are on the boundary or the interior of the indicated region. In the

third case, isolated vertices in the interior of a thin piece or on the N -boundary of a

thin piece are propagated along foliation lines as in the proof, and these lines can be

bent to terminate within O(m) steps. If the new point lies on an E-boundary of a

thin piece then we propagate it at very small angle to that edge until the it hits the

the N -boundary of the piece and then propagate as usual. In all, each new vertex

adds at most O(m) new triangles, so a total of O(m2.5 +mn) are created.

8. β-skeletons and almost nonobtuse triangulation

Suppose we are given a finite point set V . Recall that a segment S = [v, w],

v, w ∈ V is called a Gabriel edge if the open disk with diameter S contains no point

of V . This is an example of an “empty region” graph on V , i.e., a graph where a

segment S = [v, w] is included iff some region associated to S contains no points of

V .

Another such example is the β-skeleton. For β ∈ [0, 1] the region associated to

S = [v, w] is the set of points from which S subtends angle θ = π−arcsin(1/β). Note

that for β close to 1, we have θ ≃
√
1− β. This region is the intersection of two disks

of radius |v − w|β that both have S as a chord. See Figure 30. For β = 1, this is

the same as the Gabriel disk, so the 1-skeleton is the same as the Gabriel graph. For

β ≤ 1, the β-skeleton contains the Gabriel graph, so every PSLG has a conforming

β-skeleton of size O(n2.5). We can improve this to O(n2/(1− β)) (Theorem 1.8).
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a

v wb

τ

φ

θ

τ

φ

Figure 30. Suppose |v − w| = 1 and |a − w| = α/2. Then θ =
arcsin 1

α
, so φ = 2(1

2
(π − (π − θ)) = θ and τ = π − φ. If α = β < 1

this shows the empty region for the β-region is an intersection of disks
of radius β|v − w| and also the set of points for which [v, w] subtends
angle less than τ = π − arcsin β. If α = 1

β
, this shows the circle based

β-region is a union of disks of diameter β|v − w|.

The proof is roughly the same as for Theorem 1.1, except that we now have more

freedom to bend the E-paths (and hence can stop them sooner). Suppose we fix an

angle θ > 0. First divide every thin piece into pieces of angle ≤ θ/2. Each thin

part is divided into at most 2π/θ new pieces, so so the total number of thin pieces

increases from O(n) to O(n/θ). A θ-segment is a line segment with endpoints on

distinct N-sides of a thin piece and making angle between 90◦ − θ and 90◦ + θ with

both sides. Because we have made each thin part have angle ≤ θ/2, if γ is an arc of

the E-foliation crossing a thin part, then the line segment with the same endpoints

is a θ/4-segment. A θ-path is a connected path composed θ-segments chosen so that

it does not cross the same thin part on adjacent segment (no sharp turns).

Lemma 8.1. Suppose γ is an E-path crossing a thin part, with endpoints x, y. Sup-

pose the angle of thin part is φ ≤ θ/2. A θ-segment can connect x to every point of

an interval on the N-foliation centered at y and having length at least cθℓ(γ).

Proof. Consider Figure 31. This shows a θ-segment S = [a, c] crossing a thin part

with angle φ ≤ θ/2. Thus S is the base of a isosceles triangle and with base angles
π
2
− φ

2
. Let τ ≤ θ/2. Also shown are two segments [a, b] and [a, c] that make angle τ

with S. Thus both of these make angle ≤ θ with both sides of the thin pieces, so are
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θ segments. By the law of sines

|b− c|
sin τ

=
|a− c|

sin(π − α− τ)

so

|b− c| = |a− c| sin τ

sin(π − α− τ)
≥ |a− c| 2

π
τ.

Similarly

|c− e| ≥ |a− c| 2
π
τ.

This proves the lemma. �

a

φ

b c d e

α

α

τ τ

Figure 31. Definitions for Lemma 8.1. We assume φ ≤ θ/2 and
τ ≤ θ/2. This implies [a, b] and [a, e] are θ segments.

Figure 32. Inside a tube, we bend the E-paths to become θ-paths
that either hit a vertex (where a fixed path meets a N-side of a thin
part) or meets the next N-side closer to the side of the tube by a fixed
amount. Every path entering the tube can be bent so its hits the side
of the tube; other fixed paths only make it stop sooner. This every
path stops before leaving the far side of the tube.



NONOBTUSE TRIANGULATIONS OF PSLGS 43

Thus at each vertex the point that can be reached by a θ path from that vertex

form a cone (see Figure 32) which intersects the next N-segment in a “large” interval

(depending on θ). If this interval contains a vertex we end the path; otherwise we

move it closer to a trapping path.

How many vertices are created if we bend θ-paths until they terminate in a trap?

We can create traps in our C-regions and S-regions that use O(1/θ) trapping paths

per return region. Since there are O(n) return regions and O(n/θ) thin pieces, this

means that at most O(n2/θ2) vertices are created. For the G-regions, we have to

recreate the spiral construction, but there are only three critical radii now instead of

five:

(1) R = O(1).

(2) R = O( 1√
θ
).

(3) R = O(1
θ
).

In the first stage we place O(1
θ
) parallel trapping paths and bend all entering propa-

gation paths to hit them. In second stage we propagate the endpoints of the trapping

paths. It takes 2k/2 turns of the spiral to bring together two paths that start distance

2kθ apart. Thus after O(θ−1/2) spirals we have collapsed all the paths into a single

path and created

n

θ

| log2 θ|
∑

k=1

2k/22−kθ−1 = O(
n

θ2
),

new vertices. In the third stage we spiral this path out to radius ≃ 1
θ
, at which point

it can close on itself. This creates O( n
θ2
) new vertices. Once the path can hits itself,

no more vertices are needed (unlike the Gabriel case that required a further stage of

closed loops). Adding all these contributions gives O(n/θ2) per G-region and there

are O(n) such regions.

We already know the thick parts can be nonobtusely triangulated with O(n) trian-

gles and if we take the θ-paths created above together with the straight sides of the

thin pieces, we break the thin region into O(n2) triangles and quadrilaterals with no

angles bigger than 90◦ + θ. Adding diagonals to the quadrilaterals proves Theorem

1.4.

If we have a collection of θ-paths crossing the thin region W , we claim the points

where they cross the N-sides of thin pieces cut these sides into segments that are in
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the β-skeleton if θ ≤ π
2
− arcsin(β). See Figure 33 where we have drawn the side

of the thin piece as a horizontal line and the part of the empty region above it is

a crescent. By definition of θ, the empty crescent makes an angle π
2
− θ with the

horizontal and so the empty region lies below the lines starting at the vertices of the

crescent and making angle θ with the vertical. If the crescent lies inside the thin

part we are done. Otherwise it crosses the far side of the thin part, forming a new

crescent above that line. Now however, it makes a smaller angle α < π
2
− θ with the

side, and hence lies under the lines making angle θ with the lines perpendicular to

the new thin side. Thus it also lies below the θ-path started from the first side (the

thicker line in the figure). Continuing by induction shows the whole empty region

lies between the θ-paths. Since θ ≃
√
1− β, this proves Theorem 1.8.

θ
θ

π/2−θ

α

θ
θ

Figure 33. The proof that the empty region lies between two θ-
path. By definition, the empty region lies between the θ-paths passing
through its vertices in the adjacent thin piece. In successive thin pieces,
the empty region defines a crescent with even smaller angle, so the
argument still works.

We will show in Appendix A that for circle based β-skeletons and β > 1, there is

no bound, depending only on n, for the number of new vertices needed to create a

conforming β-skeleton. There is a an alternate definition of β-skeleton in the literature

for which such a bound is possible. For β > 1, a crescent based empty region is the

intersection of two disks of diameter β|v − w| centered at points that lie on the line

through v, w and are distance β = 1
2
from the center of [v, w]. Clearly any Gabriel

edge for Γ can be cut into O(β) subsegments whose β-crescents lie inside the Gabriel

disk. See Figure 34. Thus any PSLG has a conforming crescent based β-skeleton

with O(n2.5β) vertices.
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Figure 34. The crescent based β-skeleton for β > 1 uses an empty
region for the edge [v, w] that is the intersection of two disks. Clearly
any Gabriel edge for Γ can be cut into O(β) subsegments whose β-
crescents lie inside the Gabriel disk.

We summarize the conclusions of this section as a lemma. This will be used in [12]

to prove that PSLGs always have O(n2) quadrilateral meshes with angles between

60◦ and 120◦.

Lemma 8.2. Let θ > 0. Let W be a union of O(n/θ) inscribed hyperbolic thin parts,

each of angle ≤ θ and let V be a finite subset of ∂NW with O(n) points. Let X be

the union of all the N-sides of the thin parts. Then there is a collection Y = ∪jγj of

disjoint open paths in W such that:

(1) Each γ is a θ-path, i.e., intersecting any γ with any thin part gives components

that are line segments that are within θ of perpendicular to the N-sides of that

thin part.

(2) Every point in V is the endpoint of some γ.

(3) Each endpoint of any γ is either a point of ∂W , or is an intersection point

of some γ′ ∈ Y with X, possibly γ′ = γ (a curve my terminate by leaving W ,

hitting another curve or hitting itself).

(4) There are O(n/θ) distinct paths γ and each hits a given thin part O(1/θ)

times.

(5) Any N -segment in W crosses Y at most O(n/θ) times.

(6) The size of X ∩ Y is O(n2/θ2) (i.e., the total number of vertices in all the

paths is at most O(n2/θ2).
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9. Remarks and questions

Theorem 1.1 leaves a gap between the known n2 lower bound and the O(n2.5)

upper bound of Theorem 1.1. What is the sharp result? My guess is O(n2). The

proof given in this paper assumes there are O(n) thin parts, O(n) return regions,

and each return region intersects ∼ n thin parts, i.e., every return region uses almost

all the thin pieces. It is easy to see that no two return regions can intersect exactly

the same set of thin pieces (otherwise they would be the same return region), but we

need to formulate and prove an estimate that says that distinct return regions either

use “mostly distinct” thin pieces or traps in them can be built more efficiently than

described in this paper. For example, if a thin part is used in more than one return

region, then some of the return regions will be further from the vertex of the thin

part and hence we can bend more in these regions than in ones closer to the vertex.

Does the constant have to blow up as ǫ → 0 in Theorem 1.4? If not then, Theorem

1.1 holds with O(n2). If it does blow up, is ǫ−2 the sharp growth rate?

The Delaunay condition is weaker than requiring nonobtuse triangle, but I have

not yet been able to give a better bound for conforming Delaunay triangulation than

for nonobtuse triangulation. Is O(n2) the sharp bound? Can we show the Delaunay

and nonobtuse upper bounds are the same (even if we don’t know what the common

bound is)?

Can we find a polynomial bound for nonobtuse triangulation of a triangulated

surface? In our proof we use certain facts about planar geometry to show that the

tubes on our return regions are longer than they are wide (at least up to a multiple).

A surface with a curvature bound should have a similar estimate, but is anything

possible in general?

The argument in Section 2 breaks down if we move from surfaces to more general

2-complexes (a finite union of triangles glued along edges but allowing three or more

triangles to meet along an edge). In that case propagation paths become propagation

trees (since there may be more than one way to continue a path when we cross and

edge) and these trees might not be finite. Can we use a bending construction to

make them all finite? What sort of upper bound do we get? Can every 2-complex be

nonobtusely triangulated? Acutely triangulated? Can we use similar ideas to give
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a polynomial bound for conforming Delaunay tetrahedral mesh generation in higher

dimensions?

Dennis Sullivan has pointed out that the “bending propagation paths” argument

in this paper is reminiscent of the well known “C1 closing lemma” of Charles Pugh in

dynamical systems (this says that any C1 vector field on a closed manifold that has

flow lines that return arbitrarily close to some point infinitely often can be perturbed

in the C1 metric to a vector field that has a closed orbit). See [48], [49]. Is there

a way to interpret our construction as a closing lemma? The C2 closing lemma is a

famous open problem in dynamics. Is there any connection to what we have done

here?

If we examine the proof of Theorem 1.1, we see that we create the conforming

Gabriel graph in O(n2.5) steps. The techniques of [10] then give a non-obtuse tri-

angulation in O(n2.5 log n) steps. The logarithm occurs because the time needed to

build the medial axis for circular arc polygon is bounded in [10] by O(n log n). Since

the appearance of [10], Chin, Snoeyink and Wang have shown the medial axis for

simple polygon with straight sides can be constructed in time O(n). If this was also

true for the circular arc polygons, then the logarithmic term could be eliminated.

The techniques in this paper give better estimates if there is a lower bound on the

angles in the PSLG. For example, if all the edges are parallel to a finite number of

lines and the minimum angle separation is θ, then there is a nonobtuse triangulation

with O(θ−1n2 log n) elements. In fact, for this conclusion to hold, we only need the

N-sides of the thin parts to be either parallel or have angle θ > 0. Indeed, if edges of

the PSLG that are ǫ-close in the sense that dist(e, f) ≤ ǫmin(ℓ(e), ℓ(f)), are either

parallel or lie on lines making angle ≥ θ then there is a nonobtuse triangulation with

O((ǫ−1 + θ−1 log n)n2) elements.

Appendix A. Lower bounds

Consider Γ = [1, N ]× {0, 1
n
, 2
n
, . . . 1} consisting of n+ 1 parallel horizontal lines of

length N ≫ n and distance 1
n
apart. Add n equally spaced vertices to the top edge.

See Figure 35.

Any mesh that has an upper angle bound θ < 180◦, has the property that there

is a path of edges starting at each point of the top edge and proceeding downward
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inside a vertical cone of angle θ until it hits the bottom edge. If N is large enough,

then these cones are disjoint and so n2 new vertices are created. This gives a ∼ n2

lower bound for Theorems 1.1, 1.4 and 1.5.

Figure 35. At least n2 vertices are needed when there is an upper
angle bound less than 180◦.

For Delaunay triangulations put n more vertices on the bottom edge of Γ, directly

underneath each of the points on the top edge. Each interval of length 2 in Γ centered

above one of these new points v must contain a vertex, because any disk containing

this interval as a chord must contain either the point v or the corresponding point

on the top edge. See Figure 36. Thus n(n − 1) new points are required if N > 2n.

The same argument works (even more easily) for conforming Gabriel graphs.

Figure 36. Delaunay triangulations for PSLGs require n2 vertices.

Next we consider β-skeletons for 0 < β < 1. If v ∈ V ′ is a point on the top edge,

then there must be a vertex on each edge of Γ below it and within horizontal distance

C(β), for otherwise there is an interval of length 2C(β) on that edge and v will be

with the empty region for this interval, a contradiction. If N > C(β)n, this shows

n(n− 1) new vertices are required.
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To see that no bound is possible for circle based β-skeletons (β > 1), suppose V ′

is a point set whose β-skeleton contains Γ. Suppose I is an interval on the top edge

between two points of V ′. If I has length < 1
n

√

β2 − 1 then the intersection of the

empty region with the next line is longer than I. See Figure 37. Thus the vertical

projection of I onto the second line is strictly contained in an interval J between

two points of V ′ whose empty region strictly contains I, hence the endpoints of I in

V ′. This is a contradiction, so points of V ′ on the top edge of Γ are no more than
1
n

√

β2 − 1 apart. Thus there are at least nN/
√

β2 − 1 such points, a lower bound

that we can make as large as we wish for a fixed n and β by taking N large.

Figure 37. For circle based β-skeletons, β > 1, there is no conform-
ing skeleton with complexity bounded in terms of n.

The Gabriel graph of a point set V contains the minimal spanning tree for V , but

there is no bound, depending only on n = |V |, for the number of new points needed

to make a minimal spanning tree conform to Γ. To see this, note that any conforming

spanning tree has length at least nN (the length of Γ) but if it has |V ′| vertices then
its length can be no more than N + |V ′| (take the tree formed with the top edge and

connecting each point of V ′ to the top edge by a vertical edge of length ≤ 1). Thus

|V ′| ≥ (n− 1)N , which is as large as we wish.

Appendix B. Applications of nice triangulations

As noted in the introduction, nonobtuse triangulations arise naturally as “nice

cases” in several numerical methods. Here we list a few to give a flavor of these

applications

Discrete maximum principle: Nonobtuse triangulations imply maximum prin-

ciples (supΩ u ≤ sup∂Ω u) for various discrete solutions of PDE’s such as discrete
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harmonic functions in [22]. In many cases, all that is really needed is a Delaunay tri-

angulation, e.g., [15], [64]. Bounding angles away from 0 and π lead to weak discrete

maximum principles (supΩ u ≤ C sup∂Ω u) as in [54] and numerous other papers.

Condition numbers: In [65] Vavasis gives a weak maximum principle for discrete

solutions of ∇· (c∇u) = 0 and notes that the maximum principle holds for nonobtuse

triangulations (citing Wahlbin). Vavasis bounds various matrix norms arising from

the finite element method in terms of the number n of triangulation elements; for gen-

eral triangulations his estimate is exponential in n, but for nonobtuse triangulations

it is only linear in n.

Stieltjes matrix: The finite element method leads to consideration of the matrix
∫

∇φj∇φkdxdy, where {φk} is a basis of piecewise linear functions on the triangula-

tion. This matrix is a Stieltjes matrix (symmetric, positive definite, negative off the

diagonal) for a nonobtuse triangulation and this leads to faster iterative solutions of

the corresponding linear system (see [57]). Alternative fast methods are available for

more general triangulations, e.g., [16], but are more involved.

Dual graphs: The dual graph of a nonobtuse triangulation can be constructed

by simply connecting the circumcenters of adjacent triangles. The resulting segments

are perpendicular to the boundary and define the edges of the Voronoi diagram of

the triangulation vertices. The cells of the Voronoi diagram are used in the “finite

volume” method and nonobtuse triangulations lead to a convenient decomposition.

See [9].

Edge flipping: First order Hamilton-Jacobi equations ut + H(∇u) = f(x) are

numerically modeled in [4] using an update method that behaves poorly if the vector

∇H(∇u) is close to parallel to a triangulation edge. If the triangulation is acute,

then adjacent triangles form a convex quadrilateral and the offending edge can be

swapped for the other diagonal, often eliminating the near parallelism and giving

better numerical results. This paper also contains a maximum principle requiring a

nonobtuse triangulation.

Fast Marching Method: The fast marching method ([55]) for solving the Eikonal

equation was originally stated for rectangular meshes but adapted to triangular

meshes in [39] where it is applied to compute geodesics on triangulated surfaces.

The method is simplest and most efficient if the triangulation is acute.
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Meshing space-time: The tent pitcher algorithm of [60], [1], [59] constructs

meshes in R
2×R+ space-time using 1-Lipschitz graphs that are piecewise linear over

a planar triangulation. For an acute triangulation, a simple greedy process works,

but in general a more complicated method is needed to avoid “getting stuck”.

Computer learning: In the introduction we noted how nonobtuse triangles arise

in the nearest neighbor learning model of [52].

PL approximations: Suppose u is in the Sobolev space H2(R2) and T is a

triangulation of R2. Babuška and Aziz showed in [2] that there is a piecewise linear

function v on the triangulation so that ‖u−v‖H1 ≤ C‖u‖H2 with constant depending

on the maximum angle in the triangulation (and blowing up as this angle approaches

π). Thus we expect finite element solutions to be good approximations to continuous

solutions when the triangulations have angles bounded strictly below 180◦.
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