CONFORMAL IMAGES OF CARLESON CURVES

CHRISTOPHER J. BISHOP

ABSTRACT. We show that if \(\gamma \) is a curve in the unit disk, then arclength on \(\gamma \) is a Carleson measure iff the image of \(\gamma \) has finite length under every conformal map onto a domain with rectifiable boundary.

1991 \textit{Mathematics Subject Classification}. Primary: 30C62 Secondary: 30C45
\textit{Key words and phrases.}

The author is partially supported by NSF Grant DMS 10-06309.
1. Curves with rectifiable image

In this note we prove the following result, answering a question asked by Percy Deift. The question is a natural one and the proof follows standard techniques, but I have not been able to find this result in the literature. Recall that a positive measure μ on the open unit disk, \mathbb{D}, is called a Carleson measure if

$$
\|\mu\|_C = \sup_{|z|=1, r>0} \frac{\mu(D(z, r))}{r} < \infty.
$$

The left hand side is called the Carleson norm of the measure.

Theorem 1.1. If γ is a curve in the unit disk, then arclength on γ is a Carleson measure iff the image of γ has finite length under every conformal map onto a bounded domain with rectifiable boundary.

Proof. One direction is an easy consequence of known facts. If f is a conformal map on a rectifiable domain, then the F. and M. Riesz theorem says that its derivative is in the Hardy space H^1. For a Jordan domain, the Hardy space norm of f' is the length of the image’s boundary. If the boundary is not a Jordan curve then we may replace “length” by “1-dimensional Hausdorff measure” (also denoted by ℓ) and get

$$
\ell(\partial \Omega) \leq \|f'\|_{H^1} \leq 2\ell(\partial \Omega).
$$

For any H^p function g on the unit disk

$$
\int gd\mu \leq C_p \|\mu\|_C \|g\|_{H^p},
$$

where $\| \cdot \|_{H^p}$ is the Hardy space norm. Thus taking $g = f'$ we see that

$$
\ell(f(\gamma)) = \int_{\gamma} |f'| ds \leq C_1 \|\mu\|_C \ell(\partial f(\mathbb{D})),
$$

where μ denotes arclength measure on γ.

The other direction is less standard. Let μ denote arclength measure on a curve γ and suppose this is not a Carleson measure (for the purposes of this proof any finite, positive measure will do); we are going to show that for any non-Carleson measure μ there is a conformal map onto a rectifiable so that $\int |f'|d\mu = \infty$. Then there must be sequence of disks centered on the unit circle where

$$
\mu(D(x_n, r_n)) \geq nr_n,
$$
and $|x_n| \not\to 1$. Note these conditions still hold when we pass to a subsequence.

Fix one such disk $D = D(x, r)$ and let $W_t = D \cap \{|z| < t\}$. Since D is the union of the W_t's as $t \not\to 1$, we can choose a t so that $\mu(W_t) \geq \frac{1}{2} \mu(D)$. For each disk in our sequence, make such a choice and let W_n denote the corresponding sequence of sets. By passing to a subsequence we can assume these sets are disjoint, indeed, that $\text{diam}(W_{n+1}) \ll \text{dist}(W_n, \mathbb{T})$. Let $d_n = \text{diam}(W_n)$ (Euclidean metric).

We will define a conformal map h onto a rectifiable domain such that $|h'| \geq b_n/d_n$ on W_{k_n} where $b_n \not\to 0$ is a fixed sequence depending on $\{d_n\}$, but $\{k_n\}$ is any subsequence of the positive integers which increases sufficiently quickly. Thus

$$\int |f'|d\mu \geq \sum_n k_n b_n = \infty$$

if we choose $k_n \geq 1/b_n$.

The basic building block is the conformal map from the unit disk, \mathbb{D}, to the union of \mathbb{D} and $D(1 + a, a(1 + \epsilon))$. This is a union of two overlapping disks that has a small “gap” joining them and the size of this gap can be made as small as we wish by taking $\epsilon \not\to 0$. We will denote this domain $\Omega_{a,\epsilon}$. See Figure 1.

The conformal map onto this domain is a composition of Möbius transformations and power functions, but we will not need the explicit formula. We will only use the following facts:

1. We can choose the map f to be symmetric with respect to the real line, and fix 0.
2. Fix $a > 0$. There is an $r_a > 0$ so that for any $0 < r < r_a$, we can choose $\epsilon > 0$ so that $f(1 - r) = a$.
3. There is a $c > 0$ (independent of a and ϵ) so that for this choice of ϵ, $|f'| \geq c/a$ on $D(1, r)$.
4. By replacing $f(z)$ by $f(rz)$ for r very close to 1, we can assume f has a conformal extension across \mathbb{T} and the previous conditions still hold.
5. As $\epsilon \not\to 0$, the map f from \mathbb{D} to $\Omega_{a,\epsilon}$ converges uniformly on $\mathbb{D} \setminus D(1, \delta)$ ($\delta > a$ fixed) to the identity function and its derivative converges uniformly to 1.

These can be proven by an explicit calculation of f, or by applying symmetry and distortion properties of conformal maps (e.g., Koebe’s $\frac{1}{4}$-theorem). The idea for (2)
is that the hyperbolic distance between 0 and a is a continuous function of \(\epsilon \) and it goes to \(\infty \) as \(\epsilon \) goes to zero. For a given \(a, \epsilon \) we can choose \(r \) so the image is \(> 1 + a \), but the image tends to 1 as \(\epsilon \searrow 0 \), so there is an intermediate choice of \(\epsilon \) where \(r \) maps to \(1 + a \).

By rotating (replace \(f(z) \) by \(f(\lambda z)/\lambda, |\lambda| = 1 \)), we can clearly make \(|f'| \) large on any sufficiently small Carleson disk, not just those centered at 1.

We proceed by induction. Start with \(a_1 = 1 \) and choose \(f_1 \) and \(k_1 \) so that \(|f'_1| \geq 1 \) on \(W_{k_1} \) and \(f_1 \) extends to be analytic on \(\{|z| < 1 + r_1\} \) for some positive \(r_1 \).

In general, assume we have chosen \(f_1, \ldots, f_{n-1} \) and all have a conformal extension to \(\{|z| < 1 + r_n\} \) for some positive \(r_{n-1} \). Let \(h_{n-1} = f_1 \circ \cdots \circ f_{n-1} \). Let \(M_{n-1} = \max |h'_{n-1}| \) over the closed unit disk (since \(h_{n-1} \) has a holomorphic extension across the boundary, this maximum is certainly finite). Similarly, let \(m_n = \min |h'_{n-1}| \).

Choose \(a_n \ll r_n/2 \) so small that \(a_n M_n \leq 2^{-n} \) and so small that any conformal map \(g \) onto \(\Omega_{a,\epsilon} \), satisfies

\[
|g(z) - z| \leq r_{n-1}/2,
\]
on $\overline{D} \setminus D(1, r_{n-1})$. Then choose a region W_{k_n} so far down our sequence that

1. its diameter is smaller than r_{a_n} from condition (2) above,
2. The minimum and maximum of $|h'_{n-1}|$ over W_{k_n} differ by at most a factor of 2 (possible by the distortion theorem for conformal maps if $\text{diam}(W_{k_n}) \ll r_n$).

Let C_n denote the minimum of $|h'_{n-1}|$ over W_{k_n}.
3. $\mu(W_n) \geq \text{diam}(W_n)/(m_n a_n)$.

Then choose ϵ_n and the corresponding conformal map f_n so that $|f_n'| \geq c/a_n$ on W_n.

Consider the composition $h_n = h_{n-1} \circ f_n = f_1 \circ \cdots f_{n-1} \circ f_n$. By choice, the image of each map is inside a disk where the next map is conformal so the compositions are all well defined. Moreover, the limiting map is a conformal map on disk and is the uniform limit of $\{h_n\}$ on compact subsets of \mathbb{D}.

On each W_{k_j} we have

$$|h_n'| \geq |h_j'| (\prod_{m=j+1}^{n} (1 - 2^{-m})) \geq c|h_j'|.$$

Thus later generations of the construction do not greatly effect the expansion we have already created on earlier regions. In particular

$$\int |h_n'| d\mu \geq c \sum_{j=1}^{n} \int_{W_{k_j}} |h_j'| d\mu \geq c \sum_{j=1}^{n} 1 = cn,$$

for a uniform constant c. Hence the same holds for h and so h maps γ to a curve of infinite length.

Finally, we have to check that h maps \mathbb{D} to a domain with rectifiable boundary. However, the domain $h_n(\mathbb{D})$ is obtained by taking the union of \mathbb{D} with disk of diameter a_n and composing with the map h_{n-1} and then dilating the map very slightly to make sure it has an analytic extension. Adding the disk adds length $O(a_n)$ and composing with h_{n-1} gives a curve which is in the union of $\partial h_{n-1}(\mathbb{D})$ and the image of the small disk. This image has length $O(M_{n-1} a_n) = O(2^{-n})$. Dilating shortens the length of the boundary curve (since $|f'|$ is subharmonic the length of $f(|z| = r)$ is always less than the length of $f(|z| = 1)$ for any conformal map). Therefore the length of $\partial h_n(\mathbb{D})$ is uniformly bounded by some L.
To deduce that $\partial h(\mathbb{D})$ also has bounded length we can argue as follows. The length of $\partial h(\mathbb{D})$ is

$$\sup_{0<r<1} \int |h'(re^{i\theta})|d\theta.$$

On the other hand, for any fixed r, h_n converges uniformly to h on the compact set $\{|z|=r\}$ and hence its derivative converges uniformly to h' on this set. Thus

$$\int |h'(re^{i\theta})|d\theta \leq \sup_n \int |h'_n(re^{i\theta})|d\theta \leq L.$$

Taking the sup over r we see h' is in the Hardy space H^1 and so h maps onto a rectifiable domain.

□

C.J. Bishop, Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794-3651

E-mail address: bishop@math.sunysb.edu