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QUASICONFORMAL MAPS WITH THIN DILATATIONS

Christopher J. Bishop

Abstract: We give an estimate that quantifies the fact that a normalized quasicon-

formal map whose dilatation is non-zero only on a set of small area approximates the
identity uniformly on the whole plane. The precise statement is motivated by applica-

tions of the author’s quasiconformal folding method for constructing entire functions;

in particular an application to constructing transcendental wandering domains given
by Fagella, Godillon, and Jarque [7].
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1. Introduction

A quasiconformal mapping F : C→ C is a homeomorphism that is ab-
solutely continuous on almost all horizontal and vertical lines, and whose
partial derivatives satisfy Fz = µFz for some complex-valued measurable
function µ with ‖µ‖∞ = k < 1, called the complex dilatation of f . For
the basic properties of quasiconformal maps, see Ahlfors’ book [1].

If µ = 0 then F is a conformal homeomorphism of C to itself, and
hence it is linear. If the complex dilatation µ is small, then we expect F
to be close to linear. There are at least two reasonable senses in which we
can ask µ to be small: that ‖µ‖∞ is small or that the set {z : µ(z) 6= 0}
is small. In this note we consider the latter possibility.

To be more precise, we say a measurable set E ⊂ C is (ε, h)-thin if
ε > 0 and

area(E ∩D(z, 1)) ≤ εh(|z|)
for all z ∈ C, where h : [0,∞)→ [0, π] is a bounded decreasing function
such that ∫ ∞

0

h(r)rn dr <∞

for every n > 1. If a > 0, the function h(r) = exp(−ar) satisfies this
condition, and this example suffices for many applications.
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Recall that a quasiconformal map F : C → C is often normalized by
post-composing by a conformal linear map in one of two ways. First, we
can assume F (0) = 0 and F (1) = 1. We call this the 2-point normaliza-
tion. Second, if the dilatation of F is supported on a bounded set, then
F is conformal in a neighborhood of ∞ and then we can choose R large
and post-compose with a linear conformal map so that

|F (z)− z| = O

(
1

|z|

)
for |z| > R/2. We say that such an F is normalized at ∞. This is also
called the hydrodynamical normalization of F . We will first prove an
estimate for the hydrodynamical normalization and then deduce one for
the 2-point normalization.

Theorem 1.1. Suppose F : C→C is K-quasiconformal, E={z : µ(z) 6=
0} is bounded (so F is conformal near ∞), and F is normalized so

|F (z)− z| ≤M/|z|
near ∞. Assume E is (ε, h)-thin. Then for all z ∈ C

|F (z)− z| ≤ εβ

|z|+ 1
,

where β > 0 depends only on K and h. In particular, as ε → 0, F con-
verges uniformly to the identity on the whole plane.

From this we will deduce the following version for the 2-point nor-
malization. This estimate is stated as Theorem 2.5 in [7] by Fagella,
Godillon, and Jarque, based on “personal communication” with the au-
thor, and the main goal of this paper is to provide a concrete citation
for this result.

Corollary 1.2. Suppose f : C → C is K-quasiconformal, f(0) = 0,
f(1) = 1, and E = {z : µ(z) 6= 0} is (ε, h)-thin. Then

(1.1) (1−Cεβ)|z−w|−Cεβ ≤ |f(z)− f(w)| ≤ (1 +Cεβ)|z−w|+Cεβ ,

where C and β only depend on ‖µ‖∞ and h.

Similar estimates are known, e.g., compare the well-known result of
Teichmüller and Wittich (e.g., Theorem 7.3.1 of [9], [13], [14]) or the
estimates of Dyn’kin [6]. The version stated above is intended for spe-
cific applications to holomorphic dynamics involving the author’s quasi-
conformal folding technique of constructing entire functions, introduced
in [3]. Given an infinite tree T in the plane satisfying certain geometric
conditions, this method constructs a quasiregular function g on the whole
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plane that is holomorphic outside a (usually small) neighborhood U of
the tree. Then f = g ◦ ϕ−1 is entire, where ϕ is the quasiconformal
map whose dilatation is given by µ = gz/gz and is supported in U ; such
a ϕ exists by the measurable Riemann mapping theorem. In applica-
tions, g is usually constructed to have certain properties and we want
f = g ◦ ϕ−1 to have the same or similar properties. Thus we usually
want ϕ to be close to the identity. In many applications of quasiconfor-
mal folding, the neighborhood U can be chosen to be very small, e.g.,
often it is (ε, e−r)-thin, which is why the estimates above are helpful.
Quasiconformal folding has been used to construct various examples in
complex analysis and holomorphic dynamics, e.g., [2], [4], [5], [8], [10],
[11], [12], [15]. Often estimating the correction map ϕ is the hardest part
of applying the folding method, and these papers sometimes use weaker
versions of the estimates given here, or leave some details to the reader.
The goal of this note is to provide a complete proof of the estimates
needed in many applications of the folding theorem. The paper [7] uses
Corollary 1.2 as part of a construction of two entire functions, neither of
which has a wandering domain, but whose composition does have a wan-
dering domain. That paper also provides additional information about
the wandering domains constructed in my paper [3].

Acknowledgments. I thank Xavier Jarque for helpful comments on
a draft of this paper that clarified the notation and several of the ar-
guments. I also thank the two anonymous referees for their thoughtful
comments and numerous suggestions to improve the paper. One of the
referees suggested the results in this paper might extend to higher di-
mensions. This seems reasonable, and the parts of the proof concerning
moduli and Lp estimates should extend, but it is not obvious (to the
author) how to generalize the arguments using Pompeiu’s formula or
properties of holomorphic functions. We leave this interesting question
open for future investigation.

2. Quasiconformal maps and conformal moduli

Here we review a few basic facts about quasiconformal maps and
conformal moduli that we will need. All these results can be found in
Ahlfors’ book [1].

Lemma 2.1 (Shapes of quasicircles). For each K ≥ 1 there is a C =
C(K) <∞ so that the following holds. If F : C→ C is K-quasiconformal
and γ is a circle centered at a point w ∈ C, then there is an r > 0 so
that F (γ) ⊂ {z : r ≤ |z − F (w)| ≤ Cr}.
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Theorem 2.2 (Bojarski’s theorem). If 1 ≤ K < ∞, there is a p =
p(K) > 2 and A,B < ∞ so that the following holds. If F : C → C is
K-quasiconformal, and Q ⊂ C is a square, then(

1

area(Q)

∫
Q

|Fz|p dx dy
)1/p

≤ A
(

1

area(Q)

∫
Q

|Fz|2 dx dy
)1/2

≤ B diam(F (Q))

diam(Q)
.

Lemma 2.3 (Pompeiu’s formula). If Ω has a piecewise C1 boundary
and F is quasiconformal on Ω, then

(2.1) F (w) =
1

2πi

∫
∂Ω

F (z)

z − w
dz − 1

π

∫
Ω

Fz
z − w

dxdy.

Suppose Ω is a planar domain and suppose Γ is a path family in Ω,
i.e., a collection of locally rectifiable curves in Ω. A non-negative Borel
function ρ is called admissible for Γ if

∫
γ
ρ ds ≥ 1 for every curve γ ∈ Γ.

The modulus of Γ (also called conformal modulus) is the infimum of∫
Ω
ρ2 dx dy over all admissible ρ for Γ and is denoted mod(Γ). The recip-

rocal of the modulus is called the extremal length of Γ. A quasiconformal
map F of Ω with complex dilatation satisfying ‖µ‖∞ = k < 1 has the
property that it can change the conformal modulus of a path family in Ω
by at most a factor of K = (k + 1)/(k − 1).

If Ω is a topological annulus in the plane with boundary compo-
nents γ1, γ2 that are closed Jordan curves, then mod(Ω) refers to the
modulus of the path family in Ω that separates the boundary compo-
nents. This is the same as the extremal length of the path family that
connects the boundary components (also called the extremal distance
between the boundary components). If A(a, b) ≡ {z : a < |z| < b} then
it is a standard fact that mod(A) = 2π/ log b

a . Let

KF =
|Fz|+ |Fz|
|Fz| − |Fz|

,

JF = |Fz|2 − |Fz|2 = (|Fz| − |Fz|)(|Fz|+ |Fz|),
denote the distortion and Jacobian functions of F respectively. Note that
KF ≥ 1 and F is conformal if and only if KF ≡ 1. If KF ≤ K, then F can
distort the modulus of an annulus by a factor of at most K, and hence
for a map between round annuli, the ratio of the radii changes by at most
a power of K. In the rest of this section, we show that a better estimate
is possible if KF ≤ K holds everywhere, and KF = 1+o(1) holds except
on a small set. In what follows z = x + iy = reiθ and area measure is
denoted by dx dy or r dr dθ.
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Lemma 2.4. Suppose F is a K-quasiconformal map from Am=A(1, em)
onto AM = A(1, eM ). Then

M ≥ m− 1

2π

∫
A(1,em)

(KF (z)− 1)
dx dy

r2
.

Proof: Let ΓM be the path family connecting the boundary components
of AM . If ρ is admissible for Am, then ρ̃(F (z)) = ρ(z)/(|Fz| − |Fz|) is
admissible for AM , hence it is one of the metrics in the infimum defining
mod(ΓM ). Therefore

mod(F (Γm)) ≤
∫
Am

ρ(z)2 1

(|Fz| − |Fz|)2
JF dx dy

=

∫
Am

ρ(z)2 1

(|Fz| − |Fz|)2
(|Fz|2 − |Fz|2) dx dy

=

∫
Am

ρ(z)2 |Fz|+ |Fz|
|Fz| − |Fz|

dx dy

=

∫
Am

ρ(z)2KF (z) dx dy.

Applying this with the admissible metric ρ(z) = 1
m|z| , we get

2π

M
= mod(F (Γm)) ≤ 1

m2

∫
Am

KF (z)

|z|2
dx dy

=
1

m2

[∫
Am

KF (z)− 1

|z|2
dx dy +

∫
Am

1

|z|2
dx dy

]

=
1

m2

∫
Am

KF (z)− 1

|z|2
dx dy +

2π

m
.

Rearranging gives

m−M ≤ M

2πm

∫
Am

KF (z)− 1

|z|2
dx dy,

or

M ≥ m− M

2πm

∫
Am

KF (z)− 1

|z|2
dx dy.

Since KF ≥ 1, the integral is non-negative. So if M > m, the lemma is
trivially true. If M ≤ m, the inequality above becomes

M ≥ m− 1

2π

∫
Am

KF (z)− 1

|z|2
dx dy.

Thus in either case the lemma holds.
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Lemma 2.5. Suppose F is a K-quasiconformal map from Am=A(1, em)
to AM = A(1, eM ). Then

M ≤ m+
1

2π

∫
Am

(KF − 1)
dx dy

r2
.

Proof: If we cutAm with a radial slit and letG=log(F ), thenGmapsAm
to a generalized quadrilateral with two vertical sides on V0 = {x = 0}
and VM = {x = M}. This quadrilateral has area 2πM . Each radial seg-
ment in Am maps to a curve connecting V0 and Vm, so the image has
length at least M . So if we integrate over the radial segments in Am, we
get

M ≤
∫ em

1

(|Gz|+ |Gz|) dr

so integrating over all angles and using r dr dθ = dx dy gives

2πM ≤
∫ 2π

0

∫ exp(m)

1

(|Gz|+ |Gz|) dr dθ ≤
∫
Am

(|Gz|+ |Gz|)
dx dy

r
.

Thus, by Cauchy–Schwarz,

(2πM)2≤
(∫

Am

(|Gz|+|Gz|)(|Gz|−|Gz|) dx dy
)(∫

Am

|Gz|+|Gz|
|Gz| − |Gz|

dx dy

r2

)

≤
(∫

Am

JG dx dy

)(∫
Am

KG
dx dy

r2

)

≤ 2πM

(∫
Am

KF
dx dy

r2

)
,

where in the last line we have used the facts that G(Am) has area 2πM
and KG = KF (since log z is conformal on the slit annulus). Thus

M ≤ 1

2π

∫
Am

1 + (KF (z)− 1)
dx dy

r2

= m+
1

2π

∫
Am

(KF (z)− 1)
dx dy

r2
.

The following simply combines the last two results.

Corollary 2.6. Suppose F is a K-quasiconformal map from Am =
A(1, em) to AM = A(1, eM ). Then

M = m+O

(
1

2π

∫
Am

KF (z)− 1

r2
dx dy

)
.



Quasiconformal Maps with Thin Dilatations 721

A special case of this is:

Corollary 2.7. Suppose F is a K-quasiconformal map from Am =
A(1, em) to AM = A(1, eM ). Suppose µ is the dilatation of F , that
E = {z : µ(z) 6= 0} and that Ek = E ∩ {ek−1 < |z| < ek}. If we
choose an integer n so that m ≤ 2n, then

M = m+O

(
(K − 1)

n∑
k=1

e−2k area(Ek)

)
.

3. Dilatations with thin support

Next we apply these estimates to quasiconformal maps with dilata-
tions that have small support in a precise sense.

Lemma 3.1. Suppose F is a K-quasiconformal map with dilatation µ,
that µ has bounded support, and that F has the hydrodynamical normal-
ization at ∞. Let E = {z : µ(z) 6= 0} and suppose that, for some t > 0,
E satisfies ∫

E\D(w,t)

dx dy

|z − w|2
≤ a,

for every w ∈ C. Then there is a C = C(K, a) = O(eO(Ka)) < ∞,
depending only on K and a, so that for every w ∈ C and r ≥ t,

(3.1)
1

C
≤ diam(F (D(w, r))

r
≤ C.

Proof: We need only prove this for r = t, since for r > t we can simply
apply the lemma after setting t = r (the integral just gets smaller).
Moreover, the mapping G(z) = F (tx)/t satisfies the same estimates
as F , but with t replaced by 1. If we prove the lemma for G, then it
follows for F , so it suffices to assume t = 1.

By the normalization assumption we can choose R > 100 so large
that |F (z) − z| ≤ 1/2, for |z| > R/8. Thus, if |w| > R/4, the circle
of radius 1 around w is mapped to a set of diameter at least 1 and at
most 3. Therefore we may assume |w| ≤ R/4. Fix such a w. Then the
circle of radius R around w lies in {|z| > R/2}, where we know F (z) is
close to z.

Let m = logR, so R = em, and consider the annulus A = {z : 1 <
|z − w| < em}. F (A) is a topological annulus and can be conformally
mapped to AM = {1 < |z| < eM} for some M > 1. By Corollary 2.6,

M = m+O

(
1

2π

∫
Am

Kf − 1

|z − w|2
dx dy

)
.
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By our assumptions, this becomes

M = m+O

(
K − 1

2π

∫
Am

1E(z)
dx dy

|z − w|2

)
= m+O(Ka),

where 1E denotes the indicator function of E (the function that is 1
on E and 0 off E) and we have used the fact that E has finite planar
area and |z−w|−1 ≤ 1 on Am (recall w is the center of the annulus and
the inner radius is at least 1).

By Lemma 2.1, the boundary components of F (Am) are closed curves
that are each contained in annuli of bounded modulus, depending only
on K. Each annulus has boundary components that are two concen-
tric circles. Thus F (Am) is contained in a topological annulus A′ with cir-
cular boundaries γ1, γ2 (not necessarily concentric) whose diameters are
comparable to the diameters of the boundary components of F (Am). By
monotonicity of modulus, the modulus of the annulusA′(denotedM ′/2π)
is larger than the modulus M/2π of F (A), hence M ′ ≥ M . Moreover,
we claim

M ′ ≤ log
diam(γ2)

diam(γ1)
.

This is well known to hold with equality if the circles γ1, γ2 are concen-
tric. If they are not, then we can apply a Möbius transformation that
maps the outer circle, γ2, to itself and moves the inner circle, γ1, to
a circle concentric with γ2. This makes the Euclidean diameter of γ1

larger and preserves the modulus between the circles, and this proves
the claimed inequality. Thus

M ≤M ′ ≤ log
diam(γ2)

diam(γ1)
,

or

diam(γ1) ≤ diam(γ2) · e−M = diam(γ2) · e−m+O(KA).

Since |F (z)−z| ≤ 1/2 on {|z| = R} we know diam(γ2) ' R = em. Using
this and the fact that M = m+O(Ka) gives

diam(F ({|z − w| = 1})) ' diam(γ1) = O(eKa).

This is the right-hand side of (3.1).
On the other side of (3.1), we choose γ1, γ2 to be circles that bound an

annulus inside F (Am), again with diameters comparable to the diameters
of the corresponding components of ∂F (Am). We then use monotonicity
again, and argue as before, but now we note that since F is close to
the identity for |z| > R/2, the curve γ1 is not too close to γ2, i.e., the
distance between them is comparable to R. Thus in the argument above,
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where we moved γ1 to be concentric with γ2, its Euclidean diameter was
only changed by a bounded factor. Thus

diam(γ1) & diam(γ2) · e−M = diam(γ2) · e−m−O(Ka) & e−O(Ka).

This proves the lemma.

If F is as above, then Theorem 2.2 says there is a p = p(K) > 2 so
that ‖Fz‖p is uniformly bounded on every unit radius disk. Thus if a
region Y can be covered by n such disks, then

(3.2) ‖FzχY ‖p = O(n1/p)

with a uniform constant. If Y is a disk of radius r ≥ 1, it can be covered
by O(r2) unit disks, so we get the following.

Corollary 3.2. If F satisfies the conditions of Lemma 3.1, r ≥ 1, and
p = p(K) > 2 as above, then ‖Fz · 1D(z,r)‖p = O(r2/p) uniformly for
all z ∈ C.

Proof of Theorem 1.1: Suppose the support of µ is contained in D(0, R).
The main idea is to use the Pompeiu formula

(3.3) F (w) =
1

2πi

∫
|z|=r

F (z)

z − w
dz − 1

π

∫
|z|<r

Fz
z − w

dxdy.

Because of our assumptions on F , the first integral is

1

2πi

∫
|z|=r

z +O(1/|z|)
z − w

dz = w +O(1/r).

Since the left-hand side of (3.3) and the second integral are both constant
for r > R, we see that the first integral must equal w for all r > R. Thus

F (w) = w − 1

π

∫
|z|<r

Fz
z − w

dxdy = w − 1

π

∫
|z|<r

µFz
z − w

dxdy.

Since |Fz| = |µFz| ≤ k|Fz|, we get

|F (w)− w| ≤ k

π

∫
E

| Fz
z − w

| dx dy,

where k = ‖µ‖∞.
We have assumed that Fz is supported on D(0, R). Hence (F (w) −

w)/w is bounded and holomorphic on {|w| > R}, so by the maximum
principle it attains its maximum on {|w| = R}. Therefore it suffices to
prove the desired bound on {|w| ≤ R}.
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So assume |w| ≤ R. Let r = max(1, |w|/2). We will estimate the
integral ∫

E

| Fz
z − w

| dx dy,

by cutting D(0, R) into three pieces:

D1 = {z : |z − w| ≤ 1},
Ar = {z : 1 ≤ |z − w| ≤ r},
X = D(0, R) \ (D1 ∪Ar) = D(0, R) \D(w, r),

and show that the integral over each piece is O(εβ/|w|), where β =
β(K) > 0.

First consider D1. With p as in Theorem 2.2, the Lp norm of Fz
over D1 is uniformly bounded, so using Hölder’s inequality with the
conjugate exponents p, q satisfying 1

p + 1
q = 1, we get

(3.4)

∫
D1

∣∣∣∣ Fz
z − w

∣∣∣∣ dx dy = O

(∥∥∥∥1E∩D(w,1)

|z − w|

∥∥∥∥
q

)
.

In general, if we fix the area of a set Y , the integral
∫
Y
dx dy/|z| is

maximized when Y is a disk around the origin. Thus the integral above
is bounded by the integral we obtain by replacing E by a disk of the
same area around w. Since E ∩D(w, 1) has area at most h(|w|) ≤ h(r),

we can take a disk of radius s '
√
h(r). Hence the Lq norm on the

right-hand side of (3.4) is bounded above by (using polar coordinates
and recalling 1 < q < 2)

O

([∫ s

0

r−qr dr

]1/q
)

= O(s(2−q)/q) = O((εh(r))
1
q−

1
2 ).

Since h tends to zero faster than any polynomial |z|−d, we get h(r)
1
q−

1
2 =

o(r−d( 1
q−

1
2 )) for any d, and we can choose d so that h(r) = O(1/r). Since

r was chosen so r & |w|, this also gives h(r)
1
q−

1
2 = O(1/|w|). Thus∫

D1

| Fz
z − w

| dx dy = O

(
ε

1
q−

1
2

|w|

)
.

This is the desired estimate with β = 1
q −

1
2 = (2− q)/2q > 0.
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Next consider the integral over Ar:∫
Ar

| Fz
z − w

| dx dy =

∫
Ar

1E(z)|Fz| dx dy

=

(∫
Ar

1E(z)q dx dy

)1/q (∫
Ar

|Fz|p dx dy
)1/p

= O(area(E ∩Ar))1/q · ‖Fz1Ar
‖p

= O((εr2h(r))1/q) · r2/p

= O

(
ε1/q

|w|

)
,

again since h decays faster than any power.

Finally, write X =
⋃R
k=1Xk, where Xk = X ∩ {z : k − 1 ≤ |z| < k}.

Then since eachXk can be covered byO(k) unit disks, (3.2) and 1
q+ 1

p = 1

imply∫
Xk

1E(z)|Fz| dx dy =

(∫
Ak

1E(z)q dx dy

)1/q (∫
Ak

|Fz|p dx dy
)1/p

= (area(E ∩Ak))1/q

(∫
Ak

|Fz|p dx dy
)1/p

= (εkh(k))1/q ·O(k1/p)

= O(ε1/qh(k))1/qk1/q+1/p)

= O(ε1/qh(k)1/qk) = O(ε1/qk−2),

again since h decays faster than any power. Summing over k gives the
desired estimate. This proves the theorem with β = (2− q)/2q > 0.

The proof given above shows that the conclusion of Theorem 1.1 still
holds if

∫∞
0
h(r)rn dr <∞ for some (large) finite n that depends onK (in

particular, it depends on the value p > 2 so that Fz ∈ Lp in Bojarski’s
theorem). Similarly, we can assume less if we simply want a uniform
bound on |F (w)−w|, rather than the O(1/|z|) estimate above. We leave
these generalizations to the reader.

Proof of Corollary 1.2: First we note that it suffices to prove this with
the additional assumption that µ has bounded support, for a general
quasiconformal f is the pointwise limit of such maps (truncate µf , apply
the measurable Riemann mapping theorem and show the truncated maps
converge uniformly on compact subsets to f).
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So assume µ = µf has bounded support, say inside the disk D(0, R).
Then f is conformal outside D(0, R), so we can post-compose by a con-
formal linear map L to get a quasiconformal map so that |F (z) − z| ≤
C/|z|, outside D(0, 2R) with a constant that does not depend on F (this
follows from the distortion theorem for conformal maps). We apply The-
orem 1.1 to get |F (z) − z| ≤ Cεβ , for all z with constants C, β that
depend only on k. Note that

f(z) =
F (z)− F (0)

F (1)− F (0)
,

and that |F (1)− F (0)− 1| ≤ Cεβ , so we get

|f(z)− f(w)| = |F (z)− F (w)

F (1)− F (0)
| = |z − w|+O(εβ)

1 +O(εβ)
,

and this implies (1.1).
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