
QUASICONFORMAL MAPS WITH THIN DILATATIONS

CHRISTOPHER J. BISHOP

Abstract. We give an estimate that quantifies the fact that a normalized quasi-
conformal map whose dilatation is non-zero only on a set of small area approximates
the identity uniformly on the whole plane. The precise statement is motivated by
applications of the author’s quasiconformal folding method for constructing entire
functions; in particular a construction of transcendental wandering domains given
by Fagella, Godillon and Jarque [7].

1. Introduction

A quasiconformal mapping f : C → C is a a homeomorphism that is absolutely

continuous on almost all horizontal and vertical lines, and whose partial derivatives

satisfy fz = µfz for some complex valued, measurable function µ with ‖µ‖∞ = k < 1,

called the dilatation of f . For the basic properties of quasiconformal maps, see

Ahlfors’ book [1].

If µ = 0 then f is a conformal homeomorphism of C to itself, and hence it is linear.

If the dilatation µ is small, then we expect f to be close to linear. There are at least

two reasonable senses in which we can ask µ to be small: that ‖µ‖∞ is small or that

the set {z : µ(z) 6= 0} is small. In this note we consider the latter possibility.

To be more precise, we say a measurable set E ⊂ R
2 is (ǫ, ϕ)-thin if ǫ > 0 and

area(E ∩D(z, 1)) ≤ ǫϕ(|z|)

where ϕ : [0,∞) → [0, π] is a bounded, decreasing function, such that∫ ∞

0

ϕ(r)rndr < ∞,

for every n > 1. If a > 0, the function ϕ(r) = exp(−ar) satisfies this condition, and

this example suffices for many applications.
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Recall that a quasiconformal map f : C → C is often normalized by post-composing

by a conformal linear map in one of two ways. First, we can assume f(0) = 0 and

f(1) = 1. We call this the 2-point normalization. Second, if the dilatation of f is

supported on a bounded set, then f is conformal in a neighborhood of ∞ and then

we can choose R large and post-compose with a linear conformal map so that

|f(z)− z| = O(
1

|z|
),

for |z| > R/2. We say that such an f is normalized at ∞. This is also called

the hydrodynamical normalization of f . We will first prove an estimate for the

hydrodynamical normalization and then deduce one for the 2-point normalization.

Theorem 1.1. Suppose F : C → C is K-quasiconformal, and E = {z : µ(z) 6= 0} is

bounded (so F is conformal near ∞) and F is normalized so

|F (z)− z| ≤ M/|z|,

near ∞. Assume E is (ǫ, ϕ)-thin. Then for all z ∈ C,

|F (z)− z| ≤
ǫβ

|z|+ 1
,

where β depends only on K and ϕ. In particular, as ǫ → 0, F converges uniformly

to the identity on the whole plane.

Corollary 1.2. Suppose f : C → C is K-quasiconformal, F (0) = 0, F (1) = 1, and

E = {z : µ(z) 6= 0} is (ǫ, ϕ)-thin. Then

(1− Cǫβ)|z − w| − Cǫβ ≤ |f(z)− f(w)| ≤ (1 + Cǫβ)|z − w|+ Cǫβ,(1.1)

where C and β only depend on k = ‖µ‖∞ and ϕ.

Similar estimates are known, e.g., compare to the well known result of Teichmüller

and Wittich (e.g., Theorem 7.3.1 of [8], [12], [13]) or estimates of Dyn’kin [6]. The

version stated above is intended for specific applications to holomorphic dynamics

involving the author’s quasiconformal folding technique of constructing entire func-

tions, introduced in [4]. Given an infinite tree T in the plane satisfying certain

geometric conditions, this method constructs a quasiregular function g on the whole

plane that is holomorphic outside a (usually small) neighborhood U of the tree. Then

f = g ◦ ϕ−1 is entire where ϕ is the quasiconformal map whose dilatation is given
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by µ = gz/gz and is supported in U ; such a ϕ exists by the measurable Riemann

mapping theorem. In applications, g is been constructed to have certain properties

and we want f = g ◦ ϕ−1 to have the same or similar properties. Thus we usually

want ϕ to be close to the identity. In many applications of quasiconformal folding the

neighborhood U can be chosen to be very small, e.g., (ǫ, e−r) thin, which is why the

estimates above are helpful. The folding method has been used to construct various

examples in complex analysis and holomorphic dynamics, e.g., [2], [5], [9], [10], [11],

[3], [14]. Often estimating the correction map ϕ is the hardest part of applying the

folding method, and these papers sometimes use weaker versions of the estimates

given here, or leave various details to the reader. The goal of this note is to provide

a complete proof of the estimates needed for many applications of the folding the-

orem. For example, Lemma 3.3 of the current paper was stated as Theorem 2.5 of

[7] by Fagella, Godillon and Jarque, based on “personal communication” from my-

self. Their paper constructs two entire functions, neither of which has a wandering

domain, but whose composition does have a wandering domain, as well as providing

addition information about the wandering domains constructed in my paper [4]. This

note gives a concrete citation for the result they quote.

2. Quasiconformal maps and conformal modulus

Here we review a few basic facts about quasiconformal maps and conformal mod-

ulus that we will need. All these results can be found in Ahlfors’ book [1].

Lemma 2.1 (Characterization of quasicircles). For each K ≥ 1 there is a C =

C(K) < ∞ so that the following holds. If f : C → C is K-quasiconformal and r > 0

so that f(γ) ⊂ {z : r ≤ |z − w| ≤ Cr}.

Theorem 2.2 (Borjarski’s theorem). If 1 ≤ K < ∞, there is a p > 2 and A,B < ∞

so that the following holds. If f : C → C is K-quasiconformal, and Q ⊂ C is a

square, then

(
1

area(Q)

∫∫
Q

|fz|
pdxdy)1/p ≤ A(

1

area(Q)

∫
Q

|fz|
2dxdy)1/2 ≤ B

diam(f(Q))

diam(Q)
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Lemma 2.3 (Pompeiu’s formula). If Ω has a piecewise C1 boundary and f is quasi-

conformal on Ω, then

f(w) =
1

2πi

∫
∂Ω

f(z)

z − w
dz −

1

π

∫∫
Ω

fz
z − w

dxdy.(2.1)

If Γ is a collection of locally rectifiable curves in a planar domain Ω, then a non-

negative Borel function ρ is called admissible for Γ if
∫
γ
ρds ≥ 1 for every curve

γ ∈ Γ. The modulus of Γ, denoted mod(Γ), is the infimum of
∫
Ω
ρ2dxdy over all

admissible ρ. The reciprocal of the modulus is called the extremal length of Γ. A

quasiconformal map f of Ω with dilatation satisfying ‖µ‖∞ = k < 1 has the property

that it can change conformal modulus of a path family in Ω by at most a factor of

K = (k + 1)/(k − 1).

If Ω is a topological annulus in the plane with boundary components γ1, γ2 that

are closed Jordan curves, then mod(Ω) refers to the modulus of the path family in

Ω that separates the boundary components. This is the same as the extremal length

of the path family that connects the boundary components (also called the extremal

distance between the boundary components). If A(a, b) ≡ {z : a < |z| < b} then it is

standard fact that mod(A) = 1
2π

log b
a
. Let

Df =
|fz| − |fz|

|fz|+ |fz|
,

Jf = |fz|
2 − |fz|

2 = (|fz| − |fz|)(|fz|+ |fz|),

denote the distortion and Jacobian of f respectively. Note that Df ≥ 1 and f is

conformal if and only if Df ≡ 1. If Df ≤ K, then f can distort the modulus of an

annulus by a factor of most K, and hence for a map between round annuli, the ratio

of radii changes by a most a power K. In the rest of this section we show that better

estimates are possible of Df ≤ K everywhere, but Df ≈ 1 “most places”.

Lemma 2.4. Suppose f is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Then

M ≥ m−
1

2π

∫
A(1,em)

(Df (z)− 1)
dxdy

r2
.

Proof. Let ΓM be the path family connecting the boundary components of AM . If ρ̃

is admissible for this family then

ρ(z) = ρ̃(f(z))(|fz|+ |fz|)
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is admissible for Γm, the path family connecting the boundary components of Am.

Therefore the modulus of Γm satisfies

mod(Γm) ≤

∫
Am

ρ̃(f(z))2(|fz|+ |fz|)
2dxdy.

Applying this formula to the inverse of f shows that for any admissible ρ for Γm,

mod(f(Γm)) ≤

∫
Am

ρ(z)2
1

(|fz| − |fz|)2
Jfdxdy

≤

∫
Am

ρ(z)2
1

(|fz| − |fz|)2
(|fz|

2 − |fz|
2)dxdy

≤

∫
Am

ρ(z)2
|fz|+ |fz|

|fz| − |fz|
dxdy

≤

∫
Am

ρ(z)2Df (z)dxdy.

Applying this with the admissible metric ρ(z) = 1
m|z|

, we get

2π

M
= mod(f(Γm)) ≤

1

m2

∫
Am

Df (z)

|z|2
dxdy

=
1

m2
[

∫
Am

Df (z)− 1

|z|2
dxdy +

∫
Am

1

|z|2
dxdy]

=
1

m2

∫
Am

Df (z)− 1

|z|2
dxdy +

2π

m
.

Rearranging gives

m−M ≤
M

2πm

∫
Am

Df (z)− 1

|z|2
dxdy,

or

M ≥ m−
M

2πm

∫
Am

Df (z)− 1

|z|2
dxdy.

If M > m, the lemma is trivially true. If M ≤ m, then because the integral is

non-negative, the inequality above becomes

M ≥ m−
1

2π

∫
Am

Df (z)− 1

|z|2
dxdy.

Thus in either case the lemma holds. �

Lemma 2.5. Suppose f is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Then

M ≤ m+
1

2π

∫
Am)

(Df − 1)
dxdy

r2
.
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Proof. If we cut Am with a radial slit and let g = log(f), then g maps Am to a

quadrilateral with its vertical sides on {x = 0} and {x = M}. This quadrilateral has

area 2πM . If we integrate over the radial segments in Am, we get

M ≤

∫ exp(m)

1

(|gz|+ |gz|)dr

so integrating over all angles and using rdrdθ = dxdy gives

2πM ≤

∫ 2π

0

∫ exp(m)

1

(|gz|+ |gz|)drdθ ≤

∫
Am

(|gz|+ |gz|)
dxdy

r
.

Thus by Cauchy-Schwarz,

(2πM)2 ≤ (

∫
Am

(|gz|+ |gz|)(|gz| − |gz|)dxdy)(

∫
Am

|gz|+ |gz|

|gz| − |gz|

dxdy

r2
)

≤ (

∫
Am

Jgdxdy)(

∫
Am

Dg
dxdy

r2
)

≤ 2πM(

∫
Am

Df
dxdy

r2
),

where in the last line we have used the facts that g(Am) has area 2πM and Dg = Df

(since log z is conformal on the slit annulus). Thus

M ≤
1

2π

∫
Am

1 + (Df (z)− 1)
dxdy

|z − w|2

= m+
1

2π

∫
Am

(Df (z)− 1)
dxdy

|z − w|2
.

�

The following simply combines the last two results.

Corollary 2.6. Suppose f is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Then

M = m+O(
1

2π

∫
Am

Df (z)− 1

r2
dxdy.)

A special case of this is:

Corollary 2.7. Suppose f is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Suppose Df (z) ≤ D on Am. Suppose µ is the dilatation of f , that E =
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{z : µ(z) 6= 0} and that Ek = E ∩ {ek−1 < |z| < ek}. If we choose an integer n so

that m ≤ 2n, then

M = m+O((D − 1)
n∑

k=0

e−2karea(Ek)).

3. Dilatations with thin support

Next we apply these estimates to quasiconformal maps with dilatations that have

small support in a precise sense.

Lemma 3.1. Suppose F is a K-quasiconformal map with dilatation µ, that µ has

bounded support, and that F has the hydrodynamical normalization at ∞. Let E =

{z : µ(z) 6= 0} and suppose for some t > 0, E satisfies∫
E\D(w,t)

dxdy

|z − w|2
≤ a,

for every w ∈ C. Then there is a C = C(K, a) < ∞, depending only on K and a, so

that for every w ∈ R
2 and r ≥ t,

1

C
≤

diam(F (D(w, r))

r
≤ C.

Proof. We need only prove this for r = t since for r > t, we can simply apply the

lemma after setting t = r (the integral just gets smaller).

The mappingG(z) = F (tx)/t, satisfies the same estimates as F , but with t replaced

by 1. If we prove the lemma for G, it follows for F , so it suffices to assume t = 1.

By assumption we can choose R > 100 so that |f(z) − z| ≤ 1, for |z| > R/8.

The result is clear if |w| > R/2, so we may assume |w| ≤ R/2. Fix such a w. Let

m = logR, so R = em, and consider the annulus A = {z : 1 < |z − w| < em}. F (A)

is a topological annulus and can be conformally mapped to AM = {1 < |z| < eM}

for some M > 1. By Corollary 2.6,

M = m+O(

∫
Am

Df − 1

|z − w|2
dxdy).

By our assumptions, this becomes

M = m+O(
K − 1

2π

∫
Am

1E(z)
dxdy

|z − w|2
) = m+O(Ka),
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where 1E denotes the indicator function of E (the function that is one on E and zero

off E) and we have used the fact that E has finite planar area and |z − w|−1 ≤ 1 on

Am (recall w is the center of the annulus and the inner radius is at least 1.).

By Lemma 2.1, the boundary components of f(Am) are each closed curves that are

contained in round annuli (with concentric circles) of bounded modulus (depending

on K). Thus f(Am) is contained in a topological annulus A′ with circular boundaries

γ1, γ2 (not necessarily concentric) whose diameters are comparable to the diameters

of the boundary components of f(Am). By monotonicity of modulus, the modulus

of the annulus A′ (denoted M ′/2π) is larger than the modulus M/2π of f(A), hence

M ′ ≥ M . Moreover, we claim

M ′ ≤ log
diam(γ2)

diam(γ1)
.

This is well known to hold with equality if the circles γ1, γ2 are concentric. If they

are not, then we can apply a Möbius transformation that maps the outer circle, γ2,

to itself and moves the inner circle, γ1 to circle concentric with γ2. This make the

Euclidean diameter of γ1 larger and preserves the modulus between the circles, and

this proves the claimed inequality. Thus

M ≤ M ′ ≤ log
diam(γ2)

diam(γ1)
,

or

diam(γ1) ≤ diam(γ2) · e
−M = diam(γ2) · e

−m+O(KA).

Since |f(z) − z| ≤ 1 on {|z| = R} we know diam(γ2) ≃ R = em. Using this and the

fact M = m+O(Ka) prove above gives

diam(f({|z − w| = 1})) ≃ diam(γ1) = O(eKa).

To get the other direction, we choose γ1, γ2 to be circles that bound an annulus

inside f(Am), again with diameters comparable to the diameters of the corresponding

components of ∂f(Am). We then use monotonicity again, and argue as before, but

now we note that since f is close the identity for |z| > R/2, the curve γ1 is not too

close to γ2, i.e., the distance between them is comparable to R. Thus in the argument

above, where we moved γ1 be be concentric with γ2, its Euclidean diameter was only

changed by a bounded factor. Thus

diam(γ1) & diam(γ2) · e
−M = diam(γ2) · e

−m−O(KA) & e−O(KA).
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This proves the lemma. �

If F is as above, then Theorem 2.2 says there is a p = p(K) > 2 so that ‖Fz‖p is

uniformly bounded on every unit radius disk. If a region can be covered by n such

disks then the Lp norm is O(n1/p) with a uniform constant, i.e.,

Corollary 3.2. If F satisfies the conditions of Lemma 3.1, and p = p(K) > 2 is as

above, then ‖Fz · 1D(z,r)‖
p = O(r2/p) uniformly for all z ∈ C.

Proof of Theorem 1.1. Suppose the support of µ is contained in D(0, R). The main

idea is to use the Pompeiu formula

F (w) =
1

2πi

∫
|z|=r

F (z)

z − w
dz −

1

π

∫∫
|z|<r

Fz

z − w
dxdy.(3.1)

Because of our assumptions on F , the first integral is

1

2πi

∫
|z|=r

z +O(1/|z|)

z − w
dz = w +O(1/r).

The left-hand side of (3.1) and the second integral are both constant for r > R, so

the first integral must equal w for all r > R. Thus

F (w) = w −
1

π

∫∫
|z|<r

Fz

z − w
dxdy = w −

1

π

∫∫
|z|<r

µFz

z − w
dxdy.

Since |Fz| = |µFz| ≤ k|Fz|, we get

|F (w)− w| ≤
k

π

∫
E

|
Fz

z − w
|dxdy.

where k = (K − 1)/(K + 1) is our upper bound for |µ|.

The estimate in the theorem already holds if |w| ≥ R, so assume |w| < R. Let

r = max(1, |w|/2). We will estimate the integral∫
E

|
Fz

z − w
|dxdy,

by cutting D(0, R) into three pieces:

D1 = {z : |z − w| ≤ 1}

A = {z : 1 ≤ |z − w| ≤ r}

X = D(0, R) \ (D1 ∪ A),

and show integral over each piece is O(ǫβ/|w|) where β = β(K) > 0.
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First consider D1. With p as in Corollary 2.2, the Lp norm of Fz over D1 is

uniformly bounded, so using Hölder’s inequality with the conjugate exponents, we

get

∫
D1

|
Fz

z − w
|dxdy = O(‖

1E∩D(w,1)

|z − w|
‖q).(3.2)

Since E ∩ D(w, 1) has area at most ϕ(|w|) ≤ ϕ(r), the Lq norm on the right side

of (3.2) is bounded above by what happens when E ∩ D(w, 1) is a disk of radius

s ≃ (ǫϕ(r))1/2 centered at w. In this case we get the bound (using polar coordinates

and recalling 1 < q < 2)

O([

∫ s

0

r−qrdr]1/q) = O(s(2−q)/q) = O((ǫϕ(r))
1

q
− 1

2 ).

Since ϕ tends to zero faster than any polynomial, this is = O(ǫ
1

q
− 1

2
1
|w|

). This is the

desired estimate with β = 1
q
− 1

2
> 0.

Next consider the integral over A:

∫
A

|
Fz

z − w
|dxdy =

∫
A

1E(z)|Fz|dxdy

= (

∫
A

1E(z)
qdxdy)1/q(

∫
A

|Fz|
pdxdy)1/p

= O(area(E ∩ A))1/q‖Fz1A‖p

= O((ǫr2ϕ(r))1/q)r2/p

= O(ǫ1/q
1

|w|
),

since ϕ decays faster than any power.

To estimate the integral over X, write

X = ∪R
k=1Xk = ∪R

k=1X ∩ Ak = ∪R
k=1X ∩ {z : k − 1 ≤ |z| < k},
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Then ∫
Xk

1E(z)|Fz|dxdy = (

∫
Ak

1E(z)
qdxdy)1/q(

∫
Ak

|Fz|
pdxdy)1/p

= (area(E ∩ Ak))
1/q(

∫
Ak

|Fz|
pdxdy)1/p

= (ǫkϕ(k))1/q(O(k))1/p

= O(ǫ1/qϕ(k))1/qk1+1/p)

= O(ǫ1/qk−2),

again since ϕ decays faster than any power. Summing over k gives the desired esti-

mate. This proves the theorem with β = 1
q
− 1

2
> 0. �

The proof given above shows that the conclusion of Theorem 1.1 still holds if∫∞

0
ϕ(r)rndr < ∞ for some (large) finite n that depends on K (in particular, it

depends on the value p > 2 so that Fz ∈ Lp in Bojarski’s theorem). Similarly, we

can assume less if we simply want a uniform bound on |F (w) − w|, rather than the

O(1/|z|) estimate above. We leave these generalizations to the reader.

Proof of Corollary 1.2. First we note that it suffices to prove this with the addi-

tional assumption that µ has bounded support, for a general quasiconformal f is the

pointwise limit of such maps (truncate µf , apply the measurable Riemann mapping

theorem and show the truncated maps converge uniformly on compact subsets to f).

So assume µ = µ has bounded support, say inside the disk D(0, R). Then f is

conformal outside D(0, R), so we can post-compose by a conformal linear map L

to get a quasiconformal map so that |F (z) − z| ≤ C/|z|, outside D(0, 2R) with a

constant that does not depend on F (this follows from the distortion theorem for

conformal maps). We apply Theorem 1.1 to get |F (z) − z| ≤ Cǫβ, for all z with

constants C, β that depend only on k. Note that

f(z) =
F (z)− F (0)

F (1)− F (0)
,

and that |F (1)− F (0)− 1| ≤ Cǫβ, so we get

|f(z)− f(w)| = |
F (z)− F (w)

F (1)− F (0)
| =

|z − w|+O(ǫβ)

1 +O(ǫβ)
,

and this implies (1.1). �
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The following consequence of Theorem 1.2 is used in [7].

Lemma 3.3. Suppose F : R2 → R
2 is K-quasiconformal, it fixes 0 and 1, maps R

to R, and is conformal in the strip {x + iy : |y| < 1}. Let E = {z : µ(z) 6= 0}

and suppose E is (ǫ, ϕ)-thin. If ǫ is sufficiently small (depending on k and ϕ), then

0 < 1
C
≤ |f ′(x)| ≤ C < ∞ for all x ∈ R, where C depends on K, ϕ and ǫ is otherwise

independent of f . If we fix K and ϕ and let ǫ → 0 then C → 1.

Proof. For each x ∈ R, f is conformal on D(x, 1) ⊂ S, so Koebe’s 1
4
-theorem implies

|f ′(x)| ≃ dist(f(x), ∂f(D(x, 1))).

However taking z = x and w ∈ ∂D(x, 1) in (1.1) shows that

dist(f(x), ∂f(D(x, 1))) ≃ 1.

This gives the first claim. When ǫ is small, then (1.1) implies that

(1− δ)S ⊂ f(S) ⊂ (1 + δ),

where δ > 0 tends to zero with ǫ (for fixed k and a). Thus as ǫ → 0, f converges

uniformly to the identity on S. In particular, f ′ converges uniformly to 1 on R. �
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