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Abstract. We show that if γ is a curve in the unit disk, then arclength on γ is a
Carleson measure iff the image of γ has finite length under every conformal map of
the disk onto a bounded domain with a rectifiable boundary.

In this note we characterize curves in D for which arclength is a Carleson measure,

in terms of conformal maps onto rectifiable domains, answering a question asked

by Percy Deift (personal communication) arising from his work on Riemann-Hilbert

problems. The question seems natural and the proof follows from standard tech-

niques, but I have not been able to locate this result in the literature.

Recall that a positive measure µ on the open unit disk, D, is called a Carleson

measure if

‖µ‖C = sup
|z|=1,r>0

µ(D(z, r))

r
< ∞.

The left hand side is called the Carleson norm of the measure.

Theorem 1. If γ is a curve in the unit disk, then arclength on γ is a Carleson

measure iff the image of γ has finite length under every conformal map onto a bounded

domain with rectifiable boundary.

Proof. One direction is an easy consequence of known facts. If f is a conformal

map onto a rectifiable domain, then the F. and M. Riesz theorem (e.g., Theorem

VI.1.2 of [2]) says that its derivative is in the Hardy space H1. For a Jordan domain,

the H1 norm of f ′ is the length of the image’s boundary. If the boundary is not a

Jordan curve then we may replace “length” by “1-dimensional Hausdorff measure”

(also denoted by ℓ) and get ℓ(∂Ω) ≤ ‖f ′‖H1 ≤ 2ℓ(∂Ω). For any Hp function g on the
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unit disk ∫
|g|pdµ ≤ Cp‖µ‖C‖g‖Hp ,

(e.g., Theorem II.3.9 of [1]) where ‖ · ‖Hp is the Hardy space norm. Thus taking

g = f ′ we see that

ℓ(f(γ)) =

∫
γ

|f ′|ds ≤ C1‖µ‖C · ℓ(∂f(D)),

where µ denotes arclength measure on γ.

The converse requires more work. Theorem II.3.9 of [1] implies that if µ is not

Carleson, then there is a g ∈ H1 so that
∫
|g|dµ = ∞. By the usual factorization

theorems for Hardy spaces (e.g., Corollary II.5.7 of [1]), we can assume g never

vanishes in D, but this is not quite enough to deduce that g = h′ for some conformal

map h. Instead, we will explicitly construct a conformal map h onto a rectifiable

domain so that
∫
|h′|dµ = ∞.

Our conformal map h will be built as a limit of compositions from a collection of

conformal maps defined as follows. Suppose 0 < a < 1 and let Ωa,ǫ = D ∪ D(1 +

a, (1 + ǫ)a) be the overlapping union of the unit disk D and a smaller disk centered

outside of D. See Figure 1. The conformal map D → Ωa,ǫ is a composition of Möbius

transformations and power functions, but we will not need the explicit formula. We

will only use the following facts.

Lemma 2. There is a constant 0 < c < 1 so that given any 0 < a < 1 and 0 < δ <

1/2, there exists an 0 < ra < 1 so that the following holds. For any 0 < r < ra there

is an ǫ > 0 and a conformal map f : D → Ωa,ǫ such that:

(1) f(0) = 0 and f is symmetric with respect to R,

(2) f(1− r) = 1 + a,

(3) |f ′| ≥ ca/r on D(1, r).

(4) f has a conformal extension across T,

(5) |f(z)− z| < δ and |f ′(z)− 1| < δ on D \D(1, δ).

The lemma be proven by an explicit calculation of f , or by applying symmetry and

distortion properties of conformal maps (e.g., Koebe’s 1

4
-theorem). The idea for (2)

is that the hyperbolic distance between 0 and a is a continuous function of ǫ and it

goes to ∞ as ǫ goes to zero. For a given a, ǫ we can choose r so the image is > 1+ a,
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f

Figure 1. The top picture shows the domain Ωa,ǫ which is a small
disk attached to the unit disk. A properly placed Carleson region is
expanded by this map to a size comparable to the added “bubble” and
|f ′| is comparable to the ratio the diameters of the region and its image.
By composing maps of this form, we get build a sequence of domains
that look like the lower picture, except that in the proof the sizes of
the “bubbles” shrink much more dramatically.

but the image tends to 1 as ǫ ց 0, so there is an intermediate choice of ǫ where r

maps to 1+ a. By replacing f(z) by f(sz) for s very close to 1, we can assume f has

a conformal extension across T and the previous conditions still hold. We leave the

details to the reader.

By conjugating f with a rotation of D (i.e., replace f(z) by f(λz)/λ, |λ| = 1),

we can clearly make |f ′| large on any sufficiently small Carleson disk, not just those

centered at 1.

Let µ denote arclength measure on a curve γ and suppose this is not a Carleson

measure. Then there must be sequence of disks centered at points {xn} on the unit

circle and radii ρn → 0 so that

µ(D(xn, ρn)) ≥ nρn.

Fix one such disk D = D(x, r) and let Wt = D ∩ {|z| < t}. Since D ∩D is the union

of the Wt’s as t ր 1, we can choose a t so that µ(Wt) ≥ 1

2
µ(D). For each disk in

our sequence, make such a choice and inductively define a subsequence of sets {Wn}
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so that µ(Wn) ≥ ndn and dn+12
−n · dist(Wn,T), where dn = diam(Wn) (Euclidean

diameter). We now proceed by induction to construct a sequence of conformal maps

{hj} on D that map our non-Carleson curve γ to curves with longer and longer length.

The limiting map h will map γ to a curve of infinite length.

Start with a = δ = 1/2 and let ra be as in the lemma. Choose k1 so large that the

region Wk1 ⊂ D(xk1 , ρk1) has diameter less than ra. By the lemma, we can choose

a point a1 = a · xk1 outside D, an ǫ1 > 0, and a conformal map f1 : D → Ωa1,ǫ1 so

that |f ′
1| ≥ ca1/ρk1 on Wk1 , and f1 extends to be analytic on {|z| < 1 + s1} for some

positive s1. Let h1 = f1.

In general, assume we have used the lemma to choose conformal maps f1, . . . , fn−1

and that they and all have a conformal extension to {|z| < 1+sn−1} for some positive

sn−1. Let hn−1 = f1◦· · ·◦fn−1. LetMn−1 = max |h′
n−1| over the closed unit disk (since

hn−1 has a holomorphic extension across the boundary, this maximum is certainly

finite). Similarly, let mn = min |h′
n−1| > 0. Choose 0 < an < sn−1 and ǫn > 0 so small

that anMn−1 ≤ 2−n and so that the conformal map fn given by the lemma satisfies

both

|fn(z)− z| ≤ sn−1/2, and |f ′
n − 1| ≤ 2−n,

on D \ D(1, sn−1). Moreover, |f ′
n| ≥ c/(anρkn) on D(1, rn), where rn = ran as given

by the lemma.

Now choose kn so large that the region Wkn satisfies:

(6) diam(Wkn) < ran (ra as given by the lemma),

(7) The minimum and maximum of |h′
n−1| over Wkn differ by at most a factor of

2 (this is possible by the distortion theorem for conformal maps if diam(Wkn)

is small enough).

(8) kn ≥ c/(mnan).

By the definition of Wn, Condition (8) implies

µ(Wkn)/diam(Wkn) ≥ kn ≥ c/(mnan)

or

µ(Wkn) ≥
c · diam(Wkn)

mnan
.

By conjugating fn by an appropriate rotation, we get a function (also called fn) so

that |f ′
n| ≥ can/ρkn on Wkn . This implies that the length of σ inside Wkn is expanded
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to approximately unit length under fn. We want to show this is also true for the

composition hn = hn−1 ◦ fn = f1 ◦ · · · fn−1 ◦ fn and show these maps have a limit h

with the same property.

By construction, the image of each map fj lies inside a disk where the map fj−1 is

defined and conformal so the composition is well defined and conformal on D. Since

the maps fj converge uniformly to the identity on compact subsets of D (as rapidly

as we wish), the limiting map h exists and is conformal on D. Next we check that

h(γ) has infinite length and that h(T) is rectifiable.

On each Wkj we have

|h′
n| ≥ |h′

j|(
n∏

m=j+1

(1− 2−m)) ≥ c|h′
j|.

Thus later generations of the construction do not greatly effect the expansion we have

already created on earlier regions. Since hn → h uniformly on compact sets, we also

have h′
n → h′ uniformly on compact sets and hence∫

K

|h′|dµ = lim
n

∫
K

|h′
n|dµ,

for any compact K ⊂ D. In particular,, we can let K = Wk1 ∪ · · · ∪Wkn be a finite

union of the sets Wkj and note that

∫
K

|h′
n|dµ ≥ c

n∑
j=1

∫
Wkj

|h′
j|dµ &

n∑
j=1

mn−1 ·
1

|aj|ρkj
· ρkjkj &

n∑
j=1

1 → ∞

by our choice of kj in Condition (8) above. Thus h(γ) has infinite length.

Finally, we have to check that h maps D to a domain with rectifiable boundary.

However, the domain hn(D) is obtained by taking the union of D with disk of diameter

an and composing with the map hn−1 and then dilating the map very slightly to make

sure it has a conformal extension across the unit circle. Adding the disk adds length

O(an) and composing with hn−1 gives a curve which is in the union of ∂hn−1(D) and

the image of the small disk. This image has length O(Mn−1an) = O(2−n). Dilating

shortens the length of the boundary curve (since |f ′| is subharmonic the length of

f(|z| = r) is always less than the length of f(|z| = 1) for any conformal map). Thus

we can choose |an| ց 0 so rapidly that the length of ∂hn(D) is uniformly bounded

above by some L < ∞.
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Next, note that the length of ∂h(D) is equal to

sup
0<r<1

∫
|h′(reiθ)|dθ.

On the other hand, for any fixed r, hn converges uniformly to h on the compact set

{|z| = r} and hence its derivative converges uniformly to h′ on this set. Thus for a

fixed 0 < r < 1, ∫
|h′(reiθ)|dθ ≤ sup

n

∫
|h′

n(re
iθ)|dθ ≤ L.

Taking the sup over r we see h′ ∈ H1 and so h(T) is rectifiable. �

Although Deift’s question concerned curves, we never used this, and we have ac-

tually proven that a positive measure µ on the disk is Carleson iff
∫
|f ′|dµ < ∞ for

any conformal map f onto a rectifiable domain.

I thank the anonymous referee for several helpful comments and suggestions that

clarified the argument and improved the exposition of this note. Also thanks to Percy

Deift for raising the problem originally and encouraging me to record its solution.
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