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Abstract. We construct a closed Jordan curve γ ⊂ R
2 so that γ∩S is uncountable

whenever S is a line segment whose endpoints are contained in different connected
components of R2 \ γ.

We say that a Jordan arc σ ⊂ R
2 crosses a compact set K ⊂ R

2 if the two

endpoints of σ are in different connected components of R2 \ K. Clearly any arc

crossing K must intersect K in at least one point of K. If the intersection consists

of exactly one point, we say K has a simple crossing by σ. In this note we answer a

question of Percy Deift by constructing a closed Jordan curve γ ⊂ R
2 so that γ∩S is

uncountable whenever S is a line segment crossing γ, i.e., γ has no simple crossings

by a line segment. Very likely, such examples are known to a variety of people, but I

am not aware of a reference in the literature.

We will construct a sequence of closed Jordan curves {γn} and a decreasing se-

quence of positive real numbers {ǫn} ց 0 so that so that if we set

Γn = {z ∈ R
2 : dist(z, γn) ≤ ǫ},

then

(1) Γn+1 ⊂ Γn for n = 0, 1, 2, . . . and γ = ∩∞

n=0Γn is a closed Jordan curve.

(2) Any closed segment that crosses Γn contains at least two disjoint closed sub-

segments that each cross Γn+1.

If S is any closed segment that crosses γ, then there is a ǫ > 0 so that both

endpoints of S are at least distance ǫ from γ and hence these endpoints are in different

complementary components of Γn for some n. Thus S crosses Γn. Claim (2) above

then implies that each component of S∩Γn+k contains two components of S∩Γn+k+1,

and this implies that S ∩ γ contains a Cantor set and is uncountable.
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Thus it suffices to construct curves {γn} and numbers {ǫn} so that (1) and (2) are

satisfied. We can start with γ0 being a circle and shall proceed in such a way that

each γn is a finite union of circular arcs An = {An
k}, that are disjoint except for their

endpoints, and so that γn is continuously differentiable (so adjacent circular arcs have

a common tangent where they meet). See Figure 1. Since γ0 clearly has this form, it

suffices to describe how to construct γn from γn−1.

Figure 1. The curves γn will be finite unions of circles joined end-
to-end to for a differentiable curve.

We let the radius of a circular arc A denote the radius of the circle containing A

(if A is a line segment, we let the radius be ∞, although we will not use this case

in this paper). Since γn is a finite union of circular arcs, there is a minimum radius

rn that occurs and this number must be positive. There is also a positive distance

dn > 0 so that any two non-adjacent arcs in An are distance at least dn apart.

Given γn−1 as above, choose 0 < ǫn < min(dn−1, rn−1) and choose a finite collection

of points {znk} ⊂ γn, for k = 1, . . . , Nn. We will assume Nn is even. These points

should include every endpoint of every arc in An and are chosen so that

|znk − znk+1| < δ · ǫn,

where 0 < δ < 1 is a fixed constant that we will specify below. (Here and later, indices

are considered modulo Nn, so the equation includes the case |znNn

− zn1 | < δǫn.)

If δ ≤ 1, the collection of open disks, Dn, given by Dn
k = D(znk , ǫn) covers γn−1. If

δ is small, then each point of γn is contained in a large number of the disks {Dn
k}

(approximately 1/δ disks). Let Cn
k = {z : |z − znk | = ǫn} denote the boundary circle

of Dn
k .

Since ǫn < dn, a disk of this form can only hit a disk that is centered on the same

circular arc in A or is centered on one of the two adjacent arcs. Since ǫn < rn, the

closure of Dn
k does not hit the closure of Dn

k+2
\Dn

k+1
. See Figure 2.
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Figure 2. Disks centered along γn are nicely separated in the sense
that W n

k+1
= Dn

k+1
\Dn

k defines a crescent that only touches W n
k+2

and
W n

k+2
and no other crescents in the chain.

Let wn
k = Cn

k ∩ γn ∩ Dn
k+1

(our assumptions imply this is a single point). Let Ln
k

be the line perpendicular to γn−1 at w
n
k . Let H

n
k be the half-plane defined by Ln

k and

not containing znk . Because of our choice of δ, every ray with vertex wn
k that lies in

Hn
k crosses Cn

j for j = k + 1, . . . , k + 3. See Figure 3.

zn
k

zn
k+1 zn

k+2

wn
k

L
n
k

Cn
k+1

Cn
k+2

Figure 3. The line Ln
k through wn

k , perpendicular to γn define a
half-plane Hn

k . Every ray in Hn
k with base point wn

k , hits the circular
arcs Cn

k+1
\Dn

k and Cn
k+2

\Dn
k+1

.



4 CHRISTOPHER J. BISHOP

Thus we can place a disk D̃n
k inside the crescent Dn

k+1
\Dn

k that is tangent to both

side of the crescent and that is disjoint from Hn
k . For example, we could make D̃n

k

be tangent to both sides and also tangent to Ln
k . There are two possible locations

for such a disk, one near either vertex of the crescent, i.e., on either side of γn. If n

is even, we put the disk Dn
k in the bounded complementary component of γn, and if

n is odd we place it in the unbounded component; thus the disks alternate sides we

move along γn. See Figure 4.

The curve γn+1 is formed by following the arc of Cn
k from wn

k to the disk D̃n
k ,

follow the boundary of this disk until it hits Cn
k+1

and then follow this circle to wk+1
n ;

requiring the curve to be C1 determines which direction we travel on each circle. We

start the procedure at wn
1 and continue until we return to wn

1 . This gives the curve

γn+1. See Figure 4.

By construction, any curve that crosses γn, crosses Γn+1 at least twice. This is

condition (2) above, and proves that the limiting curve has no simple crossing by a

line segment.

We can modify the construction so there is a constant C < ∞ so that for any

δ > 0 we can take so that ǫn+1 = δǫn and so that any line crossing Γn crosses Γn+1

at least (Cδ)−1 times with disjoint segments that each have length at least ǫnδ. By

standard estimates this implies the intersection of any crossing line segment with γ

has Hausdorff dimension at least 1 − (logC)/(log 1

δ
). By replacing a fixed δ by a

sequence tending to zero, one can construct a curve γ whose intersection with any

crossing segment is 1.

It seems likely that one can construct a curve γ (necessarily of positive area) that

intersects any crossing segment in positive length, however, this is not immediate from

the construction in this note. However, an analogous construction using variable sized

disks might work. In the other direction we can ask about replacing line segments by

more general curves, e.g., rectifiable curves. Is there a closed curve γ with no simple

crossings by a rectifiable curve? Is there a curve γ that intersects every crossing

rectifiable curve σ in positive length? Is there a relationship between the modulus of

continuity of the parameterization of a closed curve γ and the modulus of continuity

of an arc that crosses it simply? Images of radial segments under the Riemann

maps onto the complementary components of of γ, give simple crossing curves, so
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Figure 4. For clarity, we have drawn γn−1 as a horizontal straight
line, and the disks {Dn

k} as equally spaced. Any segment crossing
γn−1 must cross γn at least twice (at points where the crossing angle is
bounded away from zero, but we won’t use this here).

the modulus of continuity of the Riemann map would give some bounds; see [2]. Are

there “natural” examples of curves that can’t be simply crossed by line segments,

e.g., self-similar fractals or a SLE path? It is known that 2-dimensional Brownian

motion cannot be simply crossed by a segment [1], but this is not a Jordan curve.
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