ANOTHER BESICOVITCH-KAKEYA SET

Christopher J. Bishop

Theorem 1 (Besicovitch [2], [3]). There is a compact set $K \subset \mathbb{R}^2$ that has zero area and contains a unit line segment in every direction.

Proof. Let $\{a_k\}_0^\infty$ be dense in [0,1] with $|a_{k+1} - a_k| \le \epsilon(k) \searrow 0$, let $g(t) = t - \lfloor t \rfloor$, set

$$f_k(t) = \sum_{m=1}^k \frac{a_{m-1} - a_m}{2^m} g(2^m t), \qquad f(t) = \lim_{k \to \infty} f_k(t),$$

and define $K = \{(a, f(t) + at) : a, t \in [0, 1]\}$. Fixing t and varying a shows K contains unit segments of slope t for all $t \in [0, 1]$. By telescoping series, $f_k(t)$ has slope $-a_k$ on every component I of $U = [0, 1] \setminus 2^{-k} \mathbb{Z}$. Fix $a \in [0, 1]$ and choose k so that $|a - a_k| < \epsilon(k)$. We have $f(t) - at = [f(t) - f_k(t)] + [f_k(t) - a_k t] + (a_k - a)t$, and

$$|f(t) - f_k(t)| \le \sum_{m=k+1}^{\infty} \frac{|a_{m-1} - a_m|}{2^m} g(2^m t) \le \epsilon(k) \sum_{m=k+1}^{\infty} 2^{-m} = \epsilon(k) 2^{-k},$$

hence each of the 2^k intervals I is mapped by f(t) + at to a set of diameter $\leq \epsilon(k)2^{-k} + 0 + \epsilon(k)|I| \leq \epsilon(k)2^{-k+1}$. Thus the slice $\{(x, y) \in \overline{K} : x = a\}$ has length zero. Hence \overline{K} has zero area and a union of four rotations of \overline{K} proves the theorem. \Box

This example was inspired by the random examples in [1] based on the Cauchy process. If we take $\epsilon(k) = 2^{-n}$ for $k \in [2^n, 2^{n+1})$ (as in Figures 1 and 2) then the intersection of K with the vertical strip $S_k = \{(x, y) : |x - a_k| \le \epsilon(k)\}$ can be covered by 2^{2k} squares of side length $\epsilon(k)2^{-k}$, giving total area $\epsilon^2(k)$. Thus all of K can be covered by squares of side length $\ge \delta = 2^{-n-2^{n+1}}$ with total area $\le 2^n \epsilon^2(2^n) = 2^{-n} = O(1/\log(1/\delta))$. This implies area($\{z : \operatorname{dist}(z, K) < \delta\}$) = $O(1/\log(1/\delta))$, which is sharp by a result of Cordoba; see [4] or Proposition 1.5 of [1].

References

- Y. Babichenko, Y. Peres, R. Peretz, P. Sousi, and P. Winkler. Hunter, Cauchy rabbit, and optimal Kakeya sets. 2011. preprint available at http://arxiv.org/abs/1207.6389.
- [2] A. S. Besicovitch. Sur deux questions d'intégrabilité des fonctions. J. Soc. Phys.-Math. (Perm'), 2(1):105-123, 1919.
- [3] A. S. Besicovitch. On Kakeya's problem and a similar one. Math. Z., 27(1):312–320, 1928.
- [4] Antonio Córdoba. The fat needle problem. Bull. London Math. Soc., 25(1):81–82, 1993.

C.J. BISHOP, MATH. DEPT., STONY BROOK UNIVERSITY, NY 11794-3651 *E-mail address*: bishop@math.sunysb.edu

FIGURE 1. The graph of f.

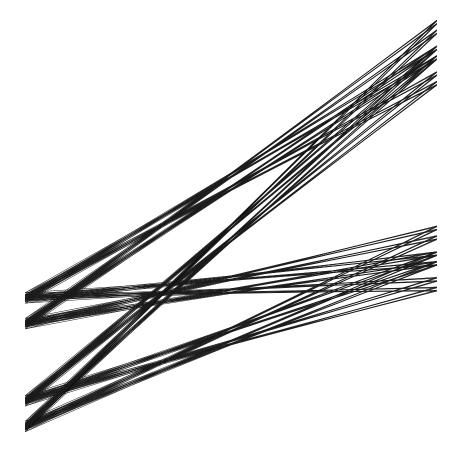


FIGURE 2. The corresponding set K.