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Abstract. For any δ > 0 we construct an entire function f with three singular
values whose Julia set has Hausdorff dimension at most 1 + δ. Stallard proved that
the dimension must be strictly larger than 1 whenever f has a bounded singular
set, but no examples with finite singular set and dimension strictly less than 2 were
previously known.
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1. Introduction

Suppose f is an entire function. The Fatou set F(f) is the union of all open disks

on which the iterates f, f 2, f 3, . . . form a normal family and the Julia set J (f) is

the complement of this set. In 1975 Baker [2] proved that if f is transcendental (i.e.,

not a polynomial), then the Fatou set has no unbounded, multiply connected com-

ponents. This implies the Julia set contains a non-trivial continuum and hence has

Hausdorff dimension at least 1, but it is difficult to build examples that come close to

attaining this minimum; constructing such examples is the transcendental counter-

part of finding polynomial Julia sets with dimension near 2 (e.g., [16], [36], [43]). For

transcendental entire functions, finding “large” Julia sets is easier: Misiurewicz [29]

proved that the Julia set of f(z) = exp(z) is the whole plane, and McMullen [27] gave

explicit families where the Julia set is not the whole plane, but still has dimension

2 (even positive area). Stallard [37], [38] proved that the Hausdorff dimension of a

transcendental Julia set can attain every value in the interval (1, 2], and the second

author [14] recently constructed a transcendental Julia set with dimension 1, Baker’s

lower bound.

The singular set of an entire function f is the closure of its critical values and

finite asymptotic values (limits of f along a curve to ∞) and will be denoted S(f).

The Eremenko-Lyubich class B consists of functions such that S(f) is a bounded set

(such functions are also called bounded-type). The Speiser class S ⊂ B consists of

those functions for which S(f) is a finite set. These are important classes in tran-

scendental dynamics and it is an interesting problem to understand their differences

and similarities. For example, functions in S can’t have wandering domains, whereas

those in B can, [11], [18], [22]. Stallard’s examples with 1 < dim(J ) < 2 are in the

Eremenko-Lyubich class, and in this paper we show that such examples also exist in

the Speiser class.

Theorem 1.1. inf{dim(J (f)) : f ∈ S} = 1.

Note that we do not claim that every dimension between 1 and 2 occurs; this

remains an open problem. Theorem 1.1 is sharp in the sense that Stallard [39] proved

that dim(J (f)) > 1 for any f ∈ B (her result has been extended beyond class B in

several papers, e.g., [5], [8], [41]). Moreover, Rippon and Stallard [33] have shown
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that the packing dimension is always 2 for f ∈ B, so this holds for our examples as

well. See [10] for the definitions of Hausdorff and packing dimension and their basic

properties. Our examples all have exactly three singular values: ±1 each occur as

critical values for infinitely many critical points, and 0 occurs as a critical value once,

and as an asymptotic value finitely often.

Theorem 1.1 will be proven using the quasiconformal folding construction of the

second author, which is a method of associating entire functions to certain infinite

planar graphs. It was introduced in [11], and applied there to construct various

new examples, such as the Eremenko-Lyubich functions with wandering domains

mentioned above. More recently, quasiconformal folding has been used by Fagella,

Godillon and Jarque [19], Lazebnik [25], Osborne and Sixsmith [30], and Rempe-

Gillen [32] to construct other examples in the Speiser and Eremenko-Lyubich classes.

[15] gives an application to meromorphic dynamics. The proof of Theorem 1.1 uses a

variation of the folding theorem that requires more precise estimates than in earlier

applications, but that gives even greater control over the resulting function. This

should be useful for future problems. Details of the folding construction will be

reviewed in Section 3.

The main idea is simple to explain: we will build an entire function f ∈ S so that

f(0) = 0 is an attracting fixed point and so that there is a large disk D(0, R) ⊂ F(f)

that maps into itself. Therefore, J (f) ⊂ X =
⋂
k∈NXk where

Xk = {z ∈ C : |fn(z)| ≥ R for all n = 1, 2, . . . , k} .

Given δ > 0, we construct f ∈ S so that X1 can be covered by disks {Dj} so that∑
j

diam (Dj)
1+δ = M <∞.(1.1)

Moreover, any disk D = D(x, r) with D ∩D(0, R) = ∅, will satisfy

(1.2)
∑

diam
(
f−1 (D)

)1+δ ≤ ε · diam(D)1+δ,

for some ε < 1, where the sum is over all connected components of f−1(D). By

induction, Xk can be covered by a union of sets Sj so that
∑

diam(Sj)
1+δ ≤ εkM → 0.

By definition, this implies dim(X) ≤ 1 + δ.

Since the tracts of our examples (the connected components of {z : |f(z)| > R} for

R large) are all contained in half-strips (see Lemma 16.2), it is easy to verify directly
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that our functions have infinite order of growth:

ρ(f) = lim sup
|z|→∞

log log |f(z)|
log |z|

=∞.

This is necessary: Barański [3] and Schubert [35] independently proved that the Julia

set of any finite-order Eremenko-Lyubich function has Hausdorff dimension 2.

Our examples have Julia sets that are Cantor bouquets. See Section 18 for the

precise definition and a quick sketch of the proof. Although such sets are “exotic” in

some ways (they are not locally connected), they are fairly common among transcen-

dental Julia sets, e.g., every finite-order, disjoint-type entire function has such a Julia

set. Thus, although our examples have novel metric properties (small dimension),

they are topologically “ordinary” among transcendental entire functions.

We frequently use the “big-O” notation: if f and g are non-negative real quantities

depending on common parameters, then f = O(g) means that there is a constant

C > 0 so that f ≤ Cg, independent of the parameters. In particular, f = O(1)

means that f is bounded, independent of the choice of parameters. The notation

f . g means the same thing as f = O(g) and f ' g means that both f = O(g) and

g = O(f) hold.

The first author would like to thank the Stony Brook University for their support

and hospitality in Spring 2016. The second author originally thought that Theorem

1.1 would be a straightforward application of the QC folding method to approximating

Stallard’s examples, and he thanks the first author for pointing out why this was not

the case. Both authors would like to thank Lasse Rempe-Gillen for a number of

helpful insights and suggestions regarding the results in this paper. They are also

extremely grateful to the anonymous referee whose thoughtful and meticulous report

greatly improved this paper.

2. The Eremenko-Lyubich class versus the Speiser class

In this section, we sketch a construction of Stallard’s examples in B; this serves

as a guide to our construction in S, and helps explain why the Speiser case is more

difficult. Our proof is not Stallard’s original proof but has some similarities to it.

Theorem 2.1. inf{dim(J (f)) : f ∈ B} = 1.
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Proof. By Baker’s theorem mentioned earlier, the infimum is ≥ 1, so we need only

prove it is ≤ 1. Suppose K > 1, let F (z) = exp(exp(z − K)) and let Ω be the

connected component of F−1({z ∈ C : |z| > 2}) that lies inside the horizontal strip

S = {x+ iy ∈ C : |y| < π/2}. Note that z 7→ exp(z −K) maps Ω conformally to the

right half-plane {x+ iy ∈ C : x > log 2}. Let U = {z ∈ Ω : log 2 < Re(exp(z−K)) <

2}, see the darker regions in Figure 1. Note that U lies along the boundary of Ω, and

grows exponentially thin as we move to the right, so its total area is finite. Also note

that Ω lies to the right of the line {x+ iy ∈ C : x = K + log 2}, so if K is large, Ω is

disjoint from the closed unit disk around the origin, see Figure 1.

y= −π/2

π/2y=

x=K

D(w,r)

exp(z)
U Ω

exp(z−K)

Figure 1. Preimages of a single disk under F (z) = exp(exp(z −K)).

The pair (Ω, F ) is a model in the sense of [12], so by Theorem 1.1 of that paper,

there is an f ∈ B and a quasiconformal homeomorphism ϕ of the plane so that

(1) |f | ≤ 1 on the complement of Ω,

(2) f ◦ ϕ = F on Ω \ U ,

(3) ϕ is conformal except on U .

(4) S(f) ⊂ D.

By condition (1), f(Ωc) ⊂ D ⊂ Ωc, which implies Ωc ⊂ F(f). Thus, the Julia set of

f consists of points whose iterates stay in Ω forever.

Suppose D = D(w, r) with Re(w) ≥ K and r ≤ 4 is a disk that hits J (f).

Then the f -preimages of D (i.e., the connected components of f−1(D)) correspond

1-to-1 to F -preimages via the map ϕ; more precisely, f−1(D) = ϕ(F−1(D)). Set

V = {z ∈ Ω : 4 < Re(exp(z −K))}. It is easy to check that∫
U

dxdy

|z − w|2
≤ C <∞
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for all w ∈ V with a constant C which is independent of w and r. Because ϕ is

conformal off U , Lemma 15.1 of the current paper (applied to A = U and B = V )

implies that ϕ is L-bi-Lipschitz on V (where L depends only on C and the dilatation

bound for ϕ) and hence also on the preimages of D in question, at least if K is large

enough. Hence, the diameter of a connected component of f−1(D) is at most M times

the diameter of the corresponding component of F−1(D), and M is independent of

the disk D and the choice of the preimage component.

The F -preimages of D that are inside Ω can be understood in two steps: the

inverses under ez consist of an infinite vertical “stack” of Jordan regions {Wk} each

of diameter O(r/|w|) and each containing a point of the form log |w|+i(2πk+arg(w)),

k ∈ Z, see the center of Figure 1. The preimage of each Wk is a region Uk of diameter

O

(
r

|w|(log |w|+ 2πk)

)
,

and hence,∑
k

diam(Uk)
1+δ ≤

(
r

|w|

)1+δ∑
k

1

(log |w|+ 2π|k|)1+δ
≤ Cr1+δ

δ|w|1+δ(log |w|)δ
.

Using |w| ≥ K, fixing δ > 0, and taking K large (depending on M below), we get∑
diam(Uk)

1+δ ≤ r1+δ

2M1+δ
,

where the sum is over all preimages lying in Ω. Thus,∑
diam(f−1(D))1+δ ≤M1+δ

∑
k

diam(Uk)
1+δ ≤ r1+δ/2.

This is (1.2) with ε = 1/2. We can also cover Ω by disks {Bn} = {D(n, 4)}∞n=K , and

summing over all preimages of all these disks gives the sum∑
n

∑
k

diam(f−1(Bn))1+δ = O

(∑
n

1

δ|n|1+δ(logK)δ

)
<∞,

i.e., (1.1). Thus, the Julia set of f has dimension ≤ 1 + δ, if K is large enough. �

Our proof of Theorem 1.1 is significantly longer than the proof of Theorem 2.1

given above. Why? The approximation theorem for the Eremenko-Lyubich class

from [12] has an analog for the Speiser class [13], but this result does not satisfy

the crucial condition (1) above; if we attempt to approximate the function F on the

tract Ω by a Speiser class function f , we may be forced to make f large at points
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outside Ω and this introduces many “extra” f -preimages that are not associated to

any F -preimages, and we have no way to control them. Instead, we have to replace

the tract Ω above by a more complicated region, and replace the approximation result

from [12] by an application of the quasiconformal folding construction from [11].

The folding construction starts with a model function F that is holomorphic on

each connected component of the complement of an infinite, connected planar graph

T , although it may be discontinuous across the edges of T . (In general, the graph

need not be a tree, but we shall still denote it by “T” instead of “G”; in this paper the

graph is an infinite tree except for a single closed loop). The function F is modified in

a certain neighborhood of T , denoted T (r) (see next section), to give a quasiregular

function g on the plane that equals F outside T (r), and then g is converted to an

entire function f = g ◦ ϕ−1 with a quasiconformal homeomorphism ϕ given by the

measurable Riemann mapping theorem.

Suppose T (2r) ⊂ F(f). Then the Julia set has a neighborhood W disjoint from

T (2r) and f = g ◦ϕ−1 = F ◦ϕ−1 on W . Moreover, we will show that ϕ is bi-Lipschitz

outside T (2r) (Lemma 15.2). This means that for a disk D, connected components

of f−1(D) can be associated via ϕ to components of F−1(D) that have comparable

size, and we will have good control of these components by construction. Thus, if we

can build a model F satisfying (1.1) and (1.2) with a small enough constant, then

we will get a Speiser class entire function f that also satisfies these conditions (with

different constants) and this will imply Theorem 1.1.

The difficult part of this plan is the claim that T (2r) ⊂ F(f). In our examples,

the Fatou set will contain a large closed disk around the origin, and hence it will be

enough to show that f maps T (2r) into this disk, i.e., that f is bounded on T (2r).

This will reduce to showing that F is bounded on T (2r). The folding construction

associates two positive weights, called the τ -lengths, to each edge of the planar graph

T and it requires that the τ -lengths of all edges in T are uniformly bounded away

from zero. Moreover, showing F is bounded on T (r) reduces to proving the τ -lengths

are uniformly bounded above. Essentially all the work in this paper is devoted to

building a pair (F, T ) so that the function F satisfies (1.1) and (1.2) and τ -lengths

for the graph T are uniformly bounded above and away from zero. Once we have

done this, the proof will proceed as in the Eremenko-Lyubich case described earlier.
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In Section 3 we review quasiconformal folding; in Sections 4-8 we define the graph

T (and this determines F ); in Sections 9-12 we give estimates of hyperbolic distances

that culminate in the desired upper and lower bounds for τ -length; in Sections 13-

15 we estimate the correction map ϕ; and in Sections 16-18 we finish the proof of

Theorem 1.1 and discuss the topology of the Julia set.

3. Quasiconformal folding

Quasiconformal folding is a technique for constructing transcendental entire func-

tions with good control on both the singular values and the geometric behavior of

the function. Here we will review some definitions and results from [11]; consult that

paper for further details and proofs.

Let f be a transcendental entire function with no finite asymptotic values and with

only two critical values ±1. Then T = f−1([−1, 1]) is an unbounded, infinite tree

and all components of Ω = C \ T are unbounded, simply connected domains. We

can choose a map τ which is conformal from each component of Ω onto the right

half-plane Hr = {x+ iy : x > 0}, and so that f = cosh ◦ τ on Ω.

The idea of quasiconformal folding is to reverse this procedure. We start with an

unbounded, infinite, locally finite tree T which fulfills certain mild geometric condi-

tions. Furthermore, for each component Ωj of Ω = C \ T let τj map Ωj conformally

onto Hr and let τ : C \ T → C be given by τ = τj on Ωj. The map g given by

g = cosh ◦ τ is then holomorphic off T . In general, g is not continuous across T , but

it is possible to change g in a neighborhood

T (r) =
⋃

edges e of T

{z ∈ C : dist(z, e) < r · diam(e)}

of T so that it becomes continuous on the whole plane (the new function is quasi-

regular on the plane). See Figures 2 and 3.

Figure 2. The r-neighbourhood of an arc γ is the set given by
γ(r) = {z : dist(z, γ) < r · diam(γ)} .
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Figure 3. The neighbourhood of a graph is the union of neighbor-
hoods of the individual edges.

Every edge e of T has two “sides” that are each mapped by τ to an interval on

iR = ∂Hr. The τ -size of e is the minimum of the lengths of the two image intervals.

For each component of Ω = C \ T , the sides of T on ∂Ω correspond, via τ , to a

locally finite partition of ∂Hr into intervals. The folding theorem requires that there

is a positive lower bound for the lengths of these intervals, usually taken to be π (in

many cases, we can replace τ by a positive multiple of itself, so the precise lower

bound is not critical). The folding theorem also requires that adjacent intervals in

these partitions have comparable lengths. This follows from bounded geometry, i.e., a

planar graph has bounded geometry if (this is a slight strengthening of the conditions

originally given in [11]):

(1) the edges of T are C2 arcs with uniform bounds;

(2) the union of edges meeting at a vertex are a bi-Lipschitz image of a star

{z : zn ∈ [0, r]}, i.e., a union of n equally spaced, equal length radial segments

meeting at 0, with n uniformly bounded;

(3) for non-adjacent edges e and f , diam(e)/ dist(e, f) is uniformly bounded.

Note that (2) implies adjacent edges have comparable lengths and that they meet at

an angle bounded uniformly away from zero.

Theorem 3.1. Suppose that T has bounded geometry and every edge has τ -size ≥ π.

Then there are r > 0, K > 1, an entire function f and a K-quasiconformal map ϕ so

that g = f ◦ϕ = exp ◦τ off T (r). The constants r and K only depend on the bounded
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geometry constants of T . The only critical values of f are ±1 and f has no finite

asymptotic values.

Ω
U

expτ

Figure 4. The quasiregular function g equals the holomorphic func-
tion exp ◦τ away from the tree (light gray) and is defined near the
tree (dark gray) to be continuous and have bounded dilatation. The
dilatation of the quasiconformal correction map is supported in this
neighborhood of the tree.

This is Theorem 1.1 of [11], but we have modified the statement given there slightly.

Here we have used “exp” in place of “cosh”; this is a harmless change, as explained

in Section 7 of [13]. We can deduce a little more if we impose another geometric

restriction on our bounded geometry tree:

Lemma 3.2. Suppose that T has bounded geometry and that r is as in Theorem 3.1.

Assume that for every edge e of T , the neighbourhood Te(4r) = {z ∈ C : dist(z, e) <

4r · diam(e)} only intersects edges whose length is comparable to the length of e with

constant M . Then there exists an ε > 0, only depending on r, the bounded geometry

constants of T , and on M , so that for every point z ∈ T (2r) there exists some edge

e′ so that the harmonic measure of e′ with respect to z is at least 2ε.

Proof. Let Ω be one of the components of the complement of the tree, let e be an edge

on the boundary of Ω, and let z ∈ Te(2r)∩Ω. Let e′ be the edge on the boundary of

Ω which is closest to z. Then e′ intersects Te(4r) and hence, by assumption, it has

diameter comparable to the diameter of e. Let d = dist(z, e′) = O(diam(e′)) and let

w ∈ e′ be a point closest to z. See the left side of Figure 5. By bounded geometry,

there is a radius r that is comparable to diam(e′) so that the disk D(w, r) only hits e′

or edges adjacent to e′, of which there are only a bounded number. By the Beurling

projection theorem (e.g., Theorem II.9.2 or Exercise II.10 of [20]) the part of ∂Ω
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in D(w, r) has harmonic measure with respect to z that is uniformly bounded away

from zero. Since only a uniformly bounded number of edges hit this disk, one of them

must have harmonic measure uniformly bounded away from zero, as desired. �

ω(  ) > εII

w

e

D(w,r)

z

e

Figure 5. The proofs of Lemmas 3.2 and 3.3. The left side shows
why there is an individual edge with large harmonic measure. The
right side shows the region of large harmonic measure for an interval
on the boundary of a half-plane.

Lemma 3.3. Suppose that T has bounded geometry and that r is as in Theorem 3.1

and Lemma 3.2. Assume T satisfies the assumption in Lemma 3.2. Suppose also

that the τ -lengths of all edges are bounded above. Then there exists M < ∞ so that

τ(T (2r)) ⊂ {x+ iy ∈ C : 0 < x < M}. In other words, |g| ≤ eM on T (2r).

Proof. Let z ∈ T (2r) and let e′ be the tree edge given by Lemma 3.2. Since e′ has

harmonic measure at least 2ε with respect to z in Ω (the complementary component

of T that contains z), one of the two sides of e′ has harmonic measure at least ε with

respect to z in Ω. Call this side s′. By the conformal invariance of harmonic measure,

ω(τ(z), τ(s′),Hr) ≥ ε. In the half-plane, the set of points at which a boundary

interval I has harmonic measure ≥ ε is the intersection of a disk of radius ' |I|/ε
with the half-plane. See the right side of Figure 5. Therefore τ(z) lies in this region.

Since the τ -lengths of all sides are bounded above, this implies τ(z) is within a

bounded distance of the imaginary axis, i.e., τ(T (2r)) is contained in a vertical strip

of uniformly bounded width. �

If one wants a function that has finite asymptotic values, or that has critical points

with high order, then the folding construction described above needs to be changed a



JULIA SETS WITH DIMENSION NEAR ONE 11

bit. The tree T is replaced by an unbounded, connected, locally finite graph. Each of

the components Ωj of Ω = C\T is one of three types (D, L or R), and each is mapped

to a corresponding “standard” domain (disk, left half-plane or right half-plane) by a

conformal map τ . Each standard domain is then mapped by an associated holomor-

phic map σ. More precisely, the cases are:

• D-component: Here, Ωj is a bounded domain whose boundary is a Jordan curve

which consists of d edges. D-components are quasiconformally mapped to D so that

the d vertices of the component map to d-th roots of unity. This is followed by the

map σ(z) = zd. This gives a critical value at 0.

• L-component: Ωj is an unbounded Jordan domain which is quasiconformally mapped

to the left half-plane Hl. This is followed by σ(z) = exp(z), which maps Hl to D and

gives the asymptotic value 0.

• R-component: These are the components which were used in the first theorem.

Here, Ωj is unbounded but not necessarily a Jordan domain. Each Ωj is mapped

onto Hr as before, and σ(z) is exp(z).

Theorem 3.4. Let T be a bounded geometry graph and suppose τ is conformal from

each complementary component of T to the corresponding standard domain (i.e. D,

Hl or Hr). Assume that

• D and L-components only share edges with R-components;

• on D-components with n edges, τ maps the vertices to nth roots of unity;

• on L-components, τ maps sides to intervals of the form [2πki, 2π(k + 1)i];

• on R-components, the τ -sizes of all edges are ≥ 2π.

Then there exist r > 0, K > 1, an entire function f and a K-quasiconformal map

ϕ of the plane so that f ◦ ϕ = σ ◦ τ off T (r). The constants r and K only depend

on the bounded geometry constants of T . Also, S(f) = {±1}; plus {0} if any D or

L-components occur.

As before, if the τ -sizes of the edges are bounded above by some constant C, we

get that the image of the part of T (2r) that lies in the R-components is mapped into

a vertical strip whose width only depends on the bounded geometry constants and

on C. The construction on the D and L-components can be modified to give singular

values other than 0, but we will not need this variation here.
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4. The “trunk” of the tree

The graph to which we apply the folding theorem will be built in two steps. In

this section, we present the first step: we construct a graph, called the “trunk”,

that divides the plane into 4N + 1 connected components (1 D-component, 2N L-

components, 2N R-components), where N is a positive integer larger than 2. In later

sections, we will add “branches” (line segments) to the trunk, in order to get the

“bounded τ -length” condition.

The first of the 4N + 1 components is the disk D(0, rN) where

rN =
1

2 sin(π/(2N))
+N − 1 = N

(
1 +

1

π

)
− 1 +O

(
1

N

)
.

This is the D-component and will be denoted D0. Let θ = π
N

and define

zk = (rN −N + 1) exp

(
i

(
θ

2
+ kθ

))
for 0 ≤ k ≤ 2N − 1. With S0 = {x + iy : x > 0, |y| < 1/2} and Sk = exp(ikθ)S0,

the point zk is the unique non-zero intersection point between ∂Sk and ∂Sk+1, see

Figure 6. The L-components Lk are then given by

Lk = {z ∈ C : |z − zk| > N, kθ < arg(z − zk) < (k + 1)θ}

=
{
zk + reiφ : r > N, kθ < φ < (k + 1)θ

}
.

Note that these are truncated sectors that are disjoint, are unit distance apart, and

are unit distance from the D-component, see Figure 6. The vertex of the k-th sector

is zk (not the origin). One L-component is shown in light gray in Figure 6.

Finally, we construct the R-components. The complement Ω of the union of the D-

component and L-components can be split into 2N congruent connected components

{Rk} by the radial segments{
z ∈ C : rN ≤ |z| ≤ rN + 1, arg(z) =

θ

2
+ kθ

}
.

Denote by R0 the component in the right half-plane which is symmetric with respect

to the real axis. The component Rk for 1 ≤ k < 2N −1 is then the component which

is just R0 rotated by exp(ikθ). Note that Rk has a boundary arc on the circle of

radius rN around the origin, two radial boundary arcs on the segments just defined,

two circular arc boundary edges on the circles of radius N around the points zk−1
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and zk (using z−1 = z2N−1), and two sides that are infinite, parallel rays distance one

apart, see Figure 6. Figure 7 shows the overall structure of the trunk graph.

Note that the five finite sides of the Rk all have lengths comparable to 1 and all

the angles are approximately 90◦, even as N →∞. These facts will help prove that

our graph has bounded geometry with constants independent of N .

0

L

R
1

0
z
1

z
0

Figure 6. Consider 2N = 8 unit width half-strips rotated evenly
around the circle. The D-component is a disk of radius rN . The L-
components are truncated sectors with vertices at the points where the
half-strips intersect (one is shown in light gray). The remainder of the
plane is divided into the R-components (one is shown in darker gray).

5. Conformal partition of the L-components

A conformal partition of an unbounded Jordan domain Ω is a collection of points S

on ∂Ω so that τ(S) ⊂ ∂H are evenly spaced, where H is a half-plane and τ : Ω→ H

is a conformal map taking∞ to∞. For the L-components defined in Section 4 such a

partition can be explicitly computed, and we record the computation in this section.

The L-component L0 is conformally mapped to the upper half-plane by

z 7→
(

1

N
(z − z0)

)N
+

1(
1
N

(z − z0)
)N ,



14 S. ALBRECHT AND C. J. BISHOP

D

R

R

R

R

R

R

R

R

L

L L

L

L

LL

L

Figure 7. The “trunk” consisting of one D-component, 2N L-
components that are truncated sectors, and an equal number of R-
components that are essentially half-strips.

z+1/zN

N

0 1 2 3−3 −1−2−1 1

0
z−z 

 + Nw = z
02

z
0

Figure 8. The L-components can be mapped to a half-plane by an
explicit map (a rescaling and a power followed by the Joukowsky map),
and thus the conformal partition is also given by explicit points.

the composition of a linear rescaling, a power, and the Joukowsky map z 7→ z + 1/z,

which conformally maps H \ D to H, see Figure 8. The inverse map is given by

w 7→ z0 +N

(
w

2
+

√(w
2

)2

− 1

)1/N

= z0 +N

(
1

2

(
w +
√
w2 − 4

))1/N

.

Let wn for n ∈ Z be the points on ∂L0 that correspond under this map to the points

of Z on the boundary of the upper half-plane. For n ≥ 2 we define tn by the equation

wn = z0 +N + tn.

For n ≥ 2, let ∆n = tn+1 − tn. For convenience, we set α = 1/N and define

φN(n) = n2
√
α + 2 log n. Note that for fixed n ≥ 1 this decreases as N increases.
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Lemma 5.1. Suppose notation is as above. Then

(5.1) tn = N(nα − 1) +O
(
nα−2

)
(5.2) tn ≤ N(nα − 1) ≤ Nnα and tn ≤ N(nα − 1) ≤ φN(n),

(5.3) ∆n = nα−1 +
α− 1

2
nα−2 +O

(
nα−3

)
,

(5.4) ∆n −∆n+1 = (1− α)nα−2 +O(nα−3) = ∆n

(
1− α
n

+O(n−2)

)
.

The big-O estimates hold as n ↗ ∞ and the constants in these inequalities do not

depend on N .

Proof. By definition (recall α = 1/N), if n ≥ 2, then

wn = z0 +N

(
1

2

(
n+
√
n2 − 4

))α
= z0 +Nnα

(
1

2

(
1 +
√

1− 4n−2
))α

= z0 +Nnα
(
1 +O

(
n−2
))α

= z0 +Nnα
(

1 +O

(
1

N
n−2

))
= z0 +Nnα +O

(
nα−2

)
.

The constants in the big-O’s hold as n ↗ ∞ and they do not depend on N since

α = 1/N ≤ 1/2 < 1 (in fact, one can easily check that the constant 4 works). The

equality in (5.1) is immediate. It is clear that the “O” term in the last line above is

negative, so tn ≤ N(nα − 1). This gives the first part of (5.2). To prove the second

part of (5.2), we consider two cases depending on whether n is less than or greater

than N
√
N . For 1 ≤ n ≤ N

√
N we have

tn ≤ N(nα − 1) = N(exp(α log n)− 1) ≤ N(1 + 2α log n− 1) = 2 log n.

Here we have used the facts from calculus that α log n ≤
√
N(logN)/N ≤ 1 for

N ≥ 3 and ex ≤ 1 + 2x for 0 ≤ x ≤ 1. For n > N
√
N , since α ≤

√
α, we get

tn ≤ Nnα = Nn−
√
αnα+

√
α ≤ N ·N−

√
N/
√
Nn2

√
α = n2

√
α.

Since we have upper bounds on two disjoint intervals that cover all n ≥ 1, we know

tn is less than the sum of these two estimates. This is the second part of (5.2).
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To compute the gaps ∆n between the points wn, we can omit the additive factor

z0 and consider the function

f(w) = N

(
1

2

(
w +
√
w2 − 4

))α
.

A calculus exercise shows (recall αN = 1):

f ′(w) =

(
1

2

(
w +
√
w2 − 4

))α−1

· 1

2

(
1 + w

(
w2 − 4

)−1/2
)

= wα−1

(
1

2
+

1

2

√
1− 4w−2

)α−1

· 1

2

(
1 + w

(
w2 − 4

)−1/2
)

= wα−1

(
1 +O

(
1

w2

))α−1(
1 +O

(
1

w2

))
= wα−1 +O

(
wα−3

)
.

tends to zero as w →∞. A similar computation shows that

f ′′(w) = (α− 1)wα−2 +O(wα−4).

Using Taylor series, we see that

∆n = f(n+ 1)− f(n) =

∫ n+1

n

f ′(t)dt,

=

∫ n+1

n

[
nα−1 + (α− 1)(t− n)nα−2 +O(nα−3)

]
dt,

= nα−1 +
1

2
(α− 1)nα−2 +O

(
nα−3

)
,

which is (5.3). Finally, using the mean value theorem gives (5.4):

∆n −∆n+1 =

[
nα−1 +

α− 1

2
nα−2 +O

(
nα−3

)]
−
[
(n+ 1)α−1 +

α− 1

2
(n+ 1)α−2 +O

(
nα−3

)]
=

[
nα−1 − (n+ 1)α−1

]
+

1

2
(α− 1)

[
nα−2 − (n+ 1)α−2

]
+O

(
nα−3

)
= (1− α)nα−2 +O

(
nα−3

)
. �

Since {φN} is decreasing in N , {tn} has an upper bound independent of N , and

this bound improves if N is large, e.g., if N ≥ 16, then tn ≤ φ16(n) =
√
n+ 2 log n.
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Corollary 5.2. With notation as above, if 0 < δ ≤ 1 and N > 2
(
1 + 1

δ

)
, then

∞∑
n=1

∆1+δ
n = O

(
1

δ

)
,

where the constant does not depend on N .

Proof. After some arithmetic, we see that the hypothesis N > 2(1+1/δ) is equivalent

to (α− 1)(1 + δ) < −1− δ
2
, and after some calculus, (5.3) implies

∞∑
n=1

∆1+δ
n = O

(
∞∑
n=1

n−1− δ
2

)
= O

(
1

δ

)
. �

6. The “branches” of the tree

We modify the components Rk by adding line segments perpendicular to the bound-

ary as illustrated in Figure 9. We describe the construction of the R-components only

for the component R0 intersecting the positive real axis; the other R-components will

all be rotations of this one.

Figure 9. An R-component and the conformal partition points com-
ing from the two adjacent L-components. The spikes get shorter and
closer together near∞, but they do not accumulate at any finite point.

We define the modified R-component Ω0 ⊂ R0 by removing vertical slits that are

attached to the top and bottom edges of R0 at the partition points of the adjacent

L-components; these points were described in Section 5. The region between two

adjacent slits will be informally referred to as a “tower”; it is the trapezoid defined

by the two slits and the connecting segment on the boundary of R0. The slits will

be chosen so that the domain Ω0 is symmetric with respect to the real line. Thus, it
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Figure 10. The final shape of the graph with all the slits attached.
The vertices on the slits (defined in Section 8) are too close together
to see at this scale.

suffices to define the length of the slit attached to the point wn = z0 +N + tn on the

top edge of Ω0 (the top edge is the horizontal ray starting at w2 = z0 +N).

The segment attached at the partition point wn is denoted λn and has length

yn = min

{
1

4
,∆n

(
tn +

1

π
log ∆n

)}
.(6.1)

If yn < 1/4, then by Lemma 5.1 we have

tn =
yn
∆n

− α− 1

π
log n+O

(
nα−2

)
=

yn
∆n

− α− 1

π
log n+O

(
1

n

)
(6.2)

because α− 2 = 1
N
− 2 < −1. We will later interpret this equation as an equality (up

to a bounded additive factor) between two hyperbolic distances in Ω0; see Corollary

12.7. This approximate equality will imply that the desired τ -length upper and lower

bounds in Theorem 3.4 hold. See Lemma 12.8.

Lemma 6.1. We have yn < 1/4 for n ≥ n0, with n0 independent of N .

Proof. From Lemma 5.1 we know that

N(nα − 1) ≤ φN(n) = n2
√
α + 2 log n.
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Since {φN} is decreasing (and 1
20

+ 2√
20
− 1 < −1

2
), if N ≥ 20, then

yn = ∆n

(
tn +

1

π
log ∆n

)
= O

(
nα−1(φN(n) + log n)

)
= O

(
nα+2

√
α−1 + nα−1 log n

)
= O

(
n−1/2

)
. �

Thus, only finitely many segments will have length 1/4 and this number is bounded

independent of N . Let εn = min{1
4
, C1/

√
n}, for n ≥ 2, where C1 is chosen so that

yn ≤ εn for all n ≥ 2. Define ε(tn) = εn and define ε(t) for tn ≤ t ≤ tn+1 by linear

extension. This function is continuous and decreasing, and we have Ω1 ⊂ Ω0 ⊂ R0

where

Ω1 =

{
(t+ Re z0 +N) + iy : t > 0, |y| < 1

2
− ε(t)

}
.

Recall that t2 = 0 so that ε is in fact defined on [0,∞).

Lemma 6.2. If N ≥ 20, then
∫∞

0
ε(t)dt <∞ with a bound that is independent of N .

Proof. Choose n0 so that εn = C1/
√
n for n ≥ n0. By Lemma 5.1,∫ ∞

0

ε(t)dt ≤
∞∑
n=2

ε(tn)∆n =

n0−1∑
n=2

∆n

4
+

∞∑
n=n0

C1∆n√
n

≤ C2 + C3

∞∑
n=n0

nα−
3
2 ≤ C2 + C3

∞∑
n=n0

n−
4
3 <∞. �

This will be used in Corollary 10.3 to approximate hyperbolic distance in Ω0.

7. {yn} is almost convex

Imagine that we connect the endpoints of adjacent vertical slits by segments to form

an infinite polygonal path. We want to verify that this path is “not far” from being

convex. More precisely, define sn = (yn − yn+1)/∆n; this is the slope of the segment

connecting the endpoints of the nth and (n+ 1)st slits. The quantity (sn − sn+1)/∆n

is thus a type of second derivative, and can be thought of as the curvature of the

polygonal path. The path will be convex down if all these numbers are negative.

This is true, but tedious to prove; we will give an easier estimate that is sufficient for

our needs. Recall that φN(n) = n2
√
α + 2 log n, α = 1/N .
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Lemma 7.1. Suppose N ≥ 24. There is a n0 > 0, independent of N , so that for

n ≥ n0, sn is decreasing to zero, and

|sn − sn+1| = O
(
φ16(n)/n2

)
= O

(
n2
√

1/16−2
)

+O
(
n−2 log n

)
= O

(
n−3/2

)
,

with constants independent of N . In particular, |sn − sn+1| = o (nα−1) = o (∆n).

Proof. We simply compute using the definitions. Recall that tn+1 = tn + ∆n. For

notational convenience, let κ1 = (1 − α)/π, κ2 = 1−α
2

, and let φ = φ16. If n is large

enough, we get from (6.1)

sn =
yn − yn+1

∆n

=
∆n(tn + 1

π
log ∆n)−∆n+1(tn+1 + 1

π
log ∆n+1)

∆n

= tn +
1

π
log ∆n −

(
1− ∆n −∆n+1

∆n

)(
tn + ∆n +

1

π
log ∆n+1

)
= −∆n +

1

π
(log ∆n − log ∆n+1) +

(
∆n −∆n+1

∆n

)(
tn + ∆n +

1

π
log ∆n+1

)
.

Now use Lemma 5.1 to note that

log ∆n = log

(
nα−1

(
1 +

α− 1

2n
+O

(
n−2
)))

= (α− 1) log n− κ2

n
+O

(
n−2
)
.

Using this we get

sn = −∆n − κ1 log
n

n+ 1
+O(n−2)

+
∆n −∆n+1

∆n

[
tn + ∆n − κ1 log(n+ 1) +O(n−1)

]
= −∆n +

κ1

n
+
(κ2

n
+O(n−2)

) [
tn + ∆n − κ1 log(n+ 1) +O(n−1)

]
+O(n−2)

= −∆n +
κ1

n
+ κ2

tn
n
− κ1κ2

log(n+ 1)

n
+O

(
φ(n)/n2

)
,

where we have used ∆n/n = O (nα−2) = O (φ(n)/n2). This shows that sn → 0.

We now want to estimate |sn − sn+1|. The big-O term is already the correct size,

and taking differences preserves this. Next, note we have already shown in (5.4) that

∆n −∆n+1 = O
(
nα−2

)
= O

(
φ(n)/n2

)
.
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Since we assumed N ≥ 24 we have α = 1/N < 1/4, so using (5.2) and (5.3) and

ignoring the multiplicative factor we get

tn
n
− tn+1

n+ 1
= tn

(
1

n
− 1

n+ 1

)
+
tn − tn+1

n+ 1

= O
(
tnn
−2
)

+O

(
∆n

n+ 1

)
= O

(
φ(n)/n2

)
.

Similar arguments complete the proof by showing

1

n
− 1

n+ 1
= O

(
1

n2

)
= O

(
φ(n)/n2

)
,

log(n+ 1)

n
− log(n+ 2)

n+ 1
= O

(
log n

n2

)
= O

(
φ(n)/n2

)
. �

Next we derive a geometric consequence:

Corollary 7.2. For n > n0 (as in the previous lemma) the endpoints of the nth and

(n + 1)st slits are on the boundary of an open disk Dn in Ω centered on the axis of

Ω. Furthermore, there is a disk Bn whose radius is bounded below independently of

N and n containing the endpoints of the nth and (n + 1)st so that no other endpoint

lies within Bn. The boundary of Bn intersects all slits within unit distance of the nth

slit in either direction.

Proof. Note that a disk which is centered on the real line and completely contained in

the R-component has radius at most 1
2
. In particular, the curvature of such a disk is

at least 2. This means that slope of the circle (considered as the graph of a function)

changes by at least ' ∆ over a horizontal distance ∆ (the change is smallest when

the interval is centered around the center of the disk), see Figure 11. On the other

hand, we can choose n0 in the Lemma 7.1 so that the curvature of the polygonal

path through the endpoints of the slits with indices larger than n0 is much less than

2. Thus if we move from the (n + 1)st tip to the right, the path can never intersect

the boundary of this disk again. If it did, then there would be a segment of the path

whose slope is less than or equal to the slope of ∂D at the point of intersection, and

this is impossible by observations above. A similar argument works to the left of the

n-th tip. This proves the existence of the disk Dn.
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Figure 11. Existence of Dn. By definition one segment of our path
forms a chord of the disk Dn. The slope of the circle changes by at
least a fixed amount proportional to the horizontal distance from this
chord, and the slopes of the path segments change at most by a much
smaller multiple of this distance. Thus the path cannot intersect the
disk except along the given segment.

We simply define Bn to be the largest disk the boundary of which passes through

the endpoints of the nth and (n + 1)st slits and lies above the polygonal path unlike

Dn which lies below that path, see Figure 12. Since the curvature of the polygonal

path is bounded above, we get an upper bound for the curvature of the boundary

of Bn and thus a lower bound for the radius. We can ensure that the boundary of

this disk intersects all slits within unit distance of the nth slit in either direction by

increasing n0 and thus increasing the minimal radius of Bn if needed. �

Dn

Bn

Figure 12. Existence of Bn. The dashed curved connecting the slit
tips lies between two disks with radius bounded uniformly away from
zero. Later we will use this to estimate the hyperbolic distance from
the axis to points near the tips of the slits.
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A stronger result holds: sn ↘ 0. This implies that the polygonal curve is convex

and hence the disk Bn in Lemma 7.2 can be taken to be a half-plane. However,

verifying this seems to require long and tedious computations, so we omit the proof,

since the weaker condition above is sufficient for our purposes.

8. The definition of T

We finally come to the definition of the graph T . In the previous section we have

built a graph by defining the “trunk” and adding “branches”. As a planar set, this

is T , but to make T a graph we have to specify the vertices. The vertices along the

trunk have already been given; in this section we define the vertices on the branches.

Once this is done, T has been completely specified.

Divide the slit λn attached to the trunk at position wn into disjoint segments of

length ∆n, except the last segment at the end of the slit closest to the axis, which

has length between ∆n and 2∆n. By (6.1), λn is divided into

mn =

⌊
yn
∆n

⌋
=

⌊
tn +

1

π
log ∆n

⌋
.

many pieces. Note,

yn+1

∆n+1

− yn
∆n

=

(
tn+1 +

1

π
log ∆n+1

)
−
(
tn +

1

π
log ∆n

)
= ∆n +

1

π
log

∆n+1

∆n

→ 0

so |mn+1 −mn| ≤ 1 for large n.

Next, we add bexp(πk)c vertices to the k-th segment (the one that is distance k ·∆n

from wn, the point where the slit is attached to the trunk). Thus, the spacing between

vertices in the k-th segment is ' ∆n exp(−πk). We do something slightly different

in the last segment at the end of the slit. Instead of adding vertices evenly spaced in

that last interval, we use a square root to place the points, as in Figure 13, so that

the spacing changes from exp(−πmn)∆n (away from the tip) to exp(−πmn/2)∆n (at

the tip). This implies that all these edges have comparable τ -length.

Lemma 8.1. T has bounded geometry with constants independent of N .

Proof. The graph was constructed so this would be true, but we briefly review the

different conditions. First, all the edges are either straight line segments or circular

arcs with bounded curvature, independent of N ; the angles between adjacent edges

are π/2 or π and the valence of the vertices is at most 3; and adjacent edges have
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z2z

Figure 13. Placing points near the tip of a slit. The even spacing
on the left is mapped to an uneven spacing on the right that gives all
the sides comparable τ -length.

comparable lengths by construction. From these facts we easily deduce that (1) and

(2) of the bounded geometry conditions hold.

It remains to show that for non-adjacent edges e and f the ratio diam(e)/ dist(e, f)

is uniformly bounded. But again, this holds by construction. The edges have either

a distance of at least 1/2 (when they lie on different sides of the symmetry line of

Ω) or they lie on the same side of the symmetry line. In this case, they lie either on

opposite sites of one of the “towers” or on sides of different towers even further apart.

But then the diameter of the edges is bounded by the width of the tower, which is

a lower bound for the distance between the edges. If the edges lie on the same slit,

then the boundedness follows since adjacent edges have uniformly comparable length

and there is at least one edge in between the two edges under consideration. �

We also need to know that our graph satisfies the condition in Lemma 3.3:

Lemma 8.2. For every edge e of T , and any r > 0 the neighbourhood Te(4r) = {z ∈
C : dist(z, e) < 4r ·diam(e)} only intersects edges whose length is comparable to the

length of e.

We leave the (simple) proof to the reader.

9. Estimates for the hyperbolic metric

Now that we have defined T (and hence the model function F ), our next goal

is to prove that it satisfies the τ -length upper and lower bounds discussed earlier.

This reduces to careful estimates of hyperbolic length within the R-components. We
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start with a review of some basic facts that can be found, for example, in [20]. The

hyperbolic length of a (Euclidean) rectifiable curve in the unit disk D is given by

integrating
ds

1− |z|2
,

along the curve. In the upper half-plane H we integrate ds/2y. Note that this

definition differs by a factor of 2 from that given in some sources, e.g., [6], which

contains estimates similar to the ones we will derive below.

The hyperbolic distance between two points is given by taking the infimum of all

hyperbolic lengths of paths connecting the points. In the disk, minimizers (hyperbolic

geodesics) are either diameters of the disk or subarcs of circles perpendicular to the

unit circle. In the upper half-plane, the hyperbolic geodesics are either vertical rays

or semi-circles centred on the real line. The hyperbolic distance between two points

z, w is given by

ρ(z, w) =
1

2
log

1 + T (z, w)

1− T (z, w)
,

where

T (z, w) =

∣∣∣∣ z − w1− wz

∣∣∣∣ , T (z, w) =

∣∣∣∣z − wz − w

∣∣∣∣ ,
for D and H, respectively. For the disk, taking z = 0, w = r = 1− ε > 0 gives

R = ρ(0, r) =
1

2
log

1 + r

1− r
=

1

2
log

2− ε
ε

.(9.1)

Therefore, ε = 2/(1 + exp(2R)), which gives exp(−2R) ≤ ε ≤ 2 exp(−2R).

Koebe’s estimate (e.g., Theorem I.4.3 of [20]) says that if ϕ is conformal from D
to a simply connected domain Ω, then

1

4
|ϕ′(z)|(1− |z|2) ≤ dist(ϕ(z), ∂Ω) ≤ |ϕ′(z)|(1− |z|2).

The hyperbolic metric ρ = ρΩ on a simply connected planar domain Ω is defined by

transferring the hyperbolic metric on D by a conformal map (the choice of the map

makes no difference). The quasi-hyperbolic metric on Ω is defined by integrating

dρ̃ =
ds

dist(z, ∂Ω)
.

Koebe’s estimate implies these two metrics are comparable to within a factor of 4,

ρΩ(z, w) ≤ ρ̃Ω(z, w) ≤ 4 · ρΩ(z, w).
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In particular, if L is a line segment and dist(L, ∂Ω) ' diam(L), then L has hyperbolic

length comparable to 1.

Another domain for which we can explicitly compute the hyperbolic metric is

the infinite strip S = {(x, y) : |y| < 1/2}. This is conformally mapped to Hr by

exp(πz), so a simple computation shows that the hyperbolic metric on S is given by

dρ = π
2
ds/ cos(πy). From this we can deduce that for |y| < 1/2, we have

ρS(x, x+ iy) =
π

2

∫ |y|
0

ds

cos(πs)
=
π

2
log

1
1
2
− |y|

+O(1).(9.2)

The geodesics in S are a little difficult to draw, but some of them can be well ap-

proximated by a polygonal arc as follows:

Lemma 9.1. If z = x+ i0, w = s+ it, |t| < 1/2, and p = s+ i0, then

ρS(z, w) = ρS(z, p) + ρS(p, w) +O(1) =
π

2
|x− s|+ π

2
log

1
1
2
− |t|

+O(1).

Proof. One direction is obvious by the triangle inequality and (9.2). To prove the

other direction, we can use conformal invariance to replace S by D, set p = 0 and

assume z is on the segment from 0 to i and w is on the segment from 0 to 1. See

Figure 14. The geodesic γ from z to w must hit the Euclidean ball D = D(0,
√

2−1).

Note that D ∩ γ has hyperbolic length O(1) and the segments of γ \D (if any) are

longer than ρ(w,D) = ρ(w, 0) − O(1) and ρ(z, 0) = ρ(0, z) − O(1). This proves the

result. �

z p

w

z

p w

γ

Figure 14. Proof of Lemma 9.1. The geodesic is only O(1) shorter
than the polygonal path.
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Lemma 9.2. If W1 ⊂ W2 are simply connected domains, z ∈ W1, and R = ρW2(z,W2\
W1) ≥ c > 0, then

ρW2(z) ≤ ρW1(z) ≤ (1 +O(e−2R))ρW2(z),

where the constant in the “big-O” only depends on c.

Proof. The left inequality is a well known consequence of the Schwarz lemma. To

prove the right side, we may assume using conformal invariance that W2 = D ⊂
W1/(1− ε) where R and ε are as in (9.1). Thus

ρW2(0) ≤ ρW1(0)/(1− ε) ≤ ρW1(0)(1 +O(ε)) ≤ ρW1(0)(1 +O(exp(−2R))),

if ε < 1 or R > 0 uniformly. �

For an even more precise version of Lemma 9.2, see Proposition 3.4 of [28].

Lemma 9.3. Suppose I, J are disjoint intervals on the boundary of Hr and suppose

γI , γJ are the hyperbolic geodesics that have the same endpoints as I and J respec-

tively. Suppose γ is the geodesic that connects the center of I to ∞ (γ is a horizontal

ray). Let z be the point on γ that is closest to γJ with respect to the hyperbolic metric

in the right half-plane. If ρ(z, γJ) = ρ(z, γI) +C, then |I| ' |J | with a multiplicative

factor depending only on C.

Proof. See Figure 15. Map Hr to D by a Möbius transformation τ that sends the

center of I to −1, z to 0 and ∞ to 1. It is easy to check the images of I and J have

comparable length on the circle, and that the image of J is bounded away from 1.

This implies I and J have comparable length on iR because the derivative of τ−1 has

comparable absolute values on I and J . �

Lemma 9.4. Suppose Q is an open square with center q, and Ω ⊃ Q is a simply

connected region such that ∂Ω contains the top and bottom sides of Q and Ω contains

the left and right sides of Q. Then Ω \ Q has two connected components, separated

by Q. Suppose that a, b are in different components. Let γ be the hyperbolic geodesic

in Ω connecting a and b. Then ρΩ(γ, q) = O(1).

Proof. Let I and J be the top and bottom sides of Q. Let σI , σJ be the hyperbolic

geodesics for Q joining the endpoints of I and J respectively, and let γI , γJ be the

hyperbolic geodesics for Ω joining the same pairs of points, see Figure 16.
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J
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0

1

Figure 15. Proof of Lemma 9.3.

It is a standard fact that σI are exactly the points z in Q where I has harmonic

measure 1/2 (the solution of the Dirichlet problem with boundary values 1 on I and

zero on ∂Q\ I). Since Q ( Ω, the maximum principle for harmonic functions implies

that the harmonic measure of I in Ω will be > 1/2 at each point of σI , and therefore

γI is separated from I in Ω by σI . Similarly for γJ and σJ . See Figure 16.

Finally, distinct hyperbolic geodesics in a simply connected domain either intersect

once or not at all and any intersection is a crossing (this is obvious in the disk or

half-plane model). Hence, γ does not intersect either γI or γJ (it could not connect a

to b if it crossed either curve only once). Therefore it crosses Q traveling between σI

and σJ and hence comes within O(1) of the center point q (a simple argument leads

to the explicit estimate ρΩ(γ, q) ≤ ρQ(σI , q) = 1
2

log
√

2/(2−
√

2) ≈ .4407). �

σI

σJ
γ
J

γ
I

q

Ω

I

J

a

b

γ

Q

Figure 16. A geodesic γ for Ω crossingQ horizontally passes between
the geodesics σI , σJ for Q corresponding to the top and bottom of Q.
Thus γ comes within a fixed distance of the center q.
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10. The hyperbolic metric in approximate rectangles

Lemma 10.1. Fix t > 0, set R = {(x, y) : 0 < x < t, |y| < 1/2} and suppose Ω ⊃ R

is a simply connected domain whose boundary contains the top and bottom sides of

R. Then

ρΩ(a, b) =
π

2
(b− a) +O(1)

whenever 0 < a < b < t and a, (t− b) are both bounded away from zero.

Proof. First consider Ω = R. Note that R ⊂ S = {(x, y) : |y| < 1/2}, so dρR ≥ dρS

by one direction of Lemma 9.2. On the interval [a, b], the other direction gives

dρR(x) ≤ (1 +O(exp(−2ρS(x, S \R)))) · dρS(x)

≤ (1 +O(exp(−πmin(x, t− x)))) · π
2
dx.

Integrating from a to b gives ρR(a, b) = π
2
(b− a) +O(1).

For a general Ω, we repeat this argument with S replaced by Ω to get

dρR(x)/(1 +O(exp(−2ρΩ(x,Ω \R)))) ≤ dρΩ(x) ≤ dρR(x),

for a < x < b. By Koebe’s theorem ρΩ(x,Ω \R) ' min(x, t− x), so integrating gives

ρΩ(a, b) = ρR(a, b) +O(1) =
π

2
(b− a) +O(1). �

Recall the definitions of Ω0 and Ω2 from Section 6 (Ω0 was defined in the second

paragraph and Ω1 just before Lemma 6.2).

Lemma 10.2. Suppose ε(t) and Ω1 are as in Lemma 6.2 and 1 < a < b. Then

ρΩ1(a, b) = π
2
(b− a) +O(1).

Proof. The lower bound is obvious since Ω1 ⊂ S. To prove the other direction, we

first claim that for x > 1,

ρS(x, S \ Ω1) =
π

2
log ε(x) +O(1).(10.1)

For small x this is trivial, and for large x we deduce from Lemma 9.1 that

ρS(x, S \ Ω1) = O(1) +
π

2
inf{|t− x| − log ε(t) : t > 1}.
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Since d
dt
ε(t) = C1/2t < 1 for t ≥ C1/2, we see the infimum is attained at t = x, which

is equivalent to the claim (10.1). Thus,

dρΩ(x) ≤
(

1 +O

(
exp

(
−π log

1

ε (x)

)))
dρS(x)

≤ π

2

(
1 +O

(
exp

(
−π log

1

ε(x)

)))
ds.

Integrating from a to b proves the lemma. �

Since Ω1 ⊂ Ω0 ⊂ R0, the following is now immediate

Corollary 10.3. In the R-component Ω0, if Re z0 +N + 1 ≤ s < t, then

ρΩ0(s, t) =
π

2
(t− s) +O(1).

11. The hyperbolic metric in approximate half-planes

In this section, we prove that a domain that “looks like” a half-plane has a hyper-

bolic metric that approximates the hyperbolic metric on the half-plane.

Lemma 11.1. Suppose n is a positive integer and suppose −1 = z1 < z2 < · · · <
zn = 1 are n points in [−1, 1]. Let Ij = (zj, zj+1) and assume these intervals all have

comparable lengths, say 1/n ≤ |zj+1 − zj| ≤ 4/n for j = 1, . . . , n − 1. Let Ω be the

complex plane with these n points removed. The hyperbolic distance (in Ω) between

a = i and b = i/n satisfies

ρΩ(a, b) =
1

2
log n+O(1) = ρH(a, b) +O(1).

Proof. By symmetry, the segments R∩Ω are hyperbolic geodesics in Ω and therefore

they lift to hyperbolic geodesics in the upper half-plane under the covering map from

the upper half-plane to Ω. We can choose the covering map so that the points ±1,∞
map to themselves. Let Ω′ be the preimage of H under the covering map as shown in

Figure 17. The points a, b lift to points c, d and ρΩ(a, b) = ρH(c, d). The point a gives

comparable harmonic measure in H to the three intervals (−∞,−1], [−1, 1], [1,∞].

Thus, the point c gives comparable harmonic measure to the two vertical rays in ∂Ω′

and to the arc (union of semicircles centred on the real line) of ∂Ω′ joining these rays.

This implies that the imaginary part of c is comparable to 1.

Let Ik be a component of Ω ∩ R whose closure contains 0. By assumption this

interval has Euclidean length comparable to 1/n and hence it has harmonic measure
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c

d

b

a

+1−1+1−1

Figure 17. The punctured plane Ω is covered by the upper half-plane
H. Under the covering map, H ⊂ Ω (left) has a preimage bounded by
hyperbolic geodesics (right).

comparable to 1/n in H with respect to the point a. Similarly, for the intervals Ik−1

and Ik+1 on either side of Ik. Therefore, the circular arcs in ∂Ω′ corresponding to

these three intervals have comparable harmonic measure (in the upper half-plane)

with respect to the point c. Thus the Euclidean diameters of these circular arcs are

comparable to 1/n.

The point b gives harmonic measure comparable to 1 to the segment Ik, and thus d

gives the same harmonic measure to the corresponding circular arc in ∂Ω′. Therefore,

the imaginary part of d is comparable to the diameter of this arc, i.e., ' 1/n. Thus,

the hyperbolic distance between c and d in H is ρH(c, d) = 1
2

log n+O(1). �

12. All τ-lengths are comparable to 1

We now come to the central estimate of the construction. Consider an R-component

Ω that is symmetric with respect to the real line and the upper and lower horizontal

sides of Ω are distance 1/2 from the real axis, that is Ω = Ω0. Choose a basepoint

A = Re(z0) + N + 2 in Ω0 on the real line. By symmetry, the hyperbolic geodesic

from A to ∞ is the horizontal ray from A to +∞. Let B be a point on this ray to

the right of A (later, we will only need to consider points B sufficiently far to the

right). See Figure 18 The following is immediate from Corollary 10.3:

Lemma 12.1. ρΩ0(A,B) = π
2
(B − A) +O(1).

Assume that B is located so the vertical segment from B connects it to a midpoint

of one of the horizontal edges I of ∂Ω0, see Figures 18 and 19. Recall that |I| denotes

the length of I and let E be the point below the center of I and distance |I|/2 from
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I. Let J be the shorter vertical side of the tower with top I. Let D be the point

distance |J | − |I| below E. Let C be the point distance 3|I| below D, see Figure 19.

A B

Figure 18. Illustration of the R-component Ω0 and the placement
of the points A and B.

B

E

C

D

Figure 19. We will estimate ρΩ0(B,E) up to an additive factor by
breaking it into three pieces: [BC] is estimated by Lemma 12.2, [DE]
is estimated by Lemma 12.4, and [CD] has bounded hyperbolic length
by Lemma 12.3.

Lemma 12.2. ρΩ0(B,C) = 1
2

log 1
|I| +O(1).

Proof. By Corollary 7.2, there is a disk Dn so that {B,C} ⊂ Dn ⊂ Ω0, with

dist(B, ∂Dn) ' 1 and dist(C, ∂Dn) ' |I|. Thus, ρΩ0(B,C) ≤ ρDn(B,C) = 1
2

log 1
|I| +

O(1).

To prove the other direction, consider the arc on ∂Bn given by Corollary 7.2.

Let {zj} be the points where this arc intersects the vertical slits in ∂Ω0 and let

U = C \ {zj}. Then Ω0 ⊂ U , so ρΩ0(B,C) ≥ ρU(B,C). The points {zj} are about
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|I| apart and there are m ' 1/|I| such points. We can use a Möbius transformation

to map Bn to the upper half-plane, and so that B and C map to points at height

' 1 and ' |I|, respectively. The distance between the {zj} is distorted, but only

boundedly, so the gaps are still ' |I|. By Lemma 11.1 and conformal invariance of

hyperbolic distances, we deduce

ρΩ0(B,C) ≥ ρU(B,C) ≥ 1

2
log

1

|I|
+O(1). �

Lemma 12.3. With notation as above, ρΩ0(C,D) = O(1).

Proof. This is immediate from Koebe’s estimate, since C and D are connected by a

segment in Ω0 whose Euclidean length is comparable to its distance from ∂Ω0. �

Lemma 12.4. ρΩ0(D,E) = π
2
|J |
|I| +O(1).

Proof. This is immediate from Lemma 10.1. �

Lemma 12.5. Let γ denote the hyperbolic geodesic from B to E in the R-component.

Then ρΩ0(γ,D) = O(1) and ρΩ0(γ, C) = O(1).

Proof. The claim for D follows immediately from Lemma 9.4. For C it follows from

this and Lemma 12.3. �

Corollary 12.6. With notation as above,

(12.1) ρΩ0(B,E) = ρΩ0(B,C) + ρΩ0(C,D) + ρΩ0(D,E) +O(1)

Proof. Using the triangle inequality, we immediately get “≤”. To obtain the opposite

inequality, let γ be the hyperbolic geodesic in Ω0 connecting B and E and let zC , zD

be the points on γ closest to C and D respectively. Then by Lemmas 12.5 and 12.3

ρΩ0(B,E) = ρΩ0(B, zC) + ρΩ0(zD, E) + ρΩ0(zC , zD)

≥ ρΩ0(B,C)− ρΩ0(C, zC) + ρΩ0(D,E)− ρΩ0(D, zD)

+ρΩ0(zC , C) + ρΩ0(C,D) + ρΩ0(D, zD)

≥ ρΩ0(B,C) + ρΩ0(C,D) + ρΩ0(D,E) +O(1). �

Lemma 12.7. With notation as above, ρΩ0(A,B) = ρΩ0(B,E) +O(1) .
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Proof. By Corollary 12.6 it is enough to prove

ρΩ0(A,B) = ρΩ0(B,C) + ρΩ0(C,D) + ρΩ0(D,E) +O(1).

Note that B = Re z0 +N + tn + 1
2
∆n for some n, A = Re z0 +N + 2, and by Lemmas

12.1 and 5.1

ρΩ0(A,B) =
π

2
(B − A) +O(1) =

π

2
tn +O(1).

But by Lemmas 12.2, 12.3, 12.4, and 5.1, we have

ρΩ0(B,C) + ρΩ0(C,D) + ρΩ0(D,E) =
1

2
log

1

|I|
+
π

2

|J |
|I|

+O(1)

= −1

2
log ∆n +

π

2

yn+1

∆n

+O(1).

Since yn+1 = yn +O(1), we get

ρΩ0(B,C) + ρΩ0(C,D) + ρΩ0(D,E)

= −1

2
log ∆n +

π

2

∆n

(
tn + 1

π
log ∆n +O(1)

)
∆n

+O(1)

=
π

2
tn +O(1). �

We defined {yn} as we did so that (6.2) would hold, knowing that it would lead to

Corollary 12.7, and thus to:

Lemma 12.8. The τ -lengths for T are all comparable to 1.

Proof. Because of Lemma 12.7 and Lemma 9.3, the edges of the R-component shared

with a neighboring L-component all have τ -sizes comparable to 1 (the τ -lengths for

the L-component are equal to 1 by definition).

Next, we will show the same is true for the edges on the vertical slits. Consider

a vertical tower R of width ∆n in the modified R-component between two adjacent

vertical slits, see Figure 20. Divide the tower into squares as shown. Let vk be the

center of the k-th square. By Lemma 10.1 the hyperbolic distance between v1 and

vk is π
2
k + O(1). Therefore, the image points in the right half-plane are the same

hyperbolic distance apart. We verified above that the image of the first square is ' 1,

so the k-th square has image with diameter ' exp(kπ).

Moreover, for each k ≥ 2, the k-th square can be expanded by a factor of 3/2

(dashed box in Figure 20) and the conformal map τ can be extended to this larger

box by reflection. Thus, by Koebe’s estimate |τ ′| ' exp(πk)/∆n uniformly on the
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v
1

v
k

Figure 20. Each tower is divided into squares, whose τ -images
are approximate half-annuli whose Euclidean diameters grow exponen-
tially. In particular, the τ -lengths of the squares grow exponentially.

k-th square. Since the side lengths of T inside the k-th square are ' ∆n exp(−πk)

by construction, they all have τ -lengths ' 1.

A slightly different argument is needed for vertices on the last segment of each

vertical slit (the one near the tip), that were defined using a square root map. This

was done precisely so that τ would map these edges of T to intervals on ∂Hr that

have comparable lengths to each other, and the argument above shows these lengths

are all ' 1. �

We have proven uniform lower and upper bounds for the τ -sizes of all edges. By

replacing τ by c · τ for some c > 0, if necessary, we may assume every τ -length is at

least π and at most O(1). The previous lemma, Lemma 3.3 and Lemma 8.2 imply:

Corollary 12.9. With T , τ and r as above, there is a M < ∞ (independent of N)

so that τ(T (2r)) ⊂ {x+ iy : 0 < x ≤M}.

13. T (r) has finite area

The τ -length bounds derived above give good control of the model function F . We

now start to control the quasiconformal correction map ϕ. Recall that T (r) is an

open neighborhood of the tree T defined in Section 3. Since ϕ is conformal off T (r),
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its dilatation µ is supported on T (r), and we will prove this set is “small”. We begin

by showing it has finite area.

Lemma 13.1. Let n ≥ 2 and consider the tower attached to the edge of length ∆n.

Let {Jk} be the collection of edges on the vertical sides of the tower. Then there exists

a constant C > 0, independent of N and n, so that for any 0 < δ ≤ 1 we have∑
k

(diam Jk)
1+δ ≤ C

δ
·∆1+δ

n .

Proof. In the construction, we subdivided the n-th “branch” into mn = byn/∆nc
many subintervals {Jk}. All but one of these (the “tip”) has length ∆n; consider

these first. The k-th one is divided into ' exp(πk) smaller edges {Jj,k} of equal

length ' ∆n exp(−πk). Summing over these gives∑
j,k

(diam Jj,k)
1+δ ≤

mn−1∑
k=1

exp(πk)(∆n exp(−πk))1+δ

≤ ∆1+δ
n ·

∞∑
k=0

exp(−πkδ)

= ∆1+δ
n ·O

(
1

δ

)
.

The last interval (i.e., the “tip”) has length ≤ 2∆n and is divided into ' exp(πmn)

intervals Jk, the longest of which has length ' ∆n exp(−πmn/2). Thus∑
diam(Jk)

1+δ ≤ (∆n exp(−πmn/2))δ
∑

diam(Jk)

≤ (∆n exp(−πmn/2))δ(2∆n)

≤ 2 ·∆1+δ
n .

Combining both cases we get the lemma. �

Lemma 13.2. For each R-component Ω, the Lebesgue area of Ω∩T (r) is finite with

a bound independent of N .

Proof. The part of T (r) outside the towers is easy to bound. Consider what happens

in each tower with base Ik, which has length ∆k. The points of T (r) in the k-th

tower that are between distance j∆k and (j+1)∆k from the L-component are within

O(r∆k exp(−j)) of a vertical side of the tower. Thus, the part of T (r) inside this part
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of the tower has area bounded by O(r∆2
k exp(−j)). Summing over j shows the total

area of T (r) within each tower is O(r∆2
k). By Corollary 5.2 we have

∑
k ∆2

k <∞, so

the lemma follows, see Figure 21. �

Figure 21. The neighborhood T (r) narrows exponentially in each
tower as we move away from the L-component, so the total area of
T (r) in each R-component is finite (and bounded independent of N).

It follows that the total area of T (r) is O(N).

14. Logarithmic area estimates for T (r)

The logarithmic area of a planar set E with respect to a point w is∫
E

dxdy

|z − w|2
.

We will show the logarithmic area of T (r) is uniformly bounded for any base point

outside T (2r). This will give a bi-Lipschitz estimate on ϕ in the next section.

Lemma 14.1. Suppose r > 0 and suppose w ∈ Ω \ T (2r). Then∫
T (r)

dxdy

|w − z|2
< C <∞,

where C is independent of w and N .

Proof. Let r0 = dist(w, ∂T (2r)) and D = D(w, r0). Let rn = r02n and set An(w) =

{z : rn−1 ≤ |z − w| ≤ rn} (we will drop the w when the center of the annulus is
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clear from context). Note that T (r) =
⋃∞
n=1 T (r) ∩ An. Furthermore, for z ∈ An we

have |w − z|2 ≥ r2
n−1 ' area(An). Thus it suffices to show

∞∑
n=1

area(T (r) ∩ An)

area(An)
<∞,(14.1)

with a bound that is independent of w and N . Note that each term in the series

is bounded by 1. First assume that w is located in one of the “towers” along the

horizontal edges of the R-component Ω (the remaining case will be dealt with later).

Suppose this tower has top edge I (the edge shared with a the adjacent L-component)

and shorter vertical side J . It is convenient to break the sum into four parts:

(1) rn < |I|,
(2) |I| ≤ rn < |J |,
(3) |J | ≤ rn < 1,

(4) 1 ≤ rn <∞.

In each case, the series will be dominated by a geometric series, whose sum is domi-

nated by its largest term, and this will be O(1) in every case.

Case 1 (rn < |I|): See Figure 22. Suppose w is distance y from the top of the

tower. The annulus An hits at most one of the vertical segments in ∂Ω and this

intersection is contained in a rectangle of height O(rn) and width O
(
re−y/|I|

)
, and

thus has area at most O
(
rnre

−y/|I|). Also, since D is outside T (2r), if An intersects

T (r) then rn must be at least comparable to re−y/|I|. Thus, the non-zero terms of

the sum satisfy

area(T (r) ∩ An)

area(An)
≤ O

(
rnre

−y/|I|

r2
n

)
= O

(
re−y/|I|

rn

)
.

These form a decreasing geometric series whose largest term is O(1). Thus the sum

over Case 1 annuli is bounded by a constant independent of w and N .

Case 2 (|I| ≤ rn < |J |): Consider horizontal strips of width |I| as shown in

Figure 23, and number them k = 1, . . . ,m ' |J |/|I| starting from the top side of Ω

and going down (this is assuming we are working near the top edge of Ω; an identical

argument works along the bottom edge). Recall that the interval of length |I| which

is k|I| from the top edge was subdivided into exp(πk) pieces. By Lemma 12.8, the

τ -lengths of all these pieces are comparable to 1. We thus obtain that in the kth strip

Sk the width of T (r) around each vertical segment in ∂Ω is O (exp(−πk)). The area



JULIA SETS WITH DIMENSION NEAR ONE 39

Figure 22. Case 1: annuli hit at most one vertical segment.

of T (r) in each annulus is bounded by the area in the concentric axis-parallel square,

whose side lengths equal the outer diameter of the annulus. In each such square Q,

the area of T (r) ∩ Q ∩ Sk decays geometrically with k and hence is bounded by a

multiple of the area in the top strip. Thus,

area(T (r) ∩ An)

area(An)
≤Me−πk

where k is the smallest index such that An hits the strip Sk. Since rn ≥ |I|, this

index strictly decreases each time we increment n and hence summing over all n in

this case gives a sub-sum of a geometric sum whose largest term (corresponding to

k = 1) is O(1). Thus, the Case 2 terms sum to O(1) with a uniform constant.

Case 3 (|J | ≤ rn < 1): As in Case 2, we overestimate the area of T (r) ∩ An
by replacing the annulus by a square Q, and estimating the area of T (r) ∩ Q by

considering the horizontal strips {Sk}. See Figure 24. Note that annuli in this case

have diameters that are at least comparable to |I| (if w ∈ S1, the “top” strip, defined

in Case 2, then this is true since w 6∈ T (2r), and otherwise the annulus must be large

enough to touch the neighboring L-component, and hence has diameter at least |I|).
As before, the area is dominated by a multiple of the area of Q∩S1, which is bounded

by a multiple of |I| diam(Q) (there are approximately diam(Q)/|I| towers hitting the

annulus and each contributes area approximately |I|2). Thus

area(T (r) ∩ An)

area(An)
≤ M |I| diam(Q)

r2
n

= O

(
|I|
rn

)
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Figure 23. Case 2: Annuli hit two vertical segments, but not the
neighboring L-component.

In this case, rn starts by being at least as large as |J | ≥ |I| (and possibly much

larger), and doubles at each step, so the terms of this sub-series are geometrically

decaying. Thus, the sum is bounded by its first term, which is at most O(1) with

constants again being independent of w and N .

Figure 24. Case 3: annuli hit one, but not two, neighboring L-components.

Case 4 (1 ≤ rn < ∞): By Lemma 13.2, Ω ∩ T (r) has area O(1), independent of

N , for each R-component Ω. Because of the way the R-components are arranged in

the plane, a disk of radius r0 can hit at most O(r0) of them. Thus the annulus An can
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intersect at most O(rn) different R-components, so area(An ∩ T (r)) = O(rn). Since

area(An) ' r2
n, the ratio of these areas is O(1/rn). Since rn increases geometrically,

the Case 4 terms are bounded above by a geometrically decreasing series with first

term of size O(1), see Figure 25. Thus the sum over this case is also O(1).

Figure 25. Case 4: Annuli with diameters rn ≥ 1 can hit at most
max(N,O(rn)) different R-components, each contributing area at most
O(1). Thus the Case 4 terms are bounded by decreasing geometric
series with largest term O(1).

The four cases given above describe the proof of the lemma when the point w is

in one of the towers. If w is not in a tower, but is in the region between the towers

and the real axis, then a similar proof by enumerating cases will work. However, it is

probably easier to argue as follows. For a w that is not in a tower, choose k so that

Ak is the smallest annulus of the form Aj(w) that hits T (r). Then it is easy to check

that Ak+m(w) contains a point z in a tower and outside T (2r) for some number m

that is independent of w. Let s0 = dist(z, ∂T (2r)) and sl = sls0. Let n > k +m+ 2.

Then there exists some l so that rn ≤ sl < rn+1. We then have

An(w) ⊂ Al−2(z) ∪ Al−1(z) ∪ Al(z) ∪ Al+1(z).

Thus, the series (14.1) for w is bounded above by O(1) terms, each bounded by 1,

plus four times the corresponding series for z. By our previous argument, the latter

is uniformly bounded and hence so is the series for w. �
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15. A bi-Lipschitz estimate for the correction map

Recall from the statement of Theorem 3.4 that our entire function is of the form

f = σ ◦ τ ◦ ϕ−1. Thus inside the R-components, we have f−1 = ϕ ◦ τ−1 ◦ log.

The logarithm is easy to understand, the map τ−1 is conformal on a half-plane and

the estimates we need for it are all well known. Only the quasiconformal map ϕ

holds some mystery, but we will show that it is completely harmless, at least for

estimating dimension, because it is bi-Lipschitz with a uniform constant near the

Julia set (however, it need not be bi-Lipschitz everywhere in C).

Lemma 15.1. Suppose A,B are disjoint, planar sets and∫
A

dxdy

|z − w|2
≤ C <∞,

for all w ∈ B. If ϕ is a K-quasiconformal map that is conformal off A, then ϕ is

M-bi-Lipschitz on B with M depending only on C and K, i.e., for all w, z ∈ B,

0 <
1

M(C,K)
≤ |ϕ(z)− ϕ(w)|

|z − w|
≤M(C,K) <∞.

Proof. This is more-or-less immediate from results of Bojarski, Lehto, Teichmüller

and Wittich [7], [26], [40], [42] although we shall give specific references to the more

recent paper [9] which also gives the higher dimensional versions of the two dimen-

sional results we will use.

First we prove that ϕ is asymptotically conformal at ∞. Let w ∈ B. Denote by

µ(z) the dilatation of ϕ. This function is supported on A. Thus, we get∫
|z|>|w|

|µ(z)|dxdy
|z|2

≤
∫
A∩{|z|>|w|}

dxdy

|z|2
≤
∫
A

4dxdy

|z − w|2
≤ 4C.

Hence, (see for example [26, Chapter V, Theorem 6.1]) there is a c 6= 0 so that

lim
z→∞

ϕ(z)

z
= c.

Now suppose z, w ∈ B and let r = |z − w|. Note that

{ξ : |ξ − z| = R} ⊂ {ξ : R− |z| ≤ |ξ| ≤ R + |z|}.

If R is large enough, ϕ maps the round annulus A(z, r, R) = {ξ : r < |ξ − z| <
R} to a topological annulus A′ whose outer boundary is contained in the annulus
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A(ϕ(z), |c|R/2, 2|c|R) and whose inner boundary is a closed Jordan curve γ. By

taking R large enough, we can assume γ hits the disk D(ϕ(z), |c|R/4). Therefore,

mod(A′) = mod(A(ϕ(z), diam(γ), R)) +O(1) = logR− log diam(γ) +O(1).

On the other hand, Corollary 2.10 of [9] says that

mod(A′) = mod(A(z, r, R)) +O

(∫
r<|ξ−z|<R

|µ(ξ)|
|ξ|2

dxdy

)
= mod(A(z, r, R)) +O

(∫
A∩{r<|ξ−z|<R}

1

|ξ|2
dxdy

)
= logR− log r +O(1).

Thus, log diam(γ) = log r + O(1), or diam(γ) ' r. Since ϕ is quasiconformal, the

segment S connecting z and w maps to a quasi-arc and hence satisfies the Ahlfors

three-point condition (e.g., Theorem II.8.6 of [26]), so |ϕ(z) − ϕ(w)| ' diam(ϕ(S)).

Since quasiconformal maps are quasisymmetric diam(ϕ(S)) ' diam(γ) (first due to

Gehring [21]; see also Section 4 of [23]). Thus, |ϕ(z)−ϕ(w)| ' |z−w|, as desired. �

Lemma 15.2. The correction map ϕ is bi-Lipschitz on C\T (2r), that is, there exists

a constant M > 0 (independent of N) such that

1

M
≤ |ϕ(z)− ϕ(w)|

|z − w|
≤M

for all z, w ∈ C \ T (2r).

Proof. Define A = T (r) and B = C\T (2r). Let w ∈ B. By Lemma 14.1, there exists

some C > 0, independent of N and w, so that∫
A

dxdy

|z − w|2
< C <∞.

Applying Lemma 15.1 proves this lemma. �

16. Proof of (1.1): the initial covering exists

We have now completed the preliminary estimates. In the next two sections we

finish the proof of Theorem 1.1 by establishing (1.1) and (1.2) from the introduction.

One of the main facts we need is the following result.
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Lemma 16.1. Let Ω 6= C be simply connected and let τ : Ω→ Hr be conformal. Let

z = x + iy with x > 1 and let V ⊂ Hr be a simply connected neigbourhood of z with

hyperbolic radius bounded by r. If w = τ−1(1 + iy) and U = τ−1(V ), then we have

diam(U) = O(|τ ′(w)|−1x diam(V ))

where the constant depends only on r and the diameter is the Euclidean diameter.

Proof. The distortion theorem for conformal maps (e.g., Theorem I.4.5 of [20]) says

that if ψ : D→ Ω is conformal, then

|ψ′(z)| ≤ |ψ′(0)| 1 + |z|
(1− |z|)3

≤ |ψ′(0)| 2

(1− |z|)3
.(16.1)

Moreover, the derivative of a conformal map has comparable absolute values at any

two points of a compact set, with a constant that depends only on the hyperbolic

diameter of the set. Thus for any compact K in the disk D,

diam(ψ(K)) = O(diam(K)|ψ′(z)|),

where these are Euclidean diameters and where z is any point of K. The constant

depends only on the hyperbolic diameter of K and not on z or ψ.

If Ψ is a conformal map from the right half-plane Hr to Ω, then we can write

it as a composition of the Möbius transformation σ(z) = (z − 1)/(z + 1) from the

half-plane to the disk, followed by a conformal map ψ from the disk to Ω. Note that

σ(1) = 0, σ(∞) = 1, and |σ′(x)| = 2/(x + 1)2 ≤ 2/x2 for x ∈ [1,∞). Also note that

1−σ(x) = 2
x+1
≥ 1/x for x ≥ 1. Using (16.1), these observations, and the chain rule,

we deduce that

|Ψ′(x)| = |ψ′(σ(x))| · |σ′(x)|

≤ |ψ′(0)| 2

(1− |σ(x)|)3
· 2

x2

≤ 4
|Ψ′(1)|
|σ′(1)|

x3

x2

= 8|Ψ′(1)|x,

for x ≥ 1. By considering a vertical translate Ψ̃(z) = Ψ(z + iy) of Ψ and applying

the arguments above to Ψ̃ we see that

|Ψ′(x+ iy)| = O(|Ψ′(1 + iy)| · x),

for x ≥ 1. The lemma follows by applying this discussion to Ψ = τ−1. �
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Lemma 16.2. If N is large enough, then the Julia set for f is contained in the

union of N bounded width strips passing through the origin. More precisely, there are

a C,M <∞ (independent of N) so that

J (f) ⊂ {z ∈ C : |z| > N/(2C), dist(z,X) ≤M}

where X = {w : wN ∈ R}.

Proof. Our entire functions are of the form f = g ◦ ϕ−1 where g is quasiregular and

ϕ is a quasiconformal homeomorphism of the plane. Both g and ϕ were chosen to fix

the origin and g maps the disk D(0, N) into the unit disk. Lemma 15.2 shows that ϕ

is bi-Lipschitz with some constant C <∞ in D(0, N/2), since this disk is contained

inside the central D-component but outside T (2r), if N is large enough. Thus ϕ−1

maps D(0, N/(2C)) into D(0, N/2). Hence f maps D(0, N/(2C)) into the unit disk,

and hence into itself for N large enough. Therefore, D = D(0, N/(2C)) is inside the

Fatou set of f . In particular,

J (f) ⊂ {z : |f(z)| > N/(2C)}) ⊂ ϕ({z : |g(z)| > N/(2C)}).

If N > 2C, then by construction {z : |g(z)| > N/(2C)} ⊂ {z : |g(z)| > 1} lies in

the union of R-components. In particular, |g(z)| ≤ 1 for all points outside the R-

components. Also by construction, g maps X to itself and the union of R-components

is contained in a unit neighborhood of X \D(0, N). Moreover, we claim that ϕ fixes

each arm of the set X.

One way to verify this is to construct ϕ as follows. Use the measurable Riemann

mapping theorem to find a quasiconformal map from the sector {w : | arg(w)| <
π/2N} with the same dilatation and fixing 0 and∞; then extend the map to the whole

plane by reflecting across the arms of X one at a time. We end with a quasiconformal

map of the plane and the correct dilatation, so it must be ϕ (up to a positive dilation).

Moreover, it preserves the arms of X by its definition, proving the claim.

Since ϕ preserves the arms of X and it is C-bi-Lipschitz on the part of the arms

of X that lie outside T (2r) (this is all but a bounded segment), and since it is

quasisymmetric on the whole plane, there is a M <∞ so that

ϕ({z : dist(z,X) ≤ 1}) ⊂ {z : dist(z,X) ≤M}).
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In particular

J (f) ⊂ ϕ({z : |g(z)| > 1})

⊂ ϕ({z : |z| > N/2, dist(z,X) ≤ 1})

⊂ {z : |z| > N/(2C), dist(z,X) ≤M}. �

Proof of (1.1). The Julia set is contained in the union of 2N half-strips of fixed width

M . Due to the symmetries in the construction, it will suffice to consider coverings

of only one of these, say S0, the half-strip intersecting the positive real axis. This

half-strip can be covered by a collection squares {Qn} of side length M and centered

at points n = {bN/(2M)c, 1 + bN/(2M)c, . . . }. Obviously, the diameters of these

squares are all about unit size, hence they are not summable. However, we shall

show that given δ > 0, we can choose N large enough so that∑
diam(f−1(Qn))1+δ <∞,

where the sum is over all preimages outside D(0, rN) (we need only consider preimages

hitting the Julia set and this disk is in the Fatou set).

Note that f−1 = ϕ ◦ g−1. There are 2N R-components, and preimages under g

can lie in any of these, but for the moment we only consider g-preimages in the R-

component that intersects the positive real axis. Off the set T (r), g(z) = exp(τ(z))

where τ : Ω0 → Hr is conformal. Therefore, g−1(Q) for Q ⊂ Hr \ τ(T (r)), is given

by first taking inverse images under the exponential map, then under the conformal

map τ . Both are easy to understand.

The inverse image of Qn under ez is a countable union of sets of diameter O(1/n).

The sets are all vertical translates of each other and there is exactly one containing

each point of the form zn,k = log n + k2πi. Suppose Yn,k is the preimage of Qn

containing zn,k. Let Pn,k = τ−1(Yn,k), and wk = τ−1(1 + 2πki).

Lemma 16.3. diam(Pn,k) = O(|τ ′(wk)|−1 · logn
n

).

Proof. This follows immediately from Lemma 16.1, since Yn,k has diameter O(1/n)

and hits the vertical line {x = log n}. �

Each of the points zn,k is associated, by horizontal projection, to one of the intervals

[2πni, 2π(n + 1)i] on ∂Hr and each point wn,k is associated to an edge of the folded

graph T ′. Each edge of T ′ is associated to a side Ik of the R-component and at most
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O(1) edges of T ′ correspond to any such side of the R-component (this is because the

τ -lengths of all sides are uniformly bounded). In particular, for any 0 < δ ≤ 1,

|τ ′(wn,k)| '
1

diam(Ik)
,

diam(Pn,k) = O

(
diam(Ik) log n

n

)
,

∑
k

∑
n

diam(Pn,k)
1+δ ≤ C

(∑
k

diam(Ik)
1+δ

)(∑
n

(
log n

n

)1+δ
)
.

The first term in the product is finite by construction (see Corollary 5.2 and Lemma

13.1) and the second is finite by a simple calculus exercise. Note that none of these

bounds depend on N . This shows that the g-preimages of the {Qn} have diameters

whose (1 + δ)-powers have a finite sum. Lemma 15.2 shows that the images of these

preimages under the correction map have comparable diameters, so the same is true

for the f -preimages, if the g-preimages lie outside T (2r). But this is fulfilled if N is

large enough so that rN is larger than exp(2A) where A is the upper bound on the

τ -sizes of the edges obtained in Lemma 12.8.

In the argument so far we have assumed we started with a covering {Qn} of one

tract of f and we only counted g-preimages that were in a single tract of g. Since f

and g both have 2N tracts, the sum over all preimages of coverings of all tracts will

be larger by a factor of 4N2, and this is clearly still finite. �

17. Proof of (1.2): the iterative step

Next, we will prove the iterative step which finishes the proof of Theorem 1.1.

Lemma 17.1. Suppose f = g ◦ ϕ−1 is as above. Let D = D(w, r) be a disk with

|w| > rN + 1 and r < 1 (so D is disjoint from the closed disk D(0, rN)). Let {Dj}
be the connected components of f−1(D). Given ε > 0 and δ > 0, if N is sufficiently

large, then ∑
j

diam(Dj)
1+δ ≤ ε · diam(D)1+δ.

Proof. We can write the inverse of f by taking a complex logarithm, followed by the

conformal map of the right half-plane to an R-component, followed by the correction
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map ϕ. The correction map will only be applied to sets where it is bi-Lipschitz, so it

only adds a uniformly bounded multiplicative factor to the sum in the lemma.

First, the logarithm of the disk D is an infinite collection of disjoint sets of diameter

O(r/|w|) arranged on the vertical line {x = log |w|}. By Corollary 12.9 we have

τ(T (2r)) ⊂ VM = {x+ iy : 0 < x ≤M}.(17.1)

If N so large that rN > exp(M), where M is the N -independent upper bound for the

τ -sizes of the edges of the graph, we have

(17.2) log |w| > log rN > M.

Each component contains one point of the form log |w|+i(θ+2πk), where θ = arg(w).

By Equation (17.2), all these sets lie in a sub-half-plane

Hr +M = Hr \ VM = {x+ iy : x > M}.

By Lemma 16.1 the preimages have diameters bounded by

O

(∣∣∣(τ−1
)′

(1 + i (2πk + θ))
∣∣∣ r log |w|
|w|

)
= O

(
diam(Ik)

r log |w|
|w|

)
.

Since |w| ≥ rN > N and x 7→ log(x)/x is decreasing for x > e, this is bounded by

O

(
diam(Ik)

r log |N |
N

)
.

Sum over k, use Lemma 13.1 and Corollary 5.2, and recall that there are 2N R-

components to consider:∑
k

(diamDk)
1+δ ≤ C

δ
· r1+δ · (logN)1+δN

N1+δ
≤ C

δ
· r1+δ · (logN)1+δ

N δ
.

Taking N large enough gives the desired estimate for the quasiregular map g. By

(17.2) and (17.1), the g-preimages of D lie outside T (2r). By Lemma 15.2, the

correction map expands the diameters by a bounded factor (independent of N).

Taking N even larger, if necessary, proves the lemma. �

This completes the proof of Theorem 1.1: Speiser class Julia sets may have dimen-

sion as close to 1 as desired.

Our examples have three singular values. Is it possible to build entire functions

with only two singular values whose Julia sets have dimensions as close to 1 as we

wish? Does every dimension in (1, 2] occur for some f ∈ S?
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Two entire functions f, g are said to be quasiconformally equivalent if there are

quasiconformal homeomorphisms ψ, φ of the plane so that f ◦ ψ = φ ◦ g. The set of

functions QC-equivalent to a given Speiser class function f forms a finite dimensional

complex manifoldMf (the complex dimension is q+2 where q is the number of singular

values; see Section 3 of [18]). Basic properties of quasiconformal maps imply that

dim(J (g)) is a continuous function on Mf , and also imply that if this function attains

the value 2, then it is constant on Mf . Can it ever be non-constant? Probably this is

common, but it is not even clear what happens for the examples constructed in this

paper. Can the dimension ever be constant on Mf with a value other than 2? If not,

is sup{dim(J (g)) : g ∈Mf} = 2 for every f?

18. The Julia set is a Cantor Bouquet

A Cantor bouquet is a closed set in the plane so that there is a homeomorphism

of the plane mapping it to a “straight brush” in the sense of Aarts and Oversteegen,

see [1]. This is a subset B of [0,∞) × (R \ Q) that is closed in the plane and such

that

(1) every point of B is contained in a closed horizontal ray, called a hair,

(2) the horizontal projection of B onto the y axis is dense,

(3) any point of B can be approached from above or below by endpoints of hairs.

Any two such sets are homeomorphic, and can even be mapped to each other by a

homeomorphism of the plane (i.e., they are ambiently homeomorphic). See [1], [17].

Lemma 18.1. The Julia sets of our examples are Cantor bouquets.

Proof. The construction in this paper shows that our examples have the following

properties: 0 is an attracting fixed point and all three singular values (0,−1, 1) are

contained in the basin of attraction of 0 (which contains a large disk around the

origin). This means our maps are of disjoint type, i.e., the singular set is compact

and contained in the immediate attracting basin of an attracting fixed point.

A tract of an entire function is a connected component of {z : |f(z)| > R}. These

are unbounded Jordan domains. If a tract Ω of f does not contain zero, then consider

a connected component Ω′ of log(Ω) for some branch of the logarithm (there are

countably many such and any two are related by a vertical translate by an integer

multiple of 2π. We say that a curve γ ⊂ Ω′ from a point z0 ∈ Ω′ to ∞ has bounded
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wiggling if there are real constants A,B so that for any point z ∈ γ we have Re(z) >

A · Re(z0) − B. The domain Ω′ is said to have uniformly bounded wiggling if all

the hyperbolic geodesics from z0 ∈ Ω′ to ∞ have bounded wiggling (with uniform

constants).

Proposition 5.4 of [34] implies that if f is in the Eremenko-Lyubich class and the

tracts of f have uniformly bounded wiggling, then f satisfied a condition called the

“uniform linear head-start condition”. We won’t define this condition, but we note

that Corollary 6.3 of [4] says that if an entire function is disjoint-type and has the

uniform head-start condition, then the Julia set is a Cantor bouquet. Thus, [34] and

[4] combined imply that disjoint-type plus bounded wiggling imply the Julia set is a

Cantor bouquet. Hence, it suffices to show that our examples have bounded wiggling.

The logarithms of the R-components we construct in this paper clearly have this

property. These components are mapped to the tracts of our entire functions by the

correction map ϕ. Let R be a tract of the quasiregular map g and S = ϕ(R) the

corresponding tract of the entire function f . Let R′ be a component of log(R) and

S ′ a component of log(S). Choosing the correct branch of the logarithm, the map

h(z) = log(ϕ(exp(z))) maps R′ conformally onto S ′. The estimates of this paper

show that ϕ is asymptotically conformal, i.e., there is a constant c 6= 0 so that∣∣∣∣ϕ(z)

z
− c
∣∣∣∣ = o(1) as |z| → ∞

or in other words ϕ(z) = cz + o(|z|) as |z| → ∞. Hence,

log(ϕ(z)) = log(z) + log(c) + log (1 + o(1)) = log(z) +O(1)

which yields |h(z) − z| = O(1). This easily implies that hyperbolic geodesics in

R′ map to curves of bounded wiggling in S ′. This in turn implies the hyperbolic

geodesics in S ′ have bounded wiggling by [34, Lemma A.2]. �

For disjoint-type, finite-order maps, Barański [3] proved that the Julia set is a

Cantor bouquet whose endpoints have dimension 2 and the rest of the bouquet has

dimension 1 (this was proven earlier for exponential maps by Karpińska [24]). In our

example, the non-endpoints are escaping (see Theorem 5.1 in [31]) and this should

imply that they have dimension 1, and so we expect that the dimension of the whole

Julia set is concentrated on the endpoints, but we leave this for future investigation.
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