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1. Introduction

The Dirichlet space D on the unit disk consists of those analytic

functions on the disk such that the Dirichlet norm

‖f‖D = (|f(0)|2 +
∫∫

D

|f ′(z)|2dxdy)1/2,

is finite. A function ϕ on the unit disk is called a multiplier if ϕD ⊂ D.

The closed graph theorem implies that multiplication by such a ϕ is a

bounded operator from D to itself, so the space of multipliers, M(D),

becomes a Banach space using the operator norm, ‖ϕ‖M(D). Its easy

to check that M(D) ⊂ D ∩H∞(D) and that this inclusion is strict.

We call a sequence {zn} ⊂ D interpolating for a space of bounded

functions X, if for any bounded sequence {an} of complex numbers,

there is an element f ∈ X such that f(zn) = an. Another way to state

this is to define the operator T : X → ℓ∞ by f → {f(zn)}. Then

{zn} is interpolating if T is onto. By the closed graph theorem, if this

is always possible then there is such an f satisfying ‖f‖X ≤ C‖an‖∞
for some C depending only on {zn}. For X = H∞(D), the bounded

analytic functions on D, the interpolating sequences were completely

characterized by Carleson and play an important role in function theory

on the disk. Carleson [8] showed that a sequence {zn} in interpolating

for H∞(D) iff

inf
k

∏

j 6=k

| zk − zj

1 − z̄kzj

| ≥ δ > 0. (1.1)

Using some simple facts about Blaschke products and H∞(D) this just

says {zn} is interpolating iff for each n there is a function hn ∈ H∞(D)
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with hn(zm) = δnm (δnm is the Kronecker delta) and ‖hn‖∞ uniformly

bounded. Condition (1.1) can be equivalently expressed as two condi-

tions; first that the sequence is separated with respect to the hyperbolic

metric ρ, i.e.,

inf
n
ρn ≡ inf

n
[ inf
m:m6=n

ρ(zn, zm)] = δ > 0, (1.2)

(i.e., ρn is the hyperbolic distance from zn to the closest distinct point

in the sequence) and satisfies Carleson’s condition

∑

zn∈S(I)

(1 − |zn|) ≤ C|I|, (1.3)

for some C < ∞ and all arcs I on the circle. Here S(I) denotes the

region bounded by I and the hyperbolic geodesic J with the same

endpoints as I. The second condition says that if δz denotes the unit

point mass at z, then
∑

n(1−|zn|)δzn
is a Carleson measure. These are

also characterized by the property that

∫∫

D

|f(z)|pdµ(z) ≤ C‖f‖p
p,

for every function f in the Hardy space Hp, defined by the norm

‖f‖p
p = sup

r

∫ 2π

0
|f(reiθ)|pdθ.

For spaces, such as H2 or D, which contain unbounded functions it is

more natural to consider a weighted interpolation problem. Following

[16], ifH is a Hilbert space of analytic functions on the unit disk andKw

is the reproducing kernel for the point w ∈ D, we define the operator

T : H → ℓ∞ by f → {f(zn)/Kzn
(zn)}. Following the notation in [9] we

say {zn} is a universal interpolating sequence for H if T (H) = ℓ2. For

H = H2, the Hardy space, Shapiro and Shields [16] showed that that
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{zn} was a universal interpolating sequence iff it was interpolating for

H∞(D).

Given z ∈ D\{0} let Iz denote the arc on the circle centered at z/|z|

of length 2(1− |z|); we let I0 be the whole circle. Given a set E on the

circle we let cap(E) denote its logarithmic capacity. If E = ∪jIj is a

disjoint union of intervals, then we set S(E) = ∪jS(Ij). For a point zn

let

dn = ρ(0, zn) ∼ log(1 − |zn|)−1,

ρn = inf
m6=n

ρ(zn, zm).

We say that a positive measure µ is a Carleson measure for D if

∫∫

D

|f(z)|2dµ(z) ≤ C‖f‖2
D.

We shall prove

Theorem 1.1. {zn} is a universal interpolating sequence for D (i.e.,

T (D) = ℓ∈) iff there is a δ > 0 such that

ρn ≥ δdn, (1.4)

for all n and

∑

n

d−1
n δzn

(1.5)

is a Carleson measure for D.

The first condition is just the minimum possible separation an inter-

polating sequence for D can have. The second condition can be made

more concrete because Stegenga [19] has characterized the Carleson

measures for D. In this case his result says (1.2) is equivalent to the



4 CHRISTOPHER J. BISHOP

following: for every finite union of disjoint intervals E = ∪jIj on the

circle,

∑

zn∈S(E)

d−1
n ≤ C(log 2cap(E)−1)−1. (1.6)

The problem of determining when T (H) = ℓ2 breaks into two ques-

tions: when is T (H) ⊂ ℓ2 and when is ℓ2 ⊂ T (H)? In the first case

we will say {zn} is a Carleson sequence for H and in the second that

it is interpolating for H. As described in the last paragraph, Stegenga

has characterized the Carleson sequences for D, but I do not know any

geometric characterization of the interpolating sequences. In the case

of the Hardy space, H2, Shapiro and Shields showed that there is no

distinction between interpolating sequences and universal interpolat-

ing sequences, i.e., between the questions ℓ2 ⊂ T (H2) and ℓ2 = T (H2).

However, for the Dirichlet space we shall see later that there are se-

quences for which T (D) strictly contains ℓ2 (Lemma 10.1).

Theorem 1.2. A sequence {zn} is interpolating for D iff for every n

there is a function hn ∈ D such that ‖hn‖D ≤ Cd−1
n and ‖hn‖∞ ≤ C

and hn(zm) = δmn.

This is the same as the characterization of H∞ interpolating se-

quences, except that we are lacking a good geometric characterization

of the zero sets for the Dirichlet class. The condition implies that {zn}

satisfies (1.4). It also implies that (log cap(En)−1)−1 ≤ Cd−1
n , where

En = ∪zm∈S(In)Im. I suspect that there is a necessary and sufficient

condition in terms of such capacity estimates, but have not been able
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to verify this. The best result I know is due to Shapiro and Shields

[17]: if
∑

n d
−1
n < ∞ then there is a f ∈ D with f(0) = 1 and equal

zero at the other zn’s. Moreover, for any h(t) = o(t), there is a set of

uniqueness {zn} for D with
∑

n h(d
−1
n ) <∞. A sufficient condition for

interpolation analogous to the Shapiro-Shields results is

Theorem 1.3. Suppose {zn} is a sequence so that there exists δ > 0,

0 < η < 1 and C <∞ such that

ρn ≥ δdn for all n,

∑

n

d−1
n ≤ C,

and

∑

zm∈S(Kn)

d−1
m ≤ Cd−1

n ,

where Kn is the interval centered at zn/|zn| of length (1− |zn|)η. Then

{zn} is an interpolating sequence for D.

Our proof of this does not depend on Theorem 1.2 or the result of

Shapiro and Shields on zero sets, but follows from a direct construc-

tion of the interpolating functions. The third condition is similar to

Stegenga’s condition, but we only need it for certain arcs, rather than

all possible finite unions of intervals. Because of this we can construct

a sequence which is interpolating for D, but which is not Carleson for

D (see Section 10). If the dn grow geometrically, then they satisfy the

summability condition above. Thus
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Corollary 1.4. Suppose |z1| < |z2| < . . . and

sup
n

log(1 − |zn|)
log(1 − |zn+1|)

< 1.

Then {zn} is a weighted ℓ2 interpolating sequence for D (i.e., ℓ2 ⊂

T (D)).

This improves a result of Rosenbaum where 1 is replaced by 1/9. See

[15] or [9]. For sequences on a radius, this condition is both necessary

and sufficient,

Corollary 1.5. Suppose z1 < z2 < · · · ⊂ [0, 1). Then {zn} is interpo-

lating for D iff

sup
n

log(1 − |zn|)
log(1 − |zn+1|)

< 1. (1.7)

Two equivalent ways of expressing this condition are

inf
n
ρ(zn, zn+1) ≥ δρ(0, zn) (1.8)

for some δ > 0 or

inf
n
ρ(zn, zn+1)a

−n > 0 (1.9)

for some a > 1.

In [3] Axler considered interpolating sequences for M(D) and proved

that any sequence {zn} in the disk with |zn| → 1 has a subsequence

which is interpolating for M(D). His argument is an application of

the Rosenthal-Dor theorem from the theory of Banach spaces and an

operator inequality of von Neumann, and does not give any explicit

examples. We shall prove that 1 − e−en

is interpolating for M(D) and

give an alternate proof of Axler’s result based on our example.
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Theorem 1.6. If {zn} is a universal interpolating sequence for D then

it is interpolating for M(D).

This says that {zn} is interpolating for M(D), i.e., for all (an) ∈ ℓ∞

there is a ϕ ∈ M(D) such that ϕ(zn) = an and ‖ϕ‖M(D) ≤ C‖(an)‖∞,

if there is a δ > 0 such that

ρn ≥ δdn, for all n, (1.10)

and
∑

n d
−1
n δzn

is Carleson for D, i.e., for every finite union of disjoint

intervals E = ∪jIj,

∑

zn∈S(E)

d−1
n ≤ C(log 2cap(E)−1)−1. (1.11)

The first condition is necessary, but I have not been able to prove

the second one is, except in special cases, e.g., if there is λ < 1 so

that ρn < λdn for every n. I would be surprised, however, if these two

conditions did not characterize the interpolating sequences for M(D),

i.e., {zn} should be interpolating for M(D) iff it is a universal inter-

polating sequence for D. This is exactly what happens for H2 and

M(H2) = H∞.

Given a space of functions A on the disk we can define the Gleason

distance

dA(z, w) = sup{|f(z) − f(w)| : f ∈ A, ‖f‖A ≤ 1}.

An interpolating sequence (for ℓ∞) must obviously be separated with

respect to this distance. We shall see that

dM(D)(w, z) ∼
ρ(z, w)

ρ(z, 0) + ρ(w, 0)
,



8 CHRISTOPHER J. BISHOP

which gives (1.10).

If the sequences lies on a radius, say {zn} ⊂ [0, 1), then the separa-

tion condition implies the Carleson condition automatically. Thus the

interpolating sequences for M(D) on a radius are the same as for D,

i.e,

Corollary 1.7. z1 < z2 < · · · ⊂ [0, 1) is interpolating for M(D) iff

sup
n

log(1 − |zn|)
log(1 − |zn+1|)

< 1.

As before this is equivalent to the two conditions (1.8) and (1.9).

Thus if z1 < z2 < . . . is interpolating for H∞(D), then ρ(0, zn) must

grow linearly, while if it is interpolating for D or M(D) these distances

must grow exponentially. If zn = 1 − rn, then the condition becomes

sup
n

log rn

log rn+1

< 1.

For example, if rn = e−en

, then

log rn/ log rn+1 = e−1 < 1.

Thus 1−e−en

is interpolating for M(D). In [3] Axler asked if {1−n!−n!}

was interpolating. Using the previous corollary we simply note

nlog n

(n+ 1)log(n+ 1)
≤ 1

n+ 1
→ 0,

as n → ∞, so Axler’s sequence has more than enough decay to be an

interpolating sequence for M(D).

It is easy to see that Theorem 1.6 implies that if {|zn|} is interpo-

lating for M(D), then so is {zn}. This, plus our example of a radial

interpolating sequence, gives an alternate proof of Axler’s result: if
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|zn| → 1 then {zn} contains an interpolating subsequence for M(D).

It also shows that if E ⊂ {|z| = 1} is any closed subset of the unit

circle, there is an interpolating sequence for M(D) which accumulates

exactly on E.

The similarity between the results for H∞(D) and M(D) is not co-

incidental, since these can be viewed as special cases of a single result,

indeed, as the two endpoints of an “interval” of results. Denote by Dα

the analytic functions f =
∑

n anz
n on the disk for which

‖f‖Dα
= [

∑

n

(1 + n2)α|an|2]1/2 <∞.

Then D1/2 = D is the Dirichlet space and D0 = H2 is the Hardy space.

Since H∞(D) is the space of multipliers for H2 we see that both Theo-

rem 1.6 and Carleson’s interpolation theorem are theorems about inter-

polating sequences for multiplier spaces. For α < 0, M(Dα) = H∞(D),

and for α > 1/2, M(Dα) = Dα consists of the analytic functions with

(continuous) boundary values in various smoothness classes. Thus

[0, 1/2] is the interesting range for bounded interpolation. This also

partially explains why the conditions on aM(D) interpolating sequence

are so stringent; if α was any larger, then interpolation would be im-

possible.

A positive measure µ on the disk is called an α-Carleson measure

if there is a C < ∞ such that
∫∫ |f |2dµ ≤ C‖f‖2

Dα
. Both Carleson’s

theorem and Theorem 1.6 are special cases of
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Theorem 1.8. A sequence {zn} is interpolating for M(Dα), 0 ≤ α ≤

1/2, if

inf
n

inf
m6=n

dM(Dα)(zn, zm) = δ > 0, (1.12)

and

µ =
∑

n

Bα(Izn
)δzn

, (1.13)

is a α-Carleson measure. Here δz denotes the point mass at z and Bα

denotes the Bessel capacity and satisfies

Bα(Iz) ∼






|I|1−2α, 0 ≤ α < 1/2

(log 2|I|−1)−1, α = 1/2
.

For 0 < α < 1/2, this is essentially due to Verbitskii [23]. In this

case the separation condition turns out to be the same as for α = 0; the

sequence must be separated in the hyperbolic metric. We have stated

it in the form above merely to include α = 1/2 (the Dirichlet space)

as well. Stegenga has characterized the Carleson measures for Dα in

terms of Bessel capacities, so that the second condition can be made

more concrete. Using his criterion, {zn} is interpolating for M(Dα),

0 ≤ α < 1/2 if it is separated with respect to the hyperbolic metric

and
∑

zn∈S(E)

(1 − |zn|)1−2α ≤ CBα(E),

for every finite union of disjoint intervals, E = ∪jIj.

In [19], Stegenga shows that M(D) ⊂ D ∩ H∞(D) ⊂ M(Dα) for

all α < 1/2, so in some sense, bounded functions in D are almost

multipliers of D. We can consider the problem of interpolating all

bounded sequences by elements of D∩H∞(D), where we give this space
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the norm ‖ · ‖∞ + ‖ · ‖D. Our proof of Theorem 1.6 can be adapted to

show

Theorem 1.9. {zn} is interpolating for D ∩H∞(D) if
∑

n ρ
−1
n <∞.

Note that the hypothesis implies the sequence is separated in the

hyperbolic metric, but does not necessarily imply (1.1). The corre-

sponding result for Dα says that for 0 ≤ α < 1/2, {zn} is interpolating

for Dα∩H∞ iff it is interpolating for H∞(D) and
∑

n(1−|zn|)1−2α <∞.

The proof follows immediately from the proof of Theorem 1.8.

One final comparison is in order. Let QA denote the H∞(D)∩VMO,

the algebra of bounded analytic functions such that

∫∫

S(I)
|f ′(z)|2(1 − |z|)dxdy = o(|I|),

as |I| → 0. Elements of M(D) satisfy

∫∫

S(I)
|f ′(z)|2(1 − |z|)dxdy = |I|(log |I|−1)−1,

so M(D) ⊂ QA. In fact, we have the stronger containment D ∩

H∞(D) ⊂ QA (I thank Sheldon Axler for pointing this out to me).

The interpolating sequences for QA have been characterized by Sund-

berg and Wolff [21] as the “thin” sequences, i.e., those such that

lim
j

|
∏

k 6=j

zj − zk

1 − z̄kzj

| = 1.

Since M(D) ⊂ QA, interpolating sequences for M(D) must be thin,

and in Section 11 we will verify that condition (1.4) by itself implies

{zn} is thin. The sequence {1−exp(−n2)} is an example which is thin,

but not interpolating for M(D).
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The paper is organized as follows. In the next section we will re-

view some results about M(D) and the hyperbolic metric. In section

3 we will show how to prove directly that 1 − e−en

is interpolating for

M(D) and we give a proof of Axler’s result. We will also indicate how

to give a proof of Corollary 1.7 along these lines and give a similar

proof of Corollary 1.5 in Section 4. In Section 5 we will prove Theo-

rem 1.6. In Sections 6 we prove Theorem 1.9 and in Section 7 we prove

Theorem 1.8. We then turn to Theorem 1.3 and use it to deduce The-

orem 1.1 in Section 8. In Section 9 we prove Theorem 1.2. In Section

10 we give an example of a sequence with is interpolating for D, but

not a universal interpolating sequence. In Section 11, we give some

geometric consequences of the separation condition ρn ≥ δdn, and we

finish with some remarks in Section 12.

I started thinking about this problem because of Axler’s paper [3] and

I thank him for providing addition information about the topic. The

idea and proof of our example of an explicit interpolating sequence for

M(D) follow easily from Smith and Stegenga’s paper [18] and the proof

of the interpolating criteria for M(D) was motivated by Stegenga’s

characterization of M(D) in [19].

2. Preliminaries

In this section we review a variety of results and definitions involving

hyperbolic geometry, interpolating sequences, capacity and the Dirich-

let space. The reader may wish to skip this section and only refer to it

when necessary.
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The hyperbolic metric ρ on the disk is given by

ρ(z1, z2) = inf
γ

∫

γ

2|dz|
1 − |z|2

where the infimum is over all rectifiable curves γ joining z1 and z2 in

the disk. If z1 = 0, z2 = r > 0 this equals

ρ(0, r) = log
1 + r

1 − r
.

The geodesics for the hyperbolic metric are well known to consist of

the diameters of the disk and all circular arcs in the disk which are

orthogonal to the boundary. For a simply connected domain the hy-

perbolic metric is defined via the Riemann mapping Φ : D → Ω;

ρΩ(z1, z2) = ρ(Φ−1(z1),Φ
−1(z2)). For a multiply connected domain, we

do the same thing but replace the Riemann map by a universal covering

map Φ : D → Ω. A few basic properties we need are:

Proposition 2.1. (Schwarz’s Lemma) If f : Ω1 → Ω2 is analytic then

ρΩ2
(f(z1), f(z2)) ≤ ρΩ1

(z1, z2),

with equality iff f is a covering map.

Proposition 2.2. Suppose z1, z2 ∈ Ω with Re(z1) = a and Re(z2) =

b. Assume that for each a < x < b the segment Ix ⊂ {Re(z) = x}

separates z2 from z1 in Ω and assume that θ(x) ≡ |Ix| is measurable.

Then

ρΩ(z1, z2) ≥ C + π
∫ b

a

dx

θ(x)
.

Proposition 2.3. Suppose Ω = {(x, y) : |y −m(x)| ≤ 1
2
θ(x), a < x <

b}. Suppose further that {(x, y) : |x − x1| < δ, |y − y1| < δ} ⊂ Ω. Let
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z1 = x1 + iy1 and z1 = b+m(b). Then

ρΩ(z1, z2) ≤ C(δ) + π
∫ b

a

dx

θ(x)
+ π

∫ b

a

m′(x)2 + 1
12
θ′(x)2

θ(x)
dx,

where

C(δ) =
π

δ2

∫ x1+δ

x1−δ
θ(x)dx.

The last two propositions are in the text of Garnett and Marshall

[12]. The first is usually referred to as the Ahlfors distortion theorem

and can be found in several other sources. The second is due to Beurling

and can be found in his collected works [6]. We will use the following

results on interpolating sequences. The first is a simple exercise; the

second a famous result of Carleson [8]. Both are in Chapter VII of [11].

Proposition 2.4. Suppose X is a Banach space and {zn} is a sequence

of linear functionals on X with ‖zj‖ = 1. Suppose that there is a

C < ∞ so that for every (an) ∈ ℓp, there is an x ∈ X such that

‖x‖X ≤ K‖(an)‖p and |zj(x) − aj| ≤ 1
2
‖(an)‖p for every j. Then {zj}

is ℓp-interpolating.

Proposition 2.5. The sequence {zn} is interpolating for H∞(D) iff

there are δ > 0 and C <∞ such that

inf
n6=m

ρ(zn, zm) ≥ δ,

∑

zn∈S(I)

(1 − |zn|) ≤ C|I|.

An equivalent way of stating these two conditions is the single condition

inf
k

∏

j 6=k

| zk − zj

1 − z̄jzk

| = η > 0.



INTERPOLATING SEQUENCES FOR D 15

The usual Cauchy estimate implies the first condition is the minimum

possible separation for an interpolating sequence. The second says that

∑

n(1 − |zn|)δzn
is a Carleson measure for H2. We could make it look

more like the condition in Theorem 1.1 by replacing I by a finite union

of intervals E. Since length is additive, this would be an equivalent

formulation.

It is easy to check that if {zn} ⊂ [0, 1), then it is interpolating

iff supk(1 − zk+1)/(1 − zk) = λ < 1 (i.e., we have geometric decay

to the boundary). We will use the following version of this fact: if

Ω = {(x, y) : |y| < a} is a strip and z1 < z2 < . . . are on the real axis,

then {zn} is interpolating for H∞(Ω) iff

inf
n

(zn+1 − zn) = δ > 0.

This can be proved by via a conformal mapping of the strip to the disk.

Interpolating sequences for H∞(D) are also weighted interpolating se-

quences for the Hardy space H2, i.e.,

Proposition 2.6. [16] For every (cn) ∈ ℓ2 there is function f ∈ H2

with ‖f‖2 ≤ C and f(zn) = cn(1−|zn|)−1/2 iff {zn} is interpolating for

H∞(D).

We will also use the following estimates (e.g., Exercise II.5 in [11])

Proposition 2.7. If f ∈ H2, then

|f(z)| ≤ [(1 + |z|)/(1 − |z|)]1/2‖f‖2,

and

|f ′(z)| ≤ C(1 − |z|)3/2‖f‖2.
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Suppose Ω is a domain with finite area, area(Ω). Ω is called an

analytic Poincaré domain if

KΩ(z0) = sup
f∈H(Ω)

∫∫

Ω |f − f(z0)|2dxdy
∫∫

Ω |f ′|2dxdy <∞.

Combining results of Axler and Shields [4] and Stegenga [19] gives

Proposition 2.8. Suppose Ω has finite area and ϕ : D → Ω is a

Riemann mapping. Then the following are equivalent:

1. Ω is an analytic Poincaré domain.

2. There is a C < ∞ so that
∫∫

D
|ϕ′|2|f |dxdy ≤ C‖f‖D for every

f ∈ D.

3. There is a C < ∞ so that given any finite collection of disjoint

arcs E = ∪jIj on the unit circle,

∫∫

S(E)
|ϕ′|2dxdy ≤ C[log

2

cap(E)
]−1,

where D(E) = supj S(Ij) and S(I) is the region in D bounded by

I and the hyperbolic geodesic with the same endpoints as I and

cap(E) denotes the logarithmic capacity of E. (We will refer to

this as Stegenga’s condition.)

We have ϕ ∈ M(D) if and only if ϕ is bounded and any of the above

hold. The norm of ϕ as an operator on D is bounded by a multiple of

‖ϕ‖∞ + C, where C is any of the constants appearing in (1)-(3).

Here, S(I) is the region in the disk bounded by I and the hyperbolic

geodesic with the same endpoints. For an arc I on the circle, its loga-

rithmic capacity is (approximately) its length, so Stegenga’s condition
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(5) above in the case of a single arc says there must be a C <∞ such

that
∫∫

S(I)
|ϕ′|2dxdy ≤ C

log 2|I|−1
.

(The “2” is present just to keep us from dividing from zero in the case

that I is the whole circle.) Let J denote the hyperbolic geodesic with

the same endpoints as I. Note that ρ(0, J), the hyperbolic distance

of J from the origin, equals (up to an additive constant) log 2|I|−1.

Furthermore, the integral

∫∫

S(I)
|ϕ′|2dxdy

equals area(f(S(I))). Thus Stegenga’s condition for arcs can be rewrit-

ten in terms of Ω instead of ϕ as follows: let w0 = ϕ(0) and given an

hyperbolic geodesic J in Ω not containing w0, let S(J) be the com-

ponent of Ω\J not containing w0 and let area(S(J)) denote its area.

Then Stegenga’s condition says

ρ(Ω, w0) ≡ sup
J
ρΩ(w0, J)area(S(J)) <∞.

It is not sufficient in Proposition 2.8 to have Stegenga’s condition just

for arcs (see [19] or [18] for counterexamples). However, it does suffice

in special cases. For example,

Proposition 2.9. [18] Suppose θ : [0,∞) → [0,∞) is a nonincreasing

function which is continuous from the right and satisfies θ(x) = θ0 for

0 ≤ x < θ0. Define

Ω = {(x, y) : |y| < θ(x), 0 ≤ x <∞} ∪ [(−θ0, 0) × (−θ0, θ0)].

Then KΩ(w0) ∼ ρ(Ω, w0).
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Thus by the earlier proposition, if such a ϕ satisfies Stegenga’s con-

dition for all arcs, it satisfies his condition in general. Define the Bessel

capacity Bα for subsets of R as

Bα(E) = inf{‖f‖2
2 : f ≥ 0, gα ∗ f ≥ 1 on E},

where gα(x) is the Bessel kernel. For x near 0, gα(x) ∼ |x|α−1 ≡ kα(x)

but has exponential decay near ∞. See [2], [13], [20]. Although Bessel

capacities are defined for subsets of the line we will frequently refer to

the capacity of a subset of the unit circle, using the usual identification

of the circle with [−π, π]. Also, since we are only interested in subsets

of [−π, π], the capacities defined by gα and kα are equivalent. For an

interval I

Bα(I) ∼






|I|1−2α, 0 ≤ α < 1/2

(log 2|I|−1)−1, α = 1/2
.

For α = 1/2, the Bessel capacity is essentially the logarithmic capacity,

i.e.,

B1/2(E) ∼ [log 2cap(E)−1]−1.

It is easy to check (using the fact that convolution by Bessel kernels

induces isomorphisms of the Dirichlet classes) that

Proposition 2.10. Suppose E is a closed set in {|z| = 1} and 0 ≤

α ≤ 1/2. Then

Bα(E) ∼ inf{
∫∫

D

|∇u(z)|2(1−|z|)1−2αdxdy : u(0) = 0, u(z) ≥ 1, z ∈ E}.

There is an alternate version of this for the case α = 1/2 which we

will need. It can be deduced from the previous result, using standard

estimates on conformal mappings.
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Proposition 2.11. Suppose f ∈ D satisfies f(0) = 1 and let {zk} be

its zero set. Let Ik = Izk
be the interval centered at zk/|zk| of length

2(1 − |zk|) and E = ∪kEk. Then B1/2(E) ≤ C‖f‖D.

There is a more precise form of this for α = 1/2 which we will use,

giving the form of the optimal u. It is “standard” and may be found

in e.g., [12]

Proposition 2.12. Let E and F be disjoint closed sets on the unit

circle, each consisting of finitely many closed arcs. Suppose there is

an arc σ such that E ⊂ σ and F ∩ σ = ∅. Then there is a confor-

mal map ϕ of the disk onto a rectangle, R, with a finite number of

horizontal line segments removed, such that ϕ(E), ϕ(F ) are the ver-

tical sides of the rectangle. The function u = Re(ϕ) is the function

of minimum Dirichlet integral with values 0 on E and 1 on F and

D(u) =
∫∫ |∇u|2dxdy = area(R). Furthermore, u is the unique solu-

tion of the mixed boundary value problem with u = 0 on E, u = 1 on

F and ∂u/∂n = 0 on the rest of the boundary.

We will apply this in the case that F is a quarter-circle and E is

contained in the opposite quadrant. Given such an F and E, take ϕ

as in the proposition. Let R = [0, 1]× [−γ/2, γ/2] denote the rectangle

given by proposition. Then γ ∼ B1/2(E). Set ψ = (1 − γ)φ+ γ and

f(z) = exp(A(1 − 1/ψ(z)).
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An easy calculation shows the Dirichlet integral of f is bounded by Cγ,

‖f‖∞ = 1, |f(0)| ≥ 1 − CAγ, |f | ≤ exp(−Cγ−1) on E, and

∫∫

S(E)
|f ′(z)|2dxdy ≤

∫∫

{γ<|z|<Cγ}∩R
eA(1−1/z)dxdy ≤ C exp(A(1−C/γ)).

Thus f has Dirichlet norm about the same as ϕ, but is small on S(E)

(whereas Re(ϕ) was small on E).

Given any E on the circle we can write it as the union of sets con-

tained in quarter circles, and take each F to be the opposing quarter

circle. The product of the corresponding functions satisfies

Lemma 2.13. Suppose E is a finite union of closed arcs on the circle.

Given a A > 1, there is an analytic f on the disk so that

‖f‖∞ ≤ 1,

|f(0)| ≥ 1 − CAB1/2(E)

|f(z)| ≤ exp(−ACB1/2), z ∈ S(E)
∫∫

D

|f ′(z)|2dxdy ≤ CB1/2(E),

and
∫∫

S(E)
|f ′(z)|2dxdy ≤ C exp(−A(1 − C/B1/2(E))).

Another fact about capacity which we will need is a little less stan-

dard.

Lemma 2.14. Suppose E = ∪jIj is a finite union of disjoint intervals

and suppose β > 0. Let Ĩj be the interval concentric with I but of length

Iβ. Then if Ẽ = ∪j Ĩj, B1/2(Ẽ) ≤ CB1/2(E) where C depends only on

β.
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Proof. This is obvious for intervals. In general, take a disjoint subcol-

lection of the intervals Ĩj so that B1/2(∪kĨk) ≥ 1
2
B1/2(Ẽ) (this can be

done via a covering lemma, e.g. Lemma I.4.4 of [11] applied to {Ĩj}

and the equilibrium measure µ̃ for Ẽ). Now define a measure on each

Ik by µ(Ik) = µ̃(Ĩk), and equal to a multiple of Lebesgue measure on

each interval. It is easy to see that ‖µ ∗ log 1
|x|
‖∞ ≤ C 1

β
‖µ̃ ∗ log 1

|x|
‖∞,

which proves the claim since ∪Ik ⊂ E.

Recall the definition of the spaces Dα from the introduction. In [19]

Stegenga proves

Proposition 2.15. For 0 ≤ α ≤ 1/2, f ∈M(Dα) iff f ∈ H∞(D) and

|f ′|2(1 − |z|)1−2αdxdy is an α-Carleson measure.

Proposition 2.16. A positive Borel measure µ on the disk is a α-

Carleson measure for 0 ≤ α ≤ 1/2 iff there is a constant C < ∞ such

that

µ(S(E)) ≤ CBα(E),

for every finite, disjoint union of intervals E = ∪jIj.

Thus f ∈M(Dα) iff f ∈ H∞(D) and satisfies Stegenga’s condition
∫∫

S(E)
|f ′|2(1 − |z|)1−2αdxdy ≤ CBα,2(E),

for every finite, disjoint union of intervals E = ∪jIj.

3. Radial interpolating sequences for M(D)

We will now use some of the results described in the previous section

to construct an interpolating sequence for M(D). Let θ(x) = e−x. We
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wish to apply Propositions 2.2, 2.3 and 2.9 to the domain

Ω = {(x, y) : |y| < 1

2
e−x, 0 ≤ x <∞} ∪ [(−1, 0) × (−1, 1)].

Let ϕ : D → Ω be the Riemann map which maps 0 to 0 and the interval

[0, 1) to the ray [0,∞). By Proposition 2.2,

ρΩ(0, r) ≥ π
∫ r

0
exdx− C1 = πer − C1.

To obtain an upper estimate we take m ≡ 0 in Proposition 2.3 and

note that
∫ r

0

θ′(x)2

θ(x)
=

∫ r

0
e−xdx ≤ 1,

and hence,

ρΩ(0, r) ≤ C + π
∫ r

0
exdx+ 1 ≤ πer + C2.

Now suppose J is a geodesic with endpoints (x,±θ(x)/2), x > 1.

It is easy to check that this curve crosses the axis at a point r with

|r−x| ≤ Ce−x, and this is the closest point to 0, so ρΩ(0, J) ≤ πer +C.

The area of S(J) is ≤ Ce−r, so

ρΩ(0, J)area(S(J)) ≤ C,

with a constant independent of J . To check this for other geodesics

is a simple exercise (just compare it to an appropriate geodesic of the

form above). Thus by Proposition 2.9 ϕ satisfies Stegenga’s condition.

Now suppose {zn} is any sequence in the disk (converging to 1) such

that

Re(ϕ(z1)) < Re(ϕ(z2)) < . . . ,

with

Re(ϕ(zn)) + δ < Re(ϕ(zn+1)),
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for every n = 1, 2, . . . and some fixed δ > 0. Then by our remarks in

the previous section, {ϕ(zn)} is an interpolating sequence for H∞(S),

S = {(x, y) : |y| < π/2}. Thus given any bounded sequence {an} there

is an F ∈ H∞(S) so that F (ϕ(zn)) = an. By the Cauchy estimates,

|F ′(z)| ≤ C‖F‖∞ on all of Ω. Therefore ψ = F ◦ ϕ satisfies

‖ψ‖∞ ≤ ‖F‖∞ <∞,

and by the chain rule

|ψ′(z)| ≤ |F ′(ϕ(z))||ϕ′(z)| ≤ C|ϕ′(z)|,

so ψ satisfies Stegenga’s condition (since ϕ does). Thus ψ ∈M(D) and

ψ(zn) = an, n = 1, 2, . . . .

Thus {zn} is interpolating for M(D).

If zn = 1−e−en

then |ρ(0, zn)−en| ≤ C. Thus |ϕ(zn)−n/π| ≤ Ce−n,

and so the sequence is certainly separated in the sense above. Thus

{1 − e−en} is an interpolating sequence for M(D).

We can also prove Axler’s result. Suppose {zn} is a sequence in

D with |zn| → 1. Choose a subsequence (which we will call {z1
n})

so that z1
n → eiθ0 . Then ϕ(z1

ne
−iθ0) → ∞, so we can choose another

subsequence {z2
n} so that

Re(ϕ(z2
ne

−θ0)) + 1 < Re(ϕ(z2
n+1e

−iθ0))

for every n = 1, 2, . . . . Then {ϕ(z2
ne

−iθ0)} is interpolating for H∞(S),

as above, and so the subsequence {z2
n} is interpolating for M(D).

One can also use the map ϕ to prove Corollary 1.7. First suppose

{zn} ⊂ [0, 1) satisfies ρ(zn, zn+1) ≥ δρ(0, zn) and let xn = ϕ(zn). By
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Proposition 2.2 and Proposition 2.3

δe−xn ≤ C + δρ(0, zn) ≤ C + π
∫ xn+1

xn

e−xdx = C + πe−xn − exn+1 ,

For large enough n this implies xn+1 ≥ xn + η for some η > 0 and all

n. Thus {zn} is interpolating by the argument given above.

Now suppose {zn} is interpolating for M(D), so then there is an

f ∈ M(D) with f(zn) = 0, f(zn+1) = 0, and ‖f‖M(D) ≤ C. Let

W = D∩B(1, 2(1−|zn|))\B(1, (1−|zn+1|)/2). By Stegenga’s condition

the area of f(W ) is at most Cρ(zn, 0)−1. If θ is as in Proposition 2.2,

then the Cauchy-Schwarz inequality implies

1 ≤ (
∫ 1

0
θ(x)dx)(

∫ 1

0

dx

θ(x)
).

Thus

ρ(zn, zn+1) ≥ C/area(f(W )) ≥ Cρ(0, zn),

as desired. This proves Corollary 1.7

More generally we can show

Lemma 3.1. If {zn} ⊂ D is interpolating for M(D) then there is a

δ > 0 such that ρn ≥ δdn for all n.

Proof. Suppose f ∈ M(D), z ∈ D. Then Stegenga’s condition applied

to the interval I = 2Iz gives

∫∫

S(I)
|f ′|2dxdy ≤ C[log(1 − |z|)−1]−1 ∼ B1/2(E),

which implies

|f ′(z)| ≤ C‖f‖M(D)(1 − |z|)−1ρ(0, z)−1.
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Suppose zn, zm are two points and γ the geodesic segment between

them. Let x ∈ γ be the point closest to the origin. Since the sequence is

interpolating there is a function f ∈ M(D) with f(zn) = 0, f(zm) = 1

and ‖f‖M(D) ≤ C. Either |f(x)| ≥ 1/2 or |f(x)−1| ≥ 1/2, and without

loss of generality we assume the former. Then

1

2
≤ |f(x) − f(zn)| ≤

∫

γ
|f ′(z)||dz|

≤ −C
∫ 1−|x|

1−|zn|
(r log r)−1dr

≤ C[log log(1 − |zn|)−1 − log log(1 − |x|)−1]

Therefore

log(1 − |zn|)−1 ≥ e1/2C log(1 − |x|)−1,

or ρ(0, zn) ≥ e1/2Cρ(0, x). Thus

ρ(zn, zm) ≥ ρ(zn, x) ≥ ρ(zn, 0) − ρ(x, 0) ≥ (1 − e−1/2C)ρ(0, zn).

Thus ρn ≥ δdn, as desired.

4. Radial interpolating sequences for D

One can also use the function ϕ in the previous section to produce

examples of interpolating sequences for the Dirichlet space. Given a

sequence (cn) ∈ ℓ2 we want to find a f ∈ D so that f(zn) = cnd
1/2
n .

Given a sequence rn ∈ Ω with rn + δ ≤ rn+1, for every n = 1, 2, . . .

and some fixed δ > 0, this becomes f(rn) = cn
√
πern/2. By the charac-

terization of weighted interpolating sequences for the Hardy space H2,
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there is an analytic function F on the strip so that

F (rn) = cn
√

exp(−ρ̃(0, rn)) = cne
rn/2,

for any (cn) ∈ ℓ2. Here ρ̃ denotes the hyperbolic metric in the strip.

Moreover, Proposition 2.7 implies

|F ′(z)| ≤ C
√

exp(−ρ̃(0, |z|)) = Ce−|z|,

for Im(z) ≤ π/4. If we set Ωn = Ω ∩ {z : n ≤ Re(z) ≤ n + 1}, then

the area of F (Ω) = ∪F (Ωn) is bounded by
∑

n e
−nen/2 < ∞. Thus F

restricted to Ω is in the Dirichlet class and accomplishes the desired

interpolation. Hence for points on a radius the separation condition

ρ(zn, zn+1) ≥ δρ(0, zn) for some δ > 0, suffices for weighted interpola-

tion in the Dirichlet space. This condition is also necessary, as can be

seen by the following

Lemma 4.1. If f ∈ D, f(z) = 0, f(w) = A, then ρ(z, w) ≥ C(A/‖f‖D)2

Proof. The area of f(D) is at most ‖f‖D, so taking θ is in Proposi-

tion 2.2, the Cauchy-Schwarz inequality implies

A2 = (
∫ A

0
1dx)2 ≤ (

∫ A

0
θ(x)dx)(

∫ A

0

dx

θ(x)
) ≤ (‖f‖2

D)(ρ̃(0, A) − C).

Thus ρ̃(0, A) ≥ A2 − C, where ρ̃ denotes the hyperbolic metric in

f(D). By Schwarz’s lemma, this proves the desired inequality, since it

is evidently true for small A.

So suppose {zn} is interpolating for D and fix some n. Let zm satisfy

ρ(zm, zn) = ρn and choose f ∈ D so that f(zm) = 0, f(zn) = d1/2
n and

‖f‖D ≤ C. Then by the lemma ρn ≥ C−1dn, as desired.
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5. Constructing interpolating functions for M(D)

In this section we will prove that the condition in Theorem 1.6 implies

{zn} is interpolating for M(D). This construction need only be slightly

modified to give proofs of Theorem 1.9 and Theorem 1.3.

So suppose {zn} satisfies

ρn ≡ inf
m6=n

ρ(zn, zm) ≥ δdn

and

∑

zn∈S(E)

d−1
n ≤ C1(log 2cap(E)−1)−1.

Let ǫn = ρ−1
n . Our second hypothesis clearly implies

∑

n ǫn <∞.

To each point zn associate the hyperbolic disk Dn centered at zn with

hyperbolic radius 1
2
ρn. Note that these disks are all disjoint. The disk

Dn is also a disk in the Euclidean metric of center xn and radius rn.

Note that the hyperbolic distance from zn to xn is at least 1
4
ρn. Let wn

be the point midway between xn and zn in the hyperbolic metric. Let

Kn be the arc on the unit circle concentric with zn/|zn| and of length

2(1 − |xn|). Let fn be the conformal map of the unit disk onto the

region

Rn = ([C2ǫn, 1] × [−C2ǫn, C2ǫn]) ∪D(C2ǫn, C2ǫn) ∪D(1, C2ǫn)

which maps zn to 1 and −zn/|zn| to 0. The constant C2 is chosen so

that wn is mapped to ǫn (i.e., C2 ∼ 1). This implies the point xn is

mapped to exp(−ρn/4). The map f can be expressed as

f(z) = ϕ(C2ǫn log
z − 1

z + 1
),
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where ϕ is the conformal map of the strip {|y| < C2ǫn} onto Rn. It’s

easy to see that |ϕ′| ≤ 1 (with ∼ 1 on {0 ≤ x ≤ 1}), and so

|f ′(z)| ≤















Cǫn, |z − 1| ≥ 1 − wn

Cǫn|1 − z|−1, 1 − |zn| ≤ 1 − |z| ≤ 1 − wn

Cǫn(1 − |zn|)−1, |1 − z| ≤ 1 − |zn|
.

We can easily verify the each of the following properties:

1.
∫∫

Dn
|f ′

n(z)|2dxdy ≤ (C2 + 2)ǫn ≤ area(Rn).

2. For any z 6∈ S(Kn),

|f(z)| ≤ C exp(−ρn/4)ǫn ≡ C3(n)ǫn.

3. Let Dn(N) = Dρ(zn, N) denote the hyperbolic disk of radius N ≥

ρn centered at zn. Then

∫∫

D\Dn(N)
|f ′

n(z)|2dxdy ≤ Cǫ2n exp(−(N − ρn/2)).

Using hyperbolic geometry we can check that the image under

F (D\Dn(N)) ∩ {kǫn ≤ x ≤ (k + 1)ǫn} lies within ǫn exp(−(N −

ρn/2) − k) of the boundary of Rn = f(D). Thus summing over

k shows the area of the image is less than ǫ2n exp(−N + ρn/2), as

claimed.

Order the points so that |z1| ≤ |z2| ≤ . . . . Given a sequence {an}

with ‖(an)‖∞ ≤ 1, we will construct a sequence of functions of the form

Fn(z) =
n

∑

k=1

bnfn(z).

We will prove that these functions satisfy

1. |Fn(zk) − ak| ≤
∑n

j=k C3(j)ǫj, k = 1, . . . , n− 1

2. ‖Fn‖∞ ≤ C + ‖Fn−1‖∞ + CC2ǫn.
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3. |F ′
n(z)|2dxdy is a 1/2-Carleson measure with estimates indepen-

dent of n.

Let F = limn Fn. Since
∑

n ǫn < ∞ the third condition implies F is

bounded and the last condition implies F ∈ M(D). Note that for dn

large, C3(n) is small, so by omitting a bounded number of points which

lie within a bounded distance of the origin, we get

|F (zn) − an| ≤
∑

n

C3(n)ǫn ≤ 1/2.

Thus the remaining points {zn} are interpolating by Proposition 2.4.

If {w1, . . . wN} are the omitted points, let p be a polynomial inter-

polating the correct values at these points and B the Blaschke product

with these zeros. Then B is bounded away from zero on the rest of the

sequence so there is a function f ∈ M(D) with f(zn) = an/B(zn), by

the argument above. Thus p + Bf ∈ M(D) interpolates correctly on

the whole sequence. Therefore {zn} is interpolating for M(D).

Let F1(z) = a1f1(x). Then F (z1) = a1 and it clearly satisfies all

the desired conditions. In general, suppose we have already defined

Fn−1. Let bn = an−Fn−1(zn) and set Fn = Fn−1 + bnfn. Then trivially,

Fn(zn) = an. If k < n then |zk| ≤ |zn| and the disksDk, Dn are disjoint,

so zk 6∈ S(Kn). Thus by the remark above, |fn(zk)| ≤ ǫn. Thus

|Fn(zk) − ak| ≤
n

∑

j=k+1

C3(j)ǫj, k = 1, . . . , n− 1.

Similarly,

|Fn(z)| ≤ |Fn−1(z)| + C3(n)ǫn, z 6∈ S(Kn).
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On S(Kn), Fn takes values within ǫn of the convex hull of the union of

Fn−1(S(Kn)) and D(an, C2ǫn). Therefore

‖Fn‖∞ ≤ 1 + ‖Fn−1‖∞ + CC2ǫn,

as desired.

This argument also shows something that we will need later, namely,

|Fj(zn)| ≤ |Fj−1(zn)| +






C|ak|, zn ∈ S(Kj)

Cǫn|an|, z 6∈ S(Kj)
.

Thus

|Fn−1(zn)| ≤ C
∑

k:zn∈S(Kk)

|ak| +
∑

k<n

ǫn|an|. (5.1)

Moreover, this holds even if the an’s are not uniformly bounded. The

argument using convexity actually shows something stronger: for each

n there is a non-negative sequence {pnk} with
∑

k pnk = 1 so that

|Fn−1(zn)| ≤ C
∑

k:zn∈S(Kk)

pnk|ak| +
∑

k<n

ǫn|an|. (5.2)

However, we will not use this stronger estimate in the current paper.

Finally, we must verify the Carleson measure condition. Suppose we

are given a finite union of disjoint intervals E = E0 = ∪jI
0
j . Choose

β > 0 (depending on c0) so that ρ(z, S(I)) ≤ c0ρ(0, z) implies z ∈

S(Ĩ) where Ĩ is the interval concentric with I, but of length |I|β. Let

E1 = ∪j Ĩ
0
j . Write E1 as a union of disjoint closed intervals ∪I1

j and

let E2 = ∪Ĩ2
j . Continue in this way creating sets E ⊂ E1 ⊂ . . . . By

Lemma 2.14 we have B1/2(En) ≤ AnB1/2(E) for some A depending

only on c0. Partition the integers in collections C‖ by putting n ∈ C‖
if zn ∈ S(Ek) but zn 6∈ S(Ek−1). If n ∈ C‖, then ρ(zn, S(E)) ≥ ak for
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some a > 1. Let χDn
denote the characteristic function of Dn and χDc

n

denote the characteristic function of D\Dn. Then

|F ′| ≤
∑

n

|bnf ′
n|χDn

+
∑

n

|bnf ′
n|χDc

n
.

Since the disks {Dn} are disjoint,

∫∫

S(E)
|F ′(z)|2dxdy ≤ C

∑

n

∫∫

Dn∩S(E)
|f ′

n(z)|2dxdy

+
∫∫

S(E)
|
∑

k>0

∑

n∈C‖

f ′
n(z)χDc

n
(z)|2dxdy.

The first term is bounded by

∑

n∈C∞

∫∫

Dn

|f ′
n(z)|2dxdy ≤

∑

n∈C∞

ǫn ≤ CB1/2(E).

The second term is smaller and can be handled by Minkowski’s inequal-

ity

(
∫

S(E)
|
∑

k>0

∑

n∈C‖

f ′
n(z)χDc

n
(z)|2dxdy)1/2 ≤ C

∑

k

∑

n∈C‖

(
∫∫

S(E)
|f ′

n(z)|2χDc
n
(z)dxdy)1/2

≤ C
∑

k

∑

n∈C‖

(
∫∫

D\Dn(ak)
|f ′

n(z)|2dxdy)1/2

≤ C
∑

k

∑

n∈C‖

ǫne
−ak/2

≤ C
∑

k

e−ak/2B1/2(Ek)

≤ C
∑

k

e−ak

AkB1/2(E)

≤ CB1/2(E).

This proves that |F ′|2dxdy is a Carleson measure for D, and completes

the proof that F ∈ M(D) and hence the proof of sufficiency in Theo-

rem 1.6.
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6. Interpolation in D ∩H∞(D)

To prove Theorem 1.9, we follow the proof of the previous section.

Define the functions {fn} as before and set Fn(z) = Fn−1(z) + bnfn(z)

where bn = an − Fn−1(zn). The proof that the functions {Fn} are

uniformly bounded is the same as before. The proof that

|F (zn) − an| ≤ 1/2,

also still works, as long as infn ρn is sufficiently large, i.e., the points

are sufficiently far apart. Since the {Fn} are uniformly bounded, then

so are the {bn}. To show F is in the Dirichlet space we repeat the

verification of Stegenga’s condition, but now we only need the case

S(E) = D.

Since
∑

ρn < ∞, there can only be a finite number of n with ρn

less than a given M , so omitting a finite subset gives an interpolating

sequence. Let p be a polynomial solving the interpolation problem on

this finite set and q a polynomial vanishing only on this set. Then if

f interpolates the values (an/q(zn)) − p(zn) at the remaining points,

p+ qf ∈ D ∩H∞(D) interpolates on the whole sequence.

7. Interpolation in M(Dα)

In this section we will sketch the proof of Theorem 1.8 for 0 < α <

1/2. Suppose {zn} is satisfies

ρ(zn, zm) ≥ δ, (7.1)
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for all m 6= n and

∑

zn∈∪S(Ij)

(1 − |zn|)1−2α ≤ Bα(∪jIj). (7.2)

Define the Blaschke product associated to the sequence

B(z) =
∏

n

z − zn

1 − z̄nz

|zn|
zn

.

Using results of Stegenga and Maz’ya, Verbitskii showed

Lemma 7.1. [23] (7.1) and (7.2) are necessary and sufficient for B ∈

M(Dα).

Now that we have B ∈ M(Dα), the proof that {zn} is interpolating

forM(Dα) can be completed in any of several ways. For example, Earls’

proof of Carleson’s theorem ([10], Theorem VII.5.1 of [11]) shows that

if {zn} is interpolating for H∞(D), i.e.,

inf
k

∏

j 6=k

| zk − zj

1 − z̄jzk

| = η > 0.

and {an} ∈ ℓ∞ then there is sequence {wn} with ρ(wn, zn) ≤ η/2 such

that the Blaschke product

B̃(z) =
∏

n

wn − z

1 − w̄nz

|wn|
wn

satisfies

CB̃(zn) = an, n = 1, 2, . . . ,

for some constant C. Since {wn} is close to {zn} it satisfies similar

estimates to {zn}, so B̃ ∈ M(Dα) with estimates depending only on

the {zn}. This completes the proof of Theorem 1.8.
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8. A sufficient condition for interpolation in D

In this section we prove Theorem 1.3. Suppose {zn} satisfies the

conditions in Theorem 1.3, i.e.,

ρn ≥ δdn, (8.1)

∑

n

d−1
n ≤ C, (8.2)

∑

zk∈Kn

d−1
k ≤ Cd−1

n , (8.3)

and suppose (cn) ∈ ℓ2, ‖cn‖2 = 1 is the sequence of values to be

interpolated. Let an = cn
√
dn and define the functions {Fn} as in

the proof of Theorem 1.6. Recall that bn = an − Fn−1(zn). Since

an = cn
√
dn we have |bn| ≤ |cn|

√
dn+|Fn−1(zn)|. In Section 5 (equation

(5.1)) the second term was shown to be bounded by

C
∑

k:zn∈S(Kk)

|ak| + C
∑

k<n

ǫk|ak|.

Since ǫn ∼ d−1
n and an = cn

√
dn, the second of these terms is bounded

by

C
∑

k<n

|ck|d−1/2
k ≤ C(

∑

n

|cn|2)1/2(
∑

k

d−1
k )1/2 ≤ C.

Therefore,

|bn| ≤ C(1 + |cn|
√

dn +
∑

k:zn∈S(Kk)

|ck|
√

dk),
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Thus

∑

n

|bn|2d−1
n ≤ C

∑

n

(d−1/2
n + |cn| + d−1/2

n

∑

k:zn∈S(Kk)

pk,n|ck|d1/2
k )2

≤ C
∑

n

d−1
n + C

∑

n

|cn|2dn + C
∑

k

|ck|2dk

∑

n:zn∈S(Kk)

≤ C + C
∑

n

|cn|2 + C
∑

k

|ck|2dkd
−1
k

≤ C

Let χDn
, χDc

n
denote the characteristic functions of Dn,D\Dn respec-

tively. Using Minkowski’s inequality we get,

‖F‖2
D ≤ C

∫∫

D

|bn|2|f ′
n(z)|2χDn

(z)dxdy + C
∫∫

D

(
∑

n

|bn||f ′
n(z)|χDc

n
(z))2dxdy

≤ C
∑

n

∫∫

Dn

|bn|2|f ′
n(z)|2dxdy + (

∑

n

|bn|2[
∫∫

D

|f ′
n(z)|2χDc

n
(z)dxdy]1/2)2

≤
∑

n

|bn|2d−1
n + (

∑

n

|bn|[
∫∫

D\Dn

|f ′
n(z)|2dxdy]1/2)2

≤ C + C(
∑

n

|bn|d−1
n )2

≤ C + C(
∑

n

|bn|2d−1
n )(

∑

n

d−1
n )

≤ C.

Thus F ∈ D. Using similar estimates,

∑

k

|F (zk)d
−1/2
k − ck|2 ≤

∑

k

d−1
k (

∞
∑

n=k

C3(n)|bn|ǫn)2

≤ sup
n
C3(n)

∑

k

d−1
k (

∑

n

|bn|2)1/2(
∑

k

d−1
n )1/2

≤ C sup
n
C3(n)

∑

k

d−1
k

≤ C sup
n
C3(n).
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This is small if the sequence is sufficiently separated. Therefore, the ar-

gument above shows {zn} is interpolating if it is sufficiently separated.

The condition ρn ∼ dn, implies that only a bounded number of points

satisfy ρn ≤M for any given M , and all of these are within a bounded

hyperbolic distance of the origin. But as in the proof of Theorem 1.6,

the finitely many points can be added back and the sequence is still

interpolating for D.

Now we can prove Theorem 1.1. First suppose {zn} is a universal

interpolating sequence. Then T (D) ⊂ ℓ∈, so {zn} is Carleson and so

(1.2) is satisfied because of Stegenga’s theorem. Since ℓ2 ⊂ T (D), the

separation condition (1.1) holds by Lemma 4.1.

Conversely, suppose (1.1) and (1.2) hold. Then T (D) ⊂ ℓ∈ by Ste-

genga’s theorem again. Stegenga’s condition applied just to intervals

implies (8.2) and (8.3) so ℓ2 ⊂ T (D) by Theorem 1.3. This completes

the proof of Theorem 1.1.

9. Interpolating sequences and zero sets

Suppose {zn} is a weighted interpolating sequence for D. Then for

any n there is a function fn so that fn(zn) = d1/2
n and fn(zm) = 0 for

all m 6= n. Thus hn = fnd
−1/2
n , has the desired properties, except that

it might not be bounded. However, hn(D) has finite area, so by a result

of Nguyen Xuan Uy [22] there is a non-constant, Lipschitz function F

on the sphere, analytic on hn(D). We can easily arrange for F (0) = 0

and F (1) = 1 so that F ◦hn is bounded, takes the correct values at the
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points {zn} and has bounded Dirichlet integral (since |F ′| is bounded,

|(F ◦ hn)′| ≤ C|h′n|). Thus the condition in Theorem 1.2 is necessary.

To prove sufficiency, let {hn} be the sequence of functions with the

given properties and let (cn) ∈ ℓ2 be the sequence to be interpolated.

We would like to set f(z) =
∑

n cnd
1/2
n hn(z)d1/2

n ; this has the right

values at the points {zn}, but might not have bounded Dirichlet inte-

gral. To bound this, we will replace each hn by a product hnfn where

fn(zn) = 1 and fn has very small Dirichlet integral far from zn.

Fix an n and move zn to the origin by a Möbius transformation τ .

Since hn ◦ τ equals 1 at 0 and 0 at the other points, Proposition 2.11

says that if E = ∪m6=nIτ(zm), then B1/2(E) ≤ Cd−1
n . Now let fn ◦ τ be

the function given by Lemma 2.13 and let gn = (hnfn)/fn(0) (if dn is

large enough with respect to the number A in the definition of fn, then

fn(0) > 1/2. We will choose A large later and the proof will apply to

the sequence with the finitely many n for which fn(0) < 1/2 omitted).

Define F (z) =
∑

n cnd
1/2
n gn(z). Let Sn = S(Kn)\ ∪m6=n S(In). The

Sk’s have bounded overlap (see Corollary 11.2). Using this and Minkowski’s

inequality shows

∫∫

D

|F ′(z)|2dxdy ≤ C
∑

n

|cn|2dn

∫∫

Sn

|g′n(z)|2dxdy

+C(
∑

n

|cn|[dn

∫∫

Sc
n

|g′n(z)|2dxdy]1/2)2

≤ C
∑

n

|cn|2 + C(
∑

n

|cn|[dn exp(−CAdn)]1/2)2

≤ C
∑

n

|cn|2[1 +
∑

n

dn exp(−2CAdn)]2
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Here we have used Lemma 2.13 to estimate each term of

∫∫

|g′(z)|2dxdy ≤
∫∫

|h′n(z)fn(z)|2dxdy +
∫∫

|hn(z)f ′
n(z)|2dxdy.

In the first term on the right,
∫∫ |h′|2 is bounded and |fn| ≤ exp(−CAdn).

In the second term, |hn| is bounded and
∫∫ |f ′|2 ≤ exp(−CAdn).

If we choose A > 3/C then exp(−CAdn) ≤ (1−|zn|)3. Since
∑

dn(1−

|zn|)3 is summable for any hyperbolically separated sequence, we get

F ∈ D. Thus {zn} is interpolating if we drop a finite number of terms,

but these can be added back by the arguments in earlier sections.

10. Interpolating, but not Carleson

Lemma 10.1. There is a sequence {zn} so that T (D) strictly contains

ℓ2, i.e., {zn} is an interpolating sequence for D, but not a universal

interpolating sequence.

To prove this let rn = 1 − e−en

and let Nn = en/4. Let {In} be a

collection of disjoint arcs of length e−en/4. To each arc In associate Nn

equally spaced points {zn
j } on the arc rnIn. The arguments of adjacent

points differs by at least e−en/2/en/4 ≥ e−en/2 and therefore the points

satisfy the separation condition

ρ(zn
j , z

n
k ) ≥ δen ≥ δρ(0, zn, j).

It is easy to check that points associated to different arcs are also

satisfy the separation condition. Then if {zk} denotes the union of all

the points

∑

k

d−1
k =

∑

n

Nne
−n ≤

∑

n

e−3n/4 <∞,
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so the second condition of Theorem 1.3 is satisfied. Finally, for each

point zk, there are no other points zj in S(Kk) (if η is small enough)

so the third condition is also satisfied. Thus {zk} is interpolating for

D by Theorem 1.3.

On the other hand, {zk} does not satisfy Stegenga’s condition. For

if we consider I = In, then S(I) contains Nn points, so

∑

zk∈S(I)

d−1
k = Nne

−n = e−3n/4.

However,

B1/2(I) ∼ (log |I|−1)−1 = 4e−n.

The previous sum is much larger, so Stegenga’s condition fails.

It is possible to construct a sequence {zk} so that Stegenga’s condi-

tion holds for all intervals, i.e.,

∑

zk∈S(I)

d−1
k ≤ CB1/2(I),

for all intervals, but does not hold uniformly for all finite unions of

intervals. Thus even this stronger hypothesis does not imply {zk} is a

universal interpolating sequence. Such a sequence can be constructed

using the example of a conformal mapping given in Corollary 5.2 of

[18]. They build a map ϕ : D → Ω where Ω is a countable union of

rectangular “rooms”. If we let {zk} be the preimages under ϕ of the

center of each room, then the estimates given there show {zk} satisfies

Stegenga’s condition uniformly on all arcs, but not on all finite unions

of arcs (in addition to the estimates given there one only needs that

for each zk, d
−1
k ∼ ρ−1

k is comparable to that area of the kth “room”).
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11. Some consequences of the separation condition

In this section we will show a few simple geometric consequences of

equation (1.1), i.e., the assumption that ρn ≥ δdn for some δ > 0 and

all n. In particular, we will show that this assumption by itself implies

the sequence is interpolating for H∞.

Lemma 11.1. Suppose {zn} satisfies ρn ≥ δdn for every n. Then

#{n : zn/|zn| ∈ I, R ≤ dn ≤ (1 + ǫ)R} ≤ 1 + |I|eR(1−Cδ),

where ǫ = δ/8 and C is independent of δ.

Proof. Suppose a = e−R. The hyperbolic width of the annulus {z :

a1+ǫ ≤ 1 − |z| ≤ a}, is c0R/8, so to each zn there is a point z∗n on {z :

1−|z| = a}, so that ρ(zn, z
∗
n) ≤ δR/8. Therefore given distinct n,m we

must have ρ(z∗n, z
∗
m) ≥ δR/4. Thus there are at most 1+|I|eR(1−Cδ)such

points.

Corollary 11.2. Suppose {zn} satisfy ρn ≥ δdn for some δ > 0 and

all n. Then for any λ < 1, the hyperbolic disks Bn = Bρ(zn, λdn) have

bounded overlap (with constant depending only on δ and λ).

Proof. Of course this is not true for λ = 1, since the closure of every ball

then contains the origin. Suppose z ∈ Bn. Then its easy to check that

|z−zn| ≤ C(1−|z|)α and (1−|zn|) ≥ (1−|z|)β for some α, β > 0. The

intersection of these two conditions gives a region S that is covered by

finitely many of the annular regions Ak = {exp(−(1+ ǫ)k+1 ≤ 1−|z| ≤

exp(−(1 + ǫ)k ≤ 1 − |z|} considered in the lemma, and by the lemma,

each S ∩ Ak contains only a bounded number of points.
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This result shows that the conditions in Theorem 1.6 are necessary

if ρn ≤ λdn for some λ < 1. For in that case we choose an interpolating

function f so that if z∗n is the nearest distinct point of the sequence

to zn then |f(zn) − f(z∗n)| ≥ 1. It is easy to see that that there must

be an interpolating function such that
∫∫

Bρ(zn,ρn) |f ′(z)|2dxdy ≥ Cd−1
n .

Using bounded overlap of these balls, if f ∈ M(D), then Stegenga’s

condition for f implies it for {zn}.

Corollary 11.3. Suppose {zn} satisfies ρn ≥ δdn for every n. Then

∑

zn∈S(I)

(1 − |zn|) ≤ |I| + o(|I|),

with an estimate that depends only on δ. In particular, {zn} is a thin

sequence.

Proof. Let |I| = e−R and ak = e−R(1+ǫ)k

. Choose k0 to be the

smallest integer such that

(1 + ǫ)k − δCk ≥ 2 +
1

2
(1 + ǫ)k

(these are the constants in Lemma 11.1) Then

∑

zn∈S(I)

(1 − |zn|) ≤
∞
∑

k=0

∑

{m:ak+1≤1−|zm|≤ak}

(1 − |zn|)

Break the k-sum into two pieces for {k < k0} and {k ≥ k0}. The

first sum may contain one term of size |I| and a bounded number

of terms each smaller than |I|1+ǫ. Therefore this sum is bounded by



42 CHRISTOPHER J. BISHOP

|I|(1 + o(|I|)). To estimate the second sum,

∞
∑

k=0

∑

{m:ak+1≤1−|zm|≤ak}

(1 − |zn|) ≤
∞
∑

k=k+0

C exp(−R(1 + ǫ)k) exp(−kRδ/C))

≤
∞
∑

k=k0

C exp(−R(1 + ǫ)k +Rkδ/C)

≤ C|I|2
∞
∑

k=k0

C exp(−1

2
(1 + ǫ)k)

≤ C(δ)|I|2.

12. Remarks

There are still many unresolved questions. For example, are the

conditions in Theorem 1.6 also necessary for interpolation in M(D)?

What about the conditions in Theorem 1.8? What is the correct char-

acterization of interpolating sequences for D? Is the requirement that

∑

n d
−1
n <∞ necessary? If not, construct an example of an interpolat-

ing sequence for which this sum diverges. Roughly speaking, if interpo-

lation is always possible by a sum
∑

n anhn(z) where hn(zm) = δnm and

the derivative h′n is “concentrated” around zn, then we would expect

∑

d−1
n <∞ to be necessary.

If it is not the sum of the dn’s which is important, perhaps it is some

sum involving the capacity of intervals associated to the sequence. For

example, suppose {zn} is a sequence, not containing the origin. To

each point of the sequence we can associate the interval In which is the

base of maximal dyadic Carleson box containing zn. These intervals

can then be arranged into generations by containment in the usual

way. Let Ek be the union of the intervals in the kth generation. Is the
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condition
∑

k B1/2(Ek) < ∞ either necessary or sufficient for {zn} to

be a zero sequence? I don’t know any reason why this should be, but

it is consistent with all known results. Furthermore, if we replace B1/2

by B0 we obtain the (known) characterization for zeros of the Hardy

space, H2.

If this were true, then to characterize interpolating sequences we

would move each point zn to the origin by a Möbius transformation,

and define generation sets En
k . We would then have that the sequence is

interpolating for D if has the separation condition and
∑

k B1/2(E
n
k ) ≤

Cd−1
n for some uniform C.

If {zn} is interpolating for D and if
∑

d−1
n < ∞, then any bounded

sequence can be interpolated. Therefore we can find a Dirichlet class

function which fails to have non-tangential limits at every non-tangential

limit point of {zn}. A result of Beurling says that a Dirichlet function

must have non-tangential limits except possibly on a set of zero loga-

rithmic capacity [5] (see also [7]). Thus we must have B1/2(E
n
k ) → 0 as

k → ∞, at the very least. Much more detailed information is available

about the boundary behavior of functions in the Dirichlet (and related

spaces), e.g., [1]. Perhaps some of the results or techniques of this type

will be useful for the interpolation problem.

In a recent paper [14], Rochberg and Wu give an alternate character-

ization of the Dirichlet type spaces Dα. They also consider the spaces

Wα defined by

‖f‖2
Wα

= sup
‖g‖Dα=1

∫∫

D

|g(z)|2|f ′(z)|2(1 − |z|)1−2αdxdy.
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Then W0 = BMO and M(Dα) = Wα ∩H∞(D). A η lattice is a collec-

tion of points {wj} in D such that Bρ(wj, 5η) covers D and the balls

Bρ(wj, η/5) are disjoint. Rochberg and Wu show that f ∈ Wα iff for

all small enough η, any b > 1, and any η lattice {wj}, f can be written

f(z) =
∑

j

λj(
1 − |wj|2
1 − w̄jz

)b,

where {λj} satisfy the condition that
∑ |λj|2δwj

is an α-Carleson mea-

sure. Perhaps this result can be used to prove the necessity of our

interpolation condition for M(Dα), but I have not seen how to do this.
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