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1. Introduction

The Schwarz-Christoffel formula says that a conformal map from the unit disk D

to the interior of a polygon P has the general form

f(z) = A + C

∫ z n
∏

k=1

(1 − w

zk

)αk−1dw,

where {α1π, . . . , αnπ} are the interior angles at the vertices v = {v1, . . . , vn} of P ,

and z = {z1, . . . , zn} = f−1(v) are the preimages of the vertices (also known as

the Schwarz-Christoffel parameters). The formula has been known since the 1860’s

([11], [29]), but because of the difficulty of finding the parameters, it only became an

effective tool for numerical conformal mapping in the 1980’s. For a brief history of

the formula and its applications see [15].

In [16] Driscoll and Vavasis introduced a new method for computing the Schwarz-

Christoffel parameters: the CRDT algorithm (Cross Ratios and Delaunay Triangu-

lations). Given a polygon P , CRDT proceeds in three steps: (1) add extra vertices

to P so that the resulting polygon P ′ has edges that are “well separated”, (2) use

the Delaunay triangulation of P ′ to construct an initial guess for the images of the

vertices on the unit circle, T, and (3) compute a conformal map using the Schwarz-

Christoffel formula with the guessed prevertices (and known angles) and modify the

guesses based on the result. See Section 7. The final step is iterated until the desired

accuracy is achieved.

Driscoll and Vavasis formulated a number of specific questions regarding the be-

havior of the CRDT algorithm. In particular, they asked if steps (1) and (2) always

give an initial guess that is within a bounded distance of the true Schwarz-Christoffel

parameters when measured in terms of a metric derived from cross ratios. We will

show that their specific formulation is false, but that a slight modification is true;

one merely has to replace the cross ratio of four points by the conformal modulus of a

related quadrilateral. This version follows immediately from a stronger result where

the distance between n-tuples on T = ∂D is measured in a quasiconformal sense, i.e.,

if w = {w1, . . . , wn} and z = {z1, . . . , zn} we define

dQC(w, z) = inf{log K : ∃ K-quasiconformal h : D → D such that h(z) = w}.

The definitions and properties of quasiconformal maps are reviewed in Appendix B.
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In this paper, P will denote a simple polygon and Ω its interior (so Ω is a simply

connected, bounded, open set). We could include polygonal regions with slits, but

this would required modifying some definitions and arguments, so for simplicity we

will stick to simple polygons.

Theorem 1. There is a C < ∞ (independent of P ) so that the initial guess w of the

CRDT algorithm satisfies dQC(w, z) ≤ C, where z are the true conformal prevertices.

The theorem is illustrated in Figure 1 that shows a target polygon (on the left)

and the Schwarz-Christoffel image using the CRDT initial guess as the parameters

(in the center). On the right we show the Schwarz-Christoffel image if we simply take

the parameters to be equidistributed on the circle (a common initial guess for some

iterative methods).

Figure 1. On the left is the target polygon. In the center is the
Schwarz-Christoffel image using the initial guess of the CRDT algo-
rithm. On the right is the image using equidistributed parameters. We
quantify how distorted the polygons are using quasiconformal maps.
See Section 7.

The proof of Theorem 1 shows that sometimes we get a good initial guess without

adding the extra vertices in step (1) of CRDT. The following is a special case of a

more general condition we will state later:

Theorem 2. Let Γ = {γj} denote the diagonals of the Delaunay triangulation of Ω

and suppose that any two points z, w ∈ ∂Ω can be joined in ∂Ω∪Γ by a path of length

≤ M |z − w|. Then dQC(w, z) ≤ C(M) (notation as in Theorem 1).

By a triangulation we mean one using only the original vertices (no Steiner points

added). Later we will talk about adding extra vertices to P , and will triangulate the
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new polygon P ′, but will not consider this a triangulation of P itself. The condition

in Theorem 2 says the Delaunay triangulation s an M -spanner for P (a set Γ is a M

spanner for E if any two points on E can be connected in Γ length bounded by M

times their Euclidean distance apart). It is known that the Delaunay triangulation is

always a 2.42-spanner for the vertices of a polygon (see [14], [25]), but the condition

in Theorem 2 requires it to be a spanner for all points on P (vertices and edges).

Some examples where CRDT adds vertices unnecessarily are discussed in Section

7 (see Figures 27 and 28). CRDT also uses the extra vertices to control crowding

(situations where distinct Schwarz-Christoffel parameters may be separated by less

than machine precision), and they may still be needed for this reason even when

Theorem 2 applies.

Given a generalized quadrilateral, i.e., a Jordan domain Ω and four distinct, ordered

points z = {z1, z2, z3, z4} on the boundary, we can conformally map it to a rectangle

f : Ω → R with the four points mapping to the corners, and this rectangle is unique

up to Euclidean similarities. We define ModΩ(z) = |f(z2) − f(z1)|/|f(z2) − f(z3)|
(the eccentricity of the rectangle). A K-quasiconformal map from one generalized

quadrilateral to another can change the modulus by at most a multiplicative factor

of K (see [1]). It follows immediately from this fact and Theorem 1 that if P is an

n-gon, z ⊂ T are conformal prevertices of P and w ∈ T is the initial guess of the

CRDT algorithm, then
1

K
≤ ModD(z′)

ModD(w′)
≤ K,

for any z′ = {zj1 , zj2 , zj3 , zj4} ⊂ z, w′ = {wj1 , wj2 , wj3 , wj4} ⊂ w. Equivalently:

Corollary 3. − log K ≤ log ModD(z′) − log ModD(w′) ≤ log K.

On page 1792 of [16] Driscoll and Vavasis asked if this held with the conformal

modulus replaced by the cross ratio of the four points, in the case when the four points

correspond to the vertices of two adjacent triangles in the Delaunay triangulation of

P . We will show in Section 6 that this approach fails, so Corollary 3 is the appropriate

modification of their conjecture. For 4-tuples on the circle, the conformal modulus is

a function of the cross ratio and this function is discussed in Appendix A.

Suppose f : D → Ω is conformal and g : Ω → D is K-quasiconformal and maps

the vertices of P to the CRDT parameter guesses on the circle. Then g ◦ f : D → D
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is K-quasiconformal and maps the correct parameters to the CRDT guesses. Thus

the proof of Theorem 1 reduces to showing that the CRDT initial guess (which is a

map from the vertices of P into T) can be extended to a quasiconformal map g from

Ω, the interior of P , to the unit disk D. To prove this we introduce a new region R

and define maps Ψ : Ω → R and Φ : R → D. These maps extend to the boundary

and the composition restricted to the vertices of P will agree with the initial guess of

the CRDT algorithm. The map Ψ will be quasiconformal with a uniformly bounded

constant. This means that it distorts the modulus by at most a bounded factor.

The map Φ will not be quasiconformal, but it will be a quasi-isometry between the

hyperbolic metrics on R and D, again with uniformly bounded constants. This implies

there is a quasiconformal map Ω → D with the same boundary values as Φ and a

uniformly bounded quasiconformal constant and this is sufficient to prove Theorem

1. The connection between quasiconformal maps and quasi-isometries is reviewed in

Appendix B.

A crescent is a domain bounded by two circular arcs meeting at two distinct points.

If one of these arcs is a line segment, we call the crescent a “flat crescent”. We will

construct R by adding a flat crescent to the outside of each edge of P . Suppose we

have a triangulation of P . Each triangle T defines a unique circle passing through its

three vertices (we call this the circumcircle corresponding to T and its interior the

circumdisk). If e is an edge of P and T is the element of the triangulation that also

has e as an edge, then e divides the circumdisk of T into two flat crescents. The one

disjoint from T is called the “outer crescent”, and this is the one we attach to P .

The region R is essentially the union of P and the outer crescents of the triangula-

tion. We say “essentially” because of a slight difficulty. If the collection of all outer

crescents is pairwise disjoint, then R is exactly this union. It can happen, however,

that some outer crescents overlap, e.g., see Figure 3. For a general n-gon, up to

∼ n outer crescents may overlap at a single point. When the outer crescents overlap

outside P , we adjoin them to P , but consider them disjoint; this gives a Riemann

surface R. See Figure 3.

First consider Ψ : Ω → R. The map Ψ fixes each vertex of P and simply “pushes”

each edge of P out to the corresponding boundary arc of R. However, in order to

do this with uniform quasiconformal bounds, we need to restrict the shapes of the
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Figure 2. Triangulate P and attach the outer crescents to each edge
of P . In this case the resulting region is planar, but sometimes the
outer crescents may overlap, giving a Riemann surface.

Figure 3. On the left the outer crescents are all disjoint; in the center
some overlap; on the right is a domain where ∼ n outer crescents can
overlap.

triangles. Driscoll and Vavasis showed that by adding extra vertices to P we can

obtain a polygon P ′ whose Delaunay triangulation has three kinds of triangles T :

interior triangles: T has no edge on P ′.

thin isosceles leaves: T is a leaf of the triangulation, is isosceles with its base

in the interior of P and opposite angle ≤ π/4.
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well separated: if e is an edge of T that lies on P and v is the vertex of T

opposite e, then dist(v, e) ≥ 1
2
√

3
ℓ(e) (distance measured within P ).

Theorem 4. Let P ′ be a polygon bounding a region Ω and suppose P ′ has a triangu-

lation whose elements are each one of the three types described above. Let R be the

surface constructed from P ′ as above. Then there is a quasiconformal map Ψ : Ω → R

that fixes each vertex of P ′ and has QC constant bounded independent of n and P ′.

The well separated condition is stronger than we need. Following the proof of

Theorem 4 we will state a weaker condition that suffices. A special case of this is:

thick interior crescents: there is a φ > 0 so that if e is an edge of T on P ,

then there is a flat crescent inside Ω with the flat side e and angle at the

vertices φ.

Note that this is a crescent inside Ω, so is not one of the outer crescents we have

discussed earlier. If we replace the well separated condition by the thick crescents

condition, then Theorem 4 holds with a bound depending only on φ. If the thick

crescents condition fails, then the condition in Theorem 2 also fails for M = 1/φ.

This implies Theorem 2.

Next consider the map Φ : R → D. This is more interesting than Ψ : Ω → R

in the sense that Φ restricted to the vertices gives the CRDT initial guesses for the

Schwarz-Christoffel parameters (whereas Ψ was the identity at these points). Driscoll

and Vavasis define this map in terms of cross ratios, but we will give an equivalent,

more geometrical description of Φ.

First note that elements of our triangulation form the vertices of a tree and this tree

structure is shared by the circumdisks. Sometimes adjacent triangles will have the

same circumdisk. If this happens, we collapse the tree of circumdisks by identifying

the two corresponding vertices and removing the corresponding edge. In the resulting

tree of disks, each distinct circumdisk is represented by a unique vertex and adjacent

disks overlap in exactly two distinct points. See Figure 4.

Choose a root D0 for the tree of disks. The parent, D∗, of any non-root disk D is the

unique disk that is adjacent to D and closer to the root. There is an “obvious” map

τD : D → D∗: the elliptic Möbius transformation whose fixed points are ∂D ∩ ∂D∗

and that rotates D to D∗. (See Section 2 and Appendix A for the definitions and
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Figure 4. A triangulated polygon and the corresponding collection
of circumdisks. Below is the triangulation tree and the tree of distinct
circumdisks (vertices to be identified are grouped by the dashed lines).

properties of Möbius transformations.) If we set ιD0
: D0 → D0 to be the identity,

then we can inductively define maps ιD = ιD∗ ◦ τD : D → D0 from any disk to the

root. Any vertex v of P is on the boundary of some disk D and we set ι(v) = ιD(v)

(if v is on the boundary of more than one disk, we can easily check that ι(v) is

independent of the choice of D). We call this a “tree-of-disks” map. In Section 3

we will show that ι(v) agrees with the initial guess of the CRDT algorithm. Note

that ι makes sense for any point on the boundary of R (other than the vertices of P ,

each point of ∂R is on the boundary of a unique disk D and we just take ι = ιD at

these points). We will construct a map Φ : R → D that continuously extends these

boundary values.

If z is an interior point of R that is in a unique disk D then we can define ι(z) =

ιD(z) ∈ D0. However, if z is in more than one disk, the different possible definitions

need not agree. We will divide the interior of R into subregions called gaps and

crescents. (See Figure 9 for an example of this division of R.) Each gap is contained

in some circumdisk D and Φ will agree with ιD on the corresponding gap. Between
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the gaps are the crescents and in these regions Φ will continuously interpolate its

values on the gaps. The map Φ will collapse crescents onto arcs, hence it is not a

homeomorphism, hence it cannot be quasiconformal. However, in Section 4 we will

prove Φ is a quasi-isometry between the hyperbolic metrics on R and D and then

known results imply there exists a quasiconformal homeomorphism from R to D with

the same boundary values as Φ (see Appendix B). That is:

Theorem 5. Suppose P is a planar polygon with vertices v = {v1, . . . , vn} and R is

the Riemann surface constructed from a Delaunay triangulation of P as above. Then

there is a continuous mapping of Φ : R → D so that Φ(v) = ι(v) = w, are the initial

guesses of CRDT algorithm and Φ is a quasi-isometry between the hyperbolic metrics

on R and D with constants that are independent of n and P .

Note that this holds for all polygons; we do not assume that the extra vertices

of step (1) of the CRDT algorithm algorithm have been added. The map ι can be

constructed for any triangulation, but the uniform bounds can fail if the triangulation

is not a Delaunay triangulation. See the second example in Section 6.

If R is a planar domain, ι is known to have a K-quasiconformal extension with

K < 8; see [10]. Thus the novel aspect of this paper is to extend the planar result to

the more general surfaces R constructed above using the CRDT extra vertices, and to

describe geometrically when these extra vertices are needed. The ι map was originally

invented in the context of hyperbolic 3-manifolds ([17], [31]), and its connection to

planar conformal maps has been explored in a series of papers by Epstein, Marden,

Markovic and the author (see [6], [7], [8], [9], [10], [18], [19], [20], [21]).

The first step of CRDT (which creates the well separated edges) may add an

arbitrarily large number of extra vertices, so there is no time bound for the initial

guess of CRDT depending only on the number of vertices. However, in [7] a method

is given for computing a initial guess that has the same uniform distance bounds to

the correct answer, but can be performed in time O(n), with constant independent of

the geometry. Moreover, [6] gives an algorithm that computes the correct prevertices

to within dQC distance ǫ in time O(n) and constant depending only on ǫ (and no

worse than O(| log ǫ| · log | log ǫ|)).
The rest of the paper is organized as follows:

Section 2: We define Φ : R → D, the extension of ι.
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Section 3: We show that the initial guess of CRDT agrees with the ι map.

Section 4: We prove Φ is a quasi-isometry. This proves Theorem 5.

Section 5: We prove Theorems 4 and 2.

Section 6: We show the Driscoll-Vavasis conjecture is false for cross ratios.

Section 7: We compute some examples of the CRDT initial guesses.

Appendix A: Definition of conformal modulus and its relation to cross ratios.

Appendix B: Definitions and properties of quasiconformal mappings.

Many thanks to Toby Driscoll and Stephen Vavasis for reading earlier versions of

this paper and for many helpful comments about the CRDT algorithm. Also many

thanks to editor Nick Papamichael and to the referees. Their careful reading of the

manuscript and detailed comments improved the exposition and accessibility of the

paper and I greatly appreciate all their suggestions.

2. The definition of Φ

In this section we define the continuous map R → D described in Theorem 5. This

map will not be a homeomorphism (hence is not quasiconformal), but we will prove

in Section 4 that it is a quasi-isometry between the hyperbolic metrics on R and D.

A triangulation of a simple polygon P is called Delaunay if, for every interior edge

e of the triangulation, the two triangles T1, T2 sharing edge e have angles opposite e

summing to at most π. Equivalently, if D1, D2 are the associated open circumdisks

then T1 6⊂ D2 and T2 6⊂ D1. See Figures 5 and 6.

Figure 5. The triangles on the left satisfy the Delaunay condition,
but the ones on the right do not.

Every polygon has a Delaunay triangulation. It is unique except when adjacent

triangles define four vertices on a common circle: then we may “flip” the diagonal
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Figure 6. A Delaunay and non-Delaunay triangulation. We have
drawn a circumcircle on the right that fails the Delaunay condition.

of the resulting quadrilateral and get another Delaunay triangulation. Thus the

corresponding family of disks and the tree-of-disk map on the vertices does not depend

on the choice of Delaunay triangulation. Delaunay triangulations have many nice

properties and have been intensively studied. For example, they are dual to Voronoi

diagrams; and they maximize the minimum angle in the triangulation [26]; they

minimize the largest circumcircle [12], [28]. The basic facts can be found in various

sources such as [2], [5], [22].

Recall that a crescent is a simply connected planar domain bounded by two circular

arcs that meet at two distinct points (called the vertices). The angle θ of a crescent

is the interior angle at these vertices. Any two crescents with the same angle are

Möbius equivalent. To any crescent and a choice of an edge, we associate the elliptic

Möbius transformation that has the two vertices a, b as fixed points and maps the

given edge to the other edge. This is given by

τa,b,θ(z) =
(beiθ − a)z + ab(1 − eiθ)

(eiθ − 1)z + (b − aeiθ)
.(1)

The formula can be easily derived by sending a and b to 0 and ∞ respectively by

the map w = τ(z) = (z − a)/(z − b), then multiplying by eiθ and then applying the

inverse map z = τ−1(w) = (bw − a)/(w − 1). Geometrically, a crescent is foliated by

circular arcs orthogonal to both boundaries and this elliptic transformation identifies

endpoints of leaves. See Figure 7.

Suppose D1, D2 are overlapping disks whose boundaries meet at two distinct points

v1, v2. Let γ1 be the circular arc connecting v1 and v2 in D1 that is perpendicular to

∂D1. This arc is the infinite geodesic connecting v1 and v2 in the hyperbolic geometry

of D1 (see Section 4), so we shall simply refer to γ1 as the geodesic arc between v1, v2
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Figure 7. The orthogonal foliation of a crescent

in D1. Similarly, let γ2 be the geodesic arc between v1, v2 in D2. Then γ1∪γ2 bounds

a crescent C in D1 ∪ D2, called the “normal crescent”. See Figure 8.

D1

D2

γ1
γ2

v1

v2

v3

v4

Figure 8. Given two overlapping disks D1, D2 we define the normal
crescent (shaded region) to be bounded by the hyperbolic geodesics for
these two disks. The Delaunay condition insures that γ1 is to the left
of γ2 in this figure.

Note that (D1 ∪ D2) \ C consists of two components, each a crescent. If D1, D2

are the circumdisks of two adjacent triangles T1 = {v1, v2, v3}, T2 = {v4, v3, v2}, and

these triangles satisfy the Delaunay condition, then the boundary of one of these

components contains both γ1 and v1. We call this the main component of D1 with

respect to D2. See Figure 8.

Given a crescent C and one of the two boundary arcs γ ⊂ ∂C, the collapsing map

Γ : C → γ is the map that sends each leaf of the orthogonal foliation of C onto the

endpoint of the leaf contained in γ. On γ, Γ is the identity. On the other boundary

arc γ′, Γ agrees with the elliptic Möbius transformation that fixes each vertex of C

and maps γ′ to γ. Given an ordered pair {D1, D2} of overlapping disks, define a map

Γ : D1 ∪ D2 → D1 as follows: on the main component of D1 with respect to D2 it is

the identity, on the normal crescent it is the collapsing map of the crescent onto γ1
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and on the main component of D2 with respect to D1 it equals τ , the elliptic Möbius

transformation that rotates γ2 to γ1.

Suppose we have a tree of overlapping disks, coming from a Delaunay triangulation

of a polygon. Given a disk D in the tree, the corresponding gap G ⊂ D is the

intersection of the main components of D with respect to all its neighbors in the

tree. The gaps for distinct disks are disjoint and the gaps for adjacent disks are

separated by a normal crescent. See Figure 9 for an example of this “gap/crescent”

decomposition.

Figure 9. On the left is a tree of disks corresponding to a trian-
gulated polygon (the same as in Figure 4). In the center is the cor-
responding gap/crescent decomposition. On the right is the Φ image
of the decomposition. Every shaded crescent has been collapsed to a
hyperbolic geodesic and each gap has been mapped into the disk by
a Möbius transformation. The vertices in the rightmost picture were
used as the parameters to draw the center picture of Figure 1.

Assume that the the m disks in our tree are enumerated as {Dk} so that D0 is the

root and so that any disk has a lower index than any of its children. Define a sequence

of surfaces {Rk} inductively by setting R0 = D0 and defining Rk by attaching the

crescent Dk \ D∗
k to Rk−1. Define a map Γk : Rk → Rk−1 by extending the map

Γ : D∗
k ∪ Dk → D∗

k as the identity on the rest of Rk. Then Φ : Γ1 ◦ · · · ◦ Γm is a

mapping from R = Rm to D0 = R0. It is equal to the identity on the gap of D0, is

equal to some Möbius transformation on the gap of every other disk and collapses

each normal crescent to a hyperbolic geodesic of D0 (these are called the bending

geodesics, a term coming from hyperbolic geometry). See Figure 9. Note that Φ is
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not a homeomorphism, since arcs in the normal crescents are collapsed to points, but

at least it does map the interior of R to the interior of D0. We shall see in the next

section that Φ is actually close to homeomorphism in a precise sense.

3. CRDT and tree-of-disks maps

In this section we show that the map Φ, restricted to the vertices of P , agrees with

the CRDT initial guess as defined by Driscoll and Vavasis in [16].

How is the second step of CRDT done (i.e., how does it create its initial guess from

a triangulated polygon)? Suppose P is a simple n-gon and that T = {T1, . . . Tn−2}
is a triangulation of P . (In this paper, triangulation means using only the original

vertices of P ; no Steiner points are added.) Let Dk be the circumcircle associated to

each triangle Tk, k = 1, . . . , n − 2. Choose some root triangle for the triangulation

and map its vertices to any three points in T with the correct orientation. In general,

suppose Q is the quadrilateral formed by two adjacent triangles T1 and T2 (which have

vertices v1, v2, v3 and v1, v3, v4 in counterclockwise order respectively). Also suppose

that we have already defined w1, w2, w3 ∈ T. Then w4 is uniquely determined by the

condition

cr(w1, w2, w3, w4) = −|cr(v1, v2, v3, v4)|,(2)

where cr(a, b, c, d) denotes the cross ratio of four distinct complex numbers a, b, c, d;

See Appendix A. It is easy to see by induction that this uniquely determines the

points w up to a Möbius transformation of the circle. This is the CRDT initial

guess.

Next, we will check that this map defined using cross ratios is the same as the

tree-of-disks map ι defined in the introduction. Recall that we had a tree whose

vertices where the circumdisks of the triangulation, that D0 was the root of the tree.

Suppose D1, D2 are the circumdisks associated to adjacent triangles T1, T2 and that

D1 is the parent of D2. Let τD2
: D2 → D1 be the elliptic Möbius transformation

that fixes the two points ∂D1 ∩ ∂D2. After conjugating by a Möbius transformation

η that sends v1 → 0, v2 → 1 and v3 → ∞, the elliptic map τD2
is conjugated to the

Euclidean rotation around 0 that sends the image to v4 onto the negative real axis.

Thus

cr(v1, v2, v3, τD2
(v4)) = −|cr(v1, v2, v3, v4)|.
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v1

v2 v3

v4

w3
w4

w1

w
2

Figure 10. Given a quadrilateral {v1, v2, v3, v4}, and a mapping
τ : {v1, v2, v3} → {w1, w2, w3} ⊂ T, we map the fourth vertex v4 → w4

by first using an elliptic rotation to map v4 onto the circle defined by
the first three points followed by the unique Möbius transformation
determined by τ . This is the same as the map defined by Driscoll and
Vavasis using cross ratios.

If D1 = D0 (i.e., D2 is adjacent to the root), we define ιD1
= τD2

. For other

disks we inductively define ιD2
= ιD1

◦ τD2
: D2 → D1 → D0. When the Möbius

transformation ιD1
: D1 → D0 is applied to the four points {v1, v2, v3, τD2

(v4)} ∈ ∂D1

to give the points (see Figure 10),

{w1, w2, w3, w4} = {ι(v1), ι(v2), ι(v3), ι(v4)},

the cross ratio does not change. Thus

cr(ι(v1), ι(v2), ι(v3), ι(v4)) = −|cr(v1, v2, v3, v4)|.

This shows that our “tree-of-disks” map sends the vertices of P to a n-tuple ι(v)

on the circle that has the same set of cross ratios as the n-tuple w constructed by

the CRDT algorithm. Therefore w and ι(v) are equivalent n-tuples under a Möbius

transformation of the circle.

4. Φ is a hyperbolic quasi-isometry

In this section we prove Φ is a quasi-isometry from (R, ρR) to (D0, ρD0
). Known

results described in Appendix B them imply Theorem 5.

The hyperbolic metric on D is given by dρD = 2|dz|/(1 − |z|2). Geodesics for this

metric are circles orthogonal to the boundary. The orientation preserving isometries

are exactly the Möbius transformations that preserve the disk. They all have the



BOUNDS FOR THE CRDT CONFORMAL MAPPING ALGORITHM 15

form z → eiθ(z − a)/(1 − āz), for some θ ∈ R and a ∈ D. The hyperbolic metric ρΩ

on a simply connected domain Ω (or Riemann surface) is defined by transferring the

metric on the disk to Ω by the Riemann map. We will sometimes write ρ for any

hyperbolic metric when the domain is clear from context.

A map between metric spaces f : (X, ρ1) → (Y, ρ2) is called a quasi-isometry if

there are constants A,B such that

1

A
ρ1(x, y) − B ≤ ρ2(f(x), f(y)) ≤ Aρ1(x, y) + B.

This says that the map is bi-Lipschitz at large scales and has bounded jumps at small

scales.

A very useful fact is that on any simply connected planar domain, the hyperbolic

metric is approximated by a more geometric quantity (e.g., page 20 of [23]),

1

2
dρ̃ =

|dz|
2dist(z, ∂Ω)

≤ dρΩ ≤ 2|dz|
dist(z, ∂Ω)

= 2dρ̃,(3)

where dρ̃ is called the quasi-hyperbolic metric. This inequality says that the metric

spaces (Ω, ρ) and (Ω, ρ̃) are bi-Lipschitz equivalent with each other (via the identity

map). Thus to show Φ is a quasi-isometry on a planar domain, we may take either

metric (at the cost of increasing the constants by a bounded factor). Our regions R

need not be planar, but we shall prove that they satisfy an inequality ((4) below)

similar to (3). The first step is to prove a simple geometric property of R that says

that it is “almost planar”.

Lemma 6. Suppose R is a surface obtained by adding outer crescents to a simple

polygon as described in the introduction. If γ is a simple curve on R that projects

into a circle {z : |z − x| = r} then the projection is at most 3 to 1 (and hence γ has

length ≤ 6πr).

Proof. R consists of P and a finite number of crescents, one attached to each edge

of P . If γ is a circle in R then its projection to the plane is 1-to-1. If γ is an arc

in R which projects into a circle in the plane, then it leaves every crescent it enters,

with at most two exceptions (the crescents containing its endpoints). If we remove

the part of γ in these two exceptional crescents, the rest projects 1-to-1 to the plane

because the projection of P ⊂ R to P ⊂ R
2 is 1-to-1. Thus the projection is at most

3-to-1. �
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Lemma 7. There is an M < ∞ so that the following holds. If R is the surface

obtained from a Delaunay triangulation of a simple, planar polygon P , then

|dz|
Mdist(z, ∂R)

≤ dρR ≤ 2|dz|
dist(z, ∂R)

.(4)

Proof. The proof of the right hand inequality is exactly the same as the planar case:

since R contains a disk D of radius r = dist(z, ∂R) around z, the monotonicity

property of hyperbolic distance [27] (also known as the Schwarz inequality) implies

dρR(z) ≤ dρD(z) =
2

r
|dz|.

To prove the lower bound, it suffices to consider the disk of Euclidean radius r/2

around z and show its hyperbolic diameter is bounded uniformly away from zero.

This is equivalent to showing that the modulus of the path family Γ connecting

D = D(z, 1
2
r) ⊂ R to ∂R is bounded away from zero. See Appendix A for the

definitions and basic facts. Next we estimate this modulus in the usual way using

the Cauchy-Schwarz inequality.

Let v ∈ ∂R minimize dist(z, ∂R) and let v also denote the projection of v to the

plane. For t ∈ [1
2
r, 3

2
r], take a component γt of the lift of the circle {w : |w − v| = t}

that hits D. By Lemma 6 this arc has length ≤ 6πt and it must connect D to ∂R.

Thus if ρ is an admissible metric for the path family Γ,
∫

γ
ρ|dz| ≥ 1 for all γ ∈ Γ and

hence

M(Γ) =

∫∫

R

ρ2dxdy ≥
∫ 3r/2

r/2

∫

γt

ρ2tdtdθ

≥ [

∫ 3r/2

r/2

(

∫

γt

tdθ)dt]−1 · [
∫ 3r/2

r/2

(

∫

γt

ρtdθ)dt]2

≥ [6π

∫ 3r/2

r/2

dt]−1 · [
∫ 3r/2

r/2

1dt]2

≥ [6π
1

2

3

2
r]−2r2

=
4

81π
.

Thus the modulus of Γ is bounded away from zero uniformly, as desired. This com-

pletes the proof of Lemma 7. �
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Lemma 8. Suppose G is a gap in R and z ∈ G. Let D be the disk associated to G.

Then (using Euclidean distances),

1√
2
dist(z, ∂R) ≤ dist(z, ∂D) ≤ dist(z, ∂R).

Proof. The right hand inequality is obvious since D ⊂ R. To prove the other inequal-

ity, note that if z is the center of D or if the radial projection of z is in ∂R then we

have equality on the left. Otherwise, the radial segment through z hits a geodesic

γ in D bounding a crescent. Replacing z with this point of intersection decreases

dist(z, ∂D) more than dist(z, ∂R) and for a point on γ, the left-hand inequality holds

by a simple computation. �

Thus on a gap G corresponding to a disk D we have

(G, dρR) → (G, dρ̃R) → (G, dρ̃D) → (G, dρD) → (D, dρ),

where the first two maps are the identity and are bi-Lipschitz by Lemmas 7 and 8,

and the third is bi-Lipschitz by (3). The last map is the restriction to G of a Möbius

transformation from D to D and hence is an isometry of the hyperbolic metrics on

these two disks. Therefore Φ is hyperbolically bi-Lipschitz on each individual gap. To

see what happens when points are in different gaps we will need the following result

(which says that composing rotations with clustered fixed points is well approximated

by rotating around a single point):

Lemma 9. There is a ǫ0 > 0 and C < ∞ so that if ǫ < ǫ0 then the following holds.

Suppose {τj}M
1 is a finite collection of elliptic transformations such that each τj rotates

by angle θj, that
∑

j |θj| = L ≤ (4Cǫ)−1 and that each τj has one fixed point in D(0, ǫ)

and one fixed point outside D(0, 1/ǫ). Then |τ1 ◦ · · · ◦ τM(w)−w exp(i
∑

j θj)| ≤ CǫL

for any w with 1
2
≤ |w| ≤ 3

2
.

Proof. Let A1 = {w : 1
2
≤ |w| ≤ 3

2
} and A2 = {w : 1

4
≤ |w| ≤ 7

4
}. Each elliptic

transformation preserves a family of circles and by the hypothesis on the fixed points,

the circles in these families restricted to A2 differ by at most an angle Cǫ from circles

concentric with the origin. Thus if we apply one of these rotations of angle θ to a

point z in A2 the distance from A1 increases by at most Cǫθ. Thus if we start in A1

and apply several maps {τj} with angles {θj}, the total distance from A1 will increase

by at most
∑

Cǫθj ≤ CǫL ≤ 1/4 so the image is still in A2.
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Since τj differs from a rotation of angle θj around the origin by at most Cǫθj on

A2, the desired result follows from summing. See Figure 11. �

θ1

θ2

0 1

Figure 11. If the fixed points are ǫ-near 0 and ∞ the elliptic trans-
formations look like Euclidean rotations up to error Cǫ.

Lemma 10. Φ : R → D is a quasi-isometry between the hyperbolic metrics.

Proof. As noted before, Φ is bi-Lipschitz on each gap and is clearly Lipschitz on every

crescent, so it is Lipschitz on all of R.

To prove Φ is a quasi-isometry, we need to prove the opposite direction

ρD(Φ(z), Φ(w)) ≥ AρR(z, w) − B.

It suffices to show that for some ǫ > 0 the preimage under Φ of a ball of hyperbolic

radius ǫ in D has uniformly bounded hyperbolic diameter in R. If this is true, then

any two points distance d > ǫ apart in D can be connected by a geodesic, and this

geodesic can be cut into ≃ d/ǫ parts, each of which has preimage of diameter C.

Thus the two original points have all preimages within (C/ǫ)d of each other, which

is the desired lower bound.

Consider a ball B of hyperbolic radius ǫ in D. Renormalizing by a Möbius trans-

formation we may assume it is centered at the origin. If it is contained inside the

image of one gap G ⊂ D ⊂ R, there is nothing to do. So assume B hits one or more

bending geodesics (i.e., images of crescents under Φ). Let {γj} be an enumeration of

these and let θj be the angle measure of the corresponding crescents in R. Since each

of these geodesics hits the small ball B, the endpoints of all the γ’s must be clustered

in two balls of (Euclidean) radius 16ǫ, say, centered at ±1. See Figure 12.
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θ
ε

r

x

a
b

θ

Figure 12. If many hyperbolic geodesics all hit a small ball at the
origin, they must be almost parallel and all terminate at nearby points.
The figure on the right shows why: if a geodesic passes at distance ǫ
from the center and parallel to a diameter of the circle there, then
the endpoints labeled a and b differ by at most θ where sin θ = 1/x,
tan θ = 1/r, ǫ = x − r and so |θ| ≤ 4ǫ. As shown, any other disjoint
geodesic hitting the ǫ ball has its endpoints within 4θ of b, giving the
claimed estimate.

By applying a Möbius transformation taking the unit disk to the upper half-plane

we can instead assume these geodesics are in H and each has one endpoint in [0, ǫ] and

the other in [Cǫ,∞]. These geodesics also come with a natural left to right ordering

and each has an associated elliptic Möbius transformation that rotates by angle θj

around the endpoints of γj. If we apply these maps from rightmost to leftmost, letting

the map act on everything to the right of the corresponding geodesic, we get the map

Φ on the gaps.

Let B2 be the ball of radius 1/2 centered at i. Let L = 7π and ǫ ≤ 1/(7CL) where

C is the constant from Lemma 9. If
∑

j θj = L ≥ 7π then Lemma 9 implies the

preimage of B2 in R covers the unit circle more than 3 to 1 at some point. This

is a contradiction, so we must have L < 7π. But this means that the preimage of

B2 is a connected set in R that can be covered by a uniformly bounded number of

balls of radius 1/4 that are more than distance 1/4 from ∂R. Each element of this

cover therefore has bounded hyperbolic radius in R and hence the preimage of B has

uniformly bounded hyperbolic radius. �
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Thus Φ is a quasi-isometry with uniformly bounded constants and hence there is

a K-quasiconformal map R → D (with uniformly bounded K) that has the same

boundary values (see the remarks in Appendix B). This proves Theorem 5.

5. Proof of Theorem 4

Next we prove that there is a quasiconformal map Ψ : Ω → R with uniformly

bounded constant, assuming we have added extra vertices to P according to the first

step of the CRDT algorithm. Following the proof we will observe that the same

conclusion sometimes holds even without adding the extra points. To see that the

extra points are needed in some cases, consider a 1 × n rectangle. The four corners

lie on the boundary of a disk D and the Delaunay triangulation consists of adding a

diagonal. The modulus of the path family in the rectangle connecting the two sides

of length 1 is 1/n. The modulus of the generalized quadrilateral with domain D and

the four corners as vertices is approximately the logarithm of their cross ratio, i.e.,

is approximately 1/ log n (see Appendix A). However, if ι had a K-quasiconformal

extension to P with K independent of P , these two moduli would be comparable to

within a factor of K of each other.

Lemma 11. Given any polygon P we can add vertices of angle π along the edges of

P to form a new polygon P ′ so that every triangle T in the Delaunay triangulation

of P ′ is one of the following types:

(1) interior (i.e., T has no edge in P ′).

(2) thin isosceles leaves (i.e., T is a leaf of the triangulation, is isosceles with base

in Ω and opposite angle ≤ π/4).

(3) well separated (i.e., if e is an edge of T in P ′ and v is the vertex of T opposite

e then dist(v, e) ≥ 1
2
√

3
ℓ(e)).

Most of this is proven by Driscoll and Vavasis in [16]. Here we will sketch their

proof and add a few remarks that give the precise statement above.

Their construction has two steps. In the first step, every vertex v of P with interior

angle ≤ π/4 is “chopped off” as follows. For such a v, let T be the largest isosceles

triangle contained in the interior of P that has v as a vertex, and whose two equal

length sides are subsets of the two edges of P adjacent to v. Add to P the midpoints

of these two sides of T (thus the two edges of P adjacent to v are now replaced by four
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edges occupying the same space). The two new edges adjacent to v are “protected”,

i.e., they will not be further subdivided by the second part of the construction.

The second step is iterative. For each unprotected edge e in the current polygon

compute its length L and the minimal distance D in P from e to any vertex that

is not one of its endpoints (distance is the path distance within the polygon). If

D < L/(3
√

2), the edge e is split into three equal edges and the process continues.

See Figure 13. The filled dots indicate the original vertices and the open dots the

vertices added by the algorithm.

Figure 13. Adding extra (white) points to a polygon in the CRDT
algorithm to remove small angles from the triangulation

Driscoll and Vavasis give a lower bound r0 on the shortest edge that can be pro-

duced: r0 is the minimum over all unprotected edges of the path distance in P from

that edge to any non-adjacent edge. Since every step reduces the length of some edge

by a third, this proves the process terminates in a finite number of steps.

To prove Lemma 11, suppose we have a Delaunay triangulation on P ′. If T is an

element of the triangulation that is either interior, or only has unprotected boundary

edges, then it clearly falls into cases (1) and (3) of the lemma. Otherwise, it has at

least one protected edge. So to complete the proof of the lemma we need to show

such a triangle is in case (2). That is, we need the following:

Lemma 12. The “cut-off” triangles created in the first step of the construction are

all in the Delaunay triangulation of P ′.

Proof. To prove the lemma, suppose it fails, i.e., suppose v is a vertex of P with

interior angle θ ≤ π/4 so that the corresponding chopped off triangle △vab is not

in the Delaunay triangulation of P ′. Then there are a finite number of elements of
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the Delaunay triangulation that have v as one vertex, say T1, . . . Tn where we may

assume each triangle shares an edge with the next one, a is a vertex of T1 and b is a

vertex of Tn. See Figure 14.

w3

w1

w2

T1

T2

T3

T4

v

a

b

Figure 14. The sub-polygon W is shown shaded. We sum π − αk

over the interior angles of W , considering three cases: v, {wk}n
1 and

{a, b}. The first is bounded by π − θ, the second by 2θ and the third
by 2θ.

Let W be the union of these triangles and let {αk} be the interior angles of W .

Note that
∑n+1

k=1(π − αk) = 2π. Let Qk = Tk ∪ Tk+1 for k = 1, . . . n − 1 and let wk

be the vertex of Qk opposite v. Each of these satisfies the Delaunay condition so if

θk is the interior angle of Qk at v and τk is the interior angle of Qk at wk, we have

θk ≥ π − τk. Therefore
∑

k(π − τk) ≤
∑

k θk ≤ 2θ (the last inequality holds since we

have counted the interior angle of each triangle at v at most twice). Therefore the

sum of
∑

k(π−αk) at the vertices wk is at most 2θ and at v it is equal to π− θ. The

sum of these two cases is at most π + θ.

The only two vertices of W that remain are at a and b. Suppose T is the triangle

△vab and let 2T denote the triangle obtained by doubling the lengths of the sides

va and vb as in Figure 14. Let S be the side of 2T opposite v. The CRDT algorithm

chooses T so that the interior of 2T is contained in the interior of P and hence

contains no vertices of P . Thus the sides of W adjacent to a, b and not connecting

them to v have their other endpoints outside 2T . These sides must cross S and by
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T

S

w3

w1

v

a

b

θ

τ
α

β

(π−θ)/2

(π−θ)/2

Figure 15. Summing the interior angles of W and a and b. First we
replace the angles at a, b by larger angles α, β. The right-hand diagram
shows α+β = θ+τ and it is a simple exercise to see τ ≤ θ with equality
when it is the midpoint of S.

replacing them by two segments that meet at a common point p of S we can increase

the sum
∑

(π − α). See Figure 15.

It is an easy exercise to see that this sum is maximized when p is the midpoint of

S in which case it is equal to 2θ ≤ π/2. Thus
∑

(π − αk) over all vertices of W is at

most π + 3θ < 2π. However, since ∂W bounds a simply connected polygonal region,

this sum must equal 2π, a contradiction. Thus the cut off triangle with vertex v must

have been part of the Delaunay triangulation. (Note that the same argument would

work as long as θ < π/3.) �

Now that we know the Delaunay triangulation of P ′ consists of three types of

triangles, we can prove the following result by considering each case separately.

Lemma 13. Suppose P = ∂Ω has a rooted triangulation whose elements satisfy (1)-

(3) in Lemma 11. Then there is a K-quasiconformal map f : Ω → R that fixes each

of the vertices of P , and K is independent of P .

Proof. On interior triangles we define f to be the identity. Moreover, on any triangle

T , f will be the identity on any boundary edge of T not on P , so the definitions on

adjacent triangles will fit together trivially.

To discuss the other two cases, we need to recall the relationship between the inte-

rior angles of a triangle and the angles formed between its edges and its circumcircle.

See Figure 16. It illustrates a triangle △abc, where the angles at a, b, c are denoted
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α, β, γ respectively and the lengths of the opposite sides are denoted A,B,C. Let θ

be the interior angle of the crescent formed by edge ab and the arc of the circumcircle

between these points and similarly for τ and the edge ac. Note that α + β + γ = π,

τ + α + θ = π and τ + γ = β + θ. Combining these we see that θ = γ. If, in addition,

α = β then we deduce τ = β = α.

θ = γ
b

α
β

γ

c

a

τ

τ

θ

Figure 16. Diagram for proof of θ = O(min(α, β)).

Also note that the Law of Sines implies

sin θ = sin γ =
C

B
sin β ≤ λ sin β,

if λ = C/B. In particular, if we know that dist(c, ab) ≥ λC (as indicated by c being

outside the dashed neighborhood of ab in Figure 16), then we have sin θ = O(sin β) =

O(β) with a constant depending only on λ. Also, dist(c, ab) ≥ λC implies that angle

γ (and hence θ) is bounded away from π depending only on λ, so θ = O(sin θ) with

a constant depending only on λ (in fact, γ ≤ π − 2 arctan 2λ). Thus θ = O(β).

Since the same argument works with β replaced by α we see that

θ = O(min(α, β)),(5)

with a constant bounded in terms of λ.

Now consider a triangle T = △abc so that the edge ab is on the boundary of the

polygon and so that the opposite vertex c has distance at least λ|ab| from ab. The

angle bisectors of T split T into three subtriangles, and the subtriangle that contains

the edge ab contains a crescent C1 of angle ν = 1
2
min(α, β). Let C2 denote a crescent

of angle θ attached to the outside of T along ab. Then C1 can be mapped to C1 ∪C2
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by a quasiconformal map that is the identity on ∂C1 \ ab and the quasiconformal

constant is bounded by (ν + θ)/ν, which is uniformly bounded by (5).

C1
C2

T

a

b

c

Figure 17. If the triangle is well separated, then it includes a cres-
cent with angle comparable to the crescent attached to the boundary.
The interior crescent can then be expanded by a uniformly quasicon-
formal map to also cover the attached crescent.

Finally suppose T is a thin isosceles leaf. By assumption T is attached to its

parent along its base, and not adjacent to any other triangle. The vertex opposite

the base has angle θ ≤ π/4 so that the two base angles are α = (π − θ)/2 ≥ 3π/8.

The two outer crescents attached to T both have angle α and their union with T is

itself a crescent of angle 2α with one side being the base of T . Now we map this big

crescent (with angle close to π) to a smaller crescent (with angle π/2) by an at most

2-quasiconformal map. See Figure 18. Then map the small crescent to the triangle

as follows. Start with two conformal maps: an elliptic rotation to a half-plane minus

a disk and the logarithmic map to a half-infinite strip. These two maps sent [−1, 1]

to [0, π] by the map

x → f(x) = arcsin(Im(
z + i

z − i
)) = arcsin(

1 − x2

1 + x2
).

Then we apply the map of the form (x, y) → (f−1(x), y) that makes the composition

affine on the base and is quasiconformal since f ′ is bounded above and below. Finally

we rescale the strip to have base [−1, 1] and then apply a map of the form

(x, y) → (e−yx,C(1 − e−y)),
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where C is the height of the triangle. A simple computation shows this is quasicon-

formal if C is bounded away from 0. See Figure 19. This proves Theorem 4 and

hence Theorem 1.

Figure 18. A crescent of angle α can be quasiconformally mapped to
a crescent of angle β with K = β/α. Just use a Möbius transformation
to first map to a cone of angle α and then use a map of the form
reiθ → reiθβ/α. This maps to a cone of angle β with the given QC
bound. The map to the desired crescent by another Möbius transfor-
mation.

�

The well separated condition (condition (3) in Lemma 11) is stronger than we need.

We only use it in the proof of Lemma 13 to establish the following property with a

uniform η > 0:

interior crescents: There is a η > 0 so that for each edge e of T that lies on

P , there is a crescent with base e and angle ≥ ηθ, where θ is the angle in T

opposite e.

The proof also needs that the crescents are disjoint, but we get this for free from the

following simple result.

Lemma 14. Suppose I1, I2 are disjoint open line segments and C1, C2 are crescents

with bases I1, I2 respectively. Let C ′
1 ⊂ C1, C

′
2 ⊂ C2 be crescents with bases I1, I2, but
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Figure 19. The half-disk is mapped quasiconformally to a triangle
in a series of steps.

half the angle of C1, C2 respectively. If C1 ∩ I2 = C2 ∩ I1 = ∅, then C ′
1 and C ′

2 are

disjoint.

Proof. We claim that the bisector of the segments I1, I2 separates the interiors of the

reduced crescents C ′
1, C

′
2. Suppose that this does not hold. Then there is a point z

of the bisector contained in the interior of one of these crescents, say C ′
1. This point

is the center of a disk D whose boundary hits both I1 and I2 and whose interior is

disjoint from both of them. We claim this disk is contained in C1.

To prove this, note that D ∩ C ′
1 is a crescent with interior angle > π. If we map

C ′
1 to a cone by using a Möbius transformation to map its vertices to 0,∞, then the

image of this crescent still has angle > π (since such maps are conformal) and hence

the image disk is centered in the image cone. It is then obvious that the image of

D is contained in the cone with double the angle and hence D is contained in C1

(actually is contained in a crescent with strictly smaller angle). Since ∂D hits I2, so

does C1, contrary to assumption. See Figure 20. �

Given the lemma, we convert our collection of interior crescents into a disjoint

collection (dividing η by 2), and define a map that expands each interior crescent to

the union of itself and the attached exterior crescent. This map is quasiconformal
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2θ

θ
θ

2θ

Figure 20. If a disk is centered in a crescent and misses one edge, it
must be contained in the union of the crescent and its reflection across
the other edge.

with constant depending only on η. We then apply the map that expands the thin

leaves of the triangulation exactly as before. This shows that Theorem 4 holds if we

replace the “well separated” condition by the “interior crescents” condition.

In the interior crescents condition, the opposite angles are bounded by π, so it

suffices to require the crescents have base angles bounded away from 0, i.e., the thick

crescents condition from the introduction. So, if the thick crescent condition holds

with angle φ, then Theorem 4 holds with a constant depending only on φ.

6. Two counterexamples

First we shall show that Corollary 3 does not hold if the modules are replaced by

cross ratios. Consider the domain Ω bounded by a polygon P in Figure 21. It is the

square [−1, 1] × [−1, 1]) with a thickened slit removed, [0, 1] × [−ǫ, ǫ]. The dotted

lines in the figure are the boundaries of a Delaunay triangulation of P and the shaded

quadrilateral Q is formed by the union of two adjacent triangles. The absolute value

of the cross ratio of the four vertices is

cr1 =
|D − A||B − C|
|C − D||A − B| =

√

1 + (1 − ǫ)2 ·
√

1 + (1 − ǫ)2

2ǫ · 2 =
1

2ǫ
− 1

2
+

ǫ

4
.

On the other hand, the conformal map f of Ω to the disk that sends −1/2 to 0 and

has positive derivative at −1/2 will map the edge [A,B] to an interval on T centered

at −1 and with length ≃ 1, but will map the edge [C,D] to an arc centered at 1 of

length ≃
√

|C − D|. The cross ratios of these points will therefore be

cr2 =
|f(D) − f(A)||f(B) − f(C)|
|f(C) − (D)||f(A) − f(B)| ≤ M√

ǫ
,
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C

D

2 ε

A

B

Figure 21. Cross ratios and modulus can scale at different powers of ǫ

for some constant M independent of ǫ, if ǫ is small enough. Hence

log cr1 − log cr2 >
1

2
log

1

ǫ
− O(1),

which is as large as we wish if ǫ is small enough.

This polygon does not satisfy the edge separation condition of the CRDT algorithm,

but applying that method to this polygon will only add vertices to the horizontal edges

adjacent to C and D and the same quadrilateral will be present. Thus the conjecture

fails even if we add the extra vertices.

Next we show that the uniform bounds in Theorem 5 can fail if we do not have a

Delaunay triangulation. The example is given in Figure 22. Let C be a crescent of

small angle θ that is symmetric with respect to the real axis and with vertices a, c

at ±1. Let b, d denote the “highest” and “lowest” points of the crescent, as shown

in Figure 22. Form a polygon by taking a, b, c, d and placing evenly spaced vertices

along the boundary of the crescent, about distance ǫ ≪ 1 apart.

If we use the triangulation shown in Figure 22 (which is not Delaunay because of

triangles bordering the single horizontal diagonal), then the corners labeled {a, b, c, d}
can be mapped to {1, i,−1,−i} by the cross ratio map, and the vertex v will be

mapped to a point about distance ǫ from 1. However, any conformal map that sends

{a, b, c, d} to these points on the circle, would map v to within O(ǫ1/θ) of the point

1. Because of Mori’s theorem (which says a K-quasiconformal map is Hölder of

order 1/K), we see that the CRDT initial guess differs from the conformal map by a
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quasiconformal map with constant K ≃ 1/θ. Thus the bound is not independent of

the domain.

a

b

c

d

v

Figure 22. A non-Delaunay triangulation may give a bad initial
guess for CRDT.

7. Examples and open questions

Given a polygonal domain Ω, the CRDT initial guess produces a n-tuple on the

unit circle that we have proven is uniformly close to the true parameters in a quasi-

conformal sense. In this section we will explicitly estimate how close in a few cases

by plugging the CRDT guess into the Schwarz-Christoffel formula (using the known

angles), and comparing the resulting image to the original polygon.

As part of the CRDT algorithm we computed the Delaunay triangulation of Ω.

For each element T of this triangulation, consider the triangle T ′ corresponding to

T in the guessed image. There is an obvious affine map between these triangles

and we can easily compute its quasiconformal constant of this map as follows. First

use a conformal linear map to send each triangle to one of the form {0, 1, a} and

{0, 1, b}. The affine map is then of the form f(z) → αz + βz̄ where α + β = 1 and

β = (b − a)/(a − ā) and from this we see that

Kf =
1 + |µf |
1 − |µf |

,

where

µf =
fz̄

fz

=
β

α
=

b − a

b − ā
,

If the triangle T ′ is degenerate, or has the opposite orientation as T , we simply give

∞ as our QC bound K.
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Figure 23. A polygon and Schwarz-Christoffel image using guessed
parameters. The most distorted triangle is shaded.

The affine maps on each triangle define a QC map between the target polygon and

the guessed image, so the maximum triangle distortion is an upper bound for the

QC distance from the guessed parameters to the correct ones. This may not be an

exact estimate, but at least it gives a rigorous upper bound for the QC distance to

the correct parameters, without having to know what the correct parameters are. A

few examples are worked out in Figure 24.

Next we describe the iterative step of CRDT. For fixed angles, evaluating the SC-

formula defines a map S from n-tuples in T to n-tuples in C. If we change the n-tuple

by a Möbius transformation of the circle, then the image polygon changes by a linear

transformation. Thus S is a well defined map from T
n
∗ (n-tuples of distinct points

on T modulo Möbius transformations) into C
n
∗ (complex n-tuples modulo Euclidean

similarities). Moreover, we can identify T
n
∗ with R

n−3 as follows: fix a triangulation

of the n points on T, and for each pair of adjacent triangles record the logarithm of

the cross ratio of the four vertices (the cross ratio is positive if we take the correct

ordering of the four points). The original n-tuple can be recovered, up to Möbius

transformations, from these n − 3 real values so T
n
∗ = R

n−3. This allows us to apply

linear algebra to n-tuples on T.

Suppose we have an explicit way of guessing the SC-parameters for a polygon, i.e.,

a map G : C
n
∗ → T

n
∗ . Then F = G ◦ S gives a map R

n−3 → R
n−3 and the correct

SC-parameters for Ω solve F (z) = z0 (where z0 = G(v) ∈ T
n
∗ ) and hence are fixed by

zk+1 = zk − A(F (zk) − z0).(6)

where A is any (n−3)×(n−3) matrix. The CRDT iteration is this iteration with the

map G from polygons to n-tuples being the CRDT initial guess (the tree-of-disks maps
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Figure 24. Target polygons (left) and Schwarz-Christoffel images
using initial CRDT guesses (right). We have not added extra vertices.
The QC distortions are bounded by 3.12157, 3.8577, 2.61153, 3.62306
respectively, using the triangle method described in the text. Note that
CRDT tends to shorten long corridors.
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from the introduction). Full CRDT consists of letting A = D−1. where D = DF is

the derivative matrix of the function F , computed by discrete approximation. Simple

CRDT assumes A is the identity matrix. Shortcut CRDT starts by assuming A is

the identity, but uses Broyden updates at each iteration to make A approximate

D−1 using the information gathered at each step (see Chapter 8 of [13]). In general,

shortcut CRDT works best for problems of reasonable size. See Figures 25 and 26

for some examples of how simple and shortcut CRDT work.

Next we illustrate Theorem 2 and our remarks following Theorem 4. As pointed out

in the introduction, the extra points added in the first step of CRDT are not always

needed to guarantee that the initial guess of the Schwarz-Christoffel parameters are

within a bounded distance of the correct ones. Figures 27 and 28 show two examples

of polygons to which CRDT will add vertices, but in which the original polygon

already has a guaranteed good initial guess. In Figure 27 we have two rectangles

joined by a small gap. The Delaunay triangulation has a diagonal that bridges this

gap, so it satisfies Theorem 2 and has a good initial guess. CRDT will subdivide the

four edges adjacent to the gap (recall each slit has two sides) and then will further

subdivide the closest edges, converting a 10-gon to a 26-gon.

At each step we compute the polygon corresponding to the current parameter guess

and compare it to the target using triangulations as described above. We have plotted

− log(K − 1) at each step for each of our two polygons. The CRDT iteration step

is quadratic in the number of vertices, because in evaluating the Schwarz-Christoffel

integrals, we evaluate n integrals, each of an n-fold product although this can be

avoided by other methods, e.g., [4]. Also, the vertices of angle π added by CRDT do

not contribute to the product in the SC formula. For the example in Figure 27 the

running time increases by almost a factor of 10, with no gain in accuracy.

In Figure 28, the triangulation does not satisfy Theorem 2, but it does satisfy the

isosceles leaf and thick crescent conditions of the introduction, so the initial guess

will be good. CRDT however, cuts off the two narrow triangles, and then adds extra

vertices to the remaining narrow channels, converting an 8-gon to a 50-gon. The

running time increased by a factor of 86, without any gain in accuracy, as shown in

Figure 29.

Finally, we note that the following questions remain unanswered.
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Figure 25. Shortcut CRDT applied to a 98-gon. The top left shows
the CRDT initial guess, followed by 9 iterations of shortcut CRDT.
The center figure shows the triangulation used. The bottom shows the
gain in accuracy over 25 iterations. I have graphed − log(K −1) where
K is the upper bound for the QC error derived from triangulations
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Figure 26. For a pentagon, CRDT iterations acts on R
2 (5-tuples

on the circle modulo Möbius transformations). On the left we show
the map z → z − (F (z) − z0) corresponding to simple CRDT for a
particular pentagon. Convergence of simple CRDT is the claim that
iterating the initial CRDT guess z0 (the triangle) under this map will
converge to the fixed point of the vector field (the star). In this picture
convergence seems obvious from any starting point; what can we prove
in general? The iterates shown on the left (the gray dots) correspond
to the pentagons shown on the right.

(1) How can we modify the first step of CRDT to only add enough points so that

the interior crescents condition is satisfied? How many points do we need to

add to make the Delaunay triangulation a M -spanner for all of P?

(2) Can we use the computation of quasiconformal maps between triangulations

to choose better steps for the iteration? For example, what happens if we make

extra evaluations in directions corresponding to the most distorted triangles

and use Broyden updates to incorporate this information into A?

(3) Can the estimates in this paper be refined to prove that CRDT converges?

(4) An alternative to the CRDT map from polygons to n-tuples is proposed in

[7] using the medial axis of P . Like the CRDT map, this map has uniform

QC bounds (as in Theorem 1) but in various examples it seems to give a

better approximation than the CRDT guess gives. Can we prove this? Does

replacing the CRDT map by the medial axis map give a better conformal

mapping algorithm?
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Figure 27. The upper left is a polygon satisfying Theorem 2, and the
upper right is the result when CRDT adds extra vertices. The Delaunay
triangulations are shown in gray. Below are the Schwarz-Christoffel
images using the CRDT initial guesses for these triangulations. The QC
errors are bounded above by 1.44394 and 3.37951 respectively. Thus
adding the extra vertices actually gives a worse initial guess.

(5) Is the CRDT iteration monotone with respect to the QC distance? (Figures

25 and 29 show that our upper bound estimates are not monotone everywhere,

but appear “roughly” monotone.)

(6) Is there an alternate metric that is more appropriate for studying the conver-

gence of CRDT?

Appendix A. Conformal modulus and cross ratios

Suppose Γ is a family of locally rectifiable paths in a planar domain Ω and ρ is a

non-negative Borel function on Ω. We say ρ is admissible for Γ if

ℓ(Γ) = inf
γ∈Γ

∫

γ

ρds ≥ 1,
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Figure 28. A polygon and the same polygon with the CRDT extra
vertices. Below are the Schwarz-Christoffel images using the initial
guesses generated from these polygons. The QC upper bounds are
2.38016 and 2.40062 respectively, so adding the extra vertices makes
almost no difference.

and define the modulus of Γ as

Mod(Γ) = inf
Ω

∫

M

ρ2dxdy,

where the infimum is over all admissible ρ for Γ. This is a well known conformal

invariant whose basic properties are discussed in many sources such as Ahlfors’ book

[1]. One property that we use in this paper is that if K ⊂ D is a continuum, then its

hyperbolic diameter is bounded iff the modulus of the path family connecting K to

the ∂D is bounded (see Lemma 7).

A generalized quadrilateral Q is a Jordan domain in the plane with four specified

boundary points x1, x2, x3, x4 (in counterclockwise order). We define the modulus of
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Figure 29. These two graphs compare the shortcut CRDT iteration
for the polygons in Figures 27 and 28. We have plotted − log(K − 1)
where K is the QC error upper bound at each step. On the left is the
comparison between the polygons in Figure 27, with dots being the
original polygon and stars the one with extra vertices. The results are
similar, but the second graph took about ten times as long to compute.
On the right is the corresponding graph for the polygons in Figure 28.
Again, the results are similar, but the polygon with extra vertices took
much longer to compute.

Q, MQ(x1, x2, x3, x4) (or just MQ or M(Q) if the points are clear from context), as

the modulus of the path family in Q that connects the arc (x1, x2) to the arc (x3, x4).

This is also the unique positive real number M such that Q can be conformally

mapped to a 1×M rectangle with the arcs (x1, x2), (x3, x4) mapping to the opposite

sides of length 1. In this paper, we will be particularly concerned with the case when

Q = D and we are given four points in counterclockwise order on the unit circle.

Given a generalized quadrilateral Q with four boundary points x1, x2, x3, x4, the

quadrilateral Q′ with vertices x2, x3, x4, x1 is called the reciprocal of Q and it is easy

to see that Mod(Q′) = 1/Mod(Q).

A linear fractional (or Möbius) transformation is a map of the form z → (az +

b)/(cz+d). This is a 1-1, onto, holomorphic map of the Riemann sphere S = C∪{∞}
to itself. Such maps form a group under composition and are well known to map

circles to circles (if we count straight lines as circles that pass through ∞). Möbius

transforms are conformal, so they preserve angles.
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The non-identity Möbius transformations are divided into three classes. Parabolic

transformations have a single fixed point on S and are conjugate to the translation

map z → z +1. Elliptic maps have two fixed points and are conjugate to the rotation

z → λz for some |λ| = 1. The loxodromic transformations also have two fixed points

and are conjugate to z → λz for some |λ| < 1. If, in addition, λ is real, then the map

is called hyperbolic.

The cross ratio of four distinct complex numbers a, b, c, d is

cr(a, b, c, d) =
(d − a)(b − c)

(c − d)(a − b)
.

Note that z → cr(a, b, c, z) is the unique Möbius transformation that sends a to 0, b to

1 and c to ∞. Thus the cross ratio is clearly Möbius invariant. Moreover, cr(a, b, c, d)

is real valued iff the four points lie on a circle; and is negative iff the points are labeled

in counterclockwise order on the circle.

Since the cross ratio and the modulus of four points on the unit circle are both

invariant under Möbius transformations of the disk to itself, each must be a function

of the other. The usual way to represent this function (e.g., as in Ahlfors’ book [1])

is to map the disk to the upper half plane, H, sending the points a, b, c to 0, 1,∞
respectively and d to −P = cr(a, b, c, d) ∈ (−∞, 0). Then MD(a, b, c, d) is the same as

the modulus of the path family in H connecting (−∞,−P ) to (0, 1). By symmetry,

this is twice the modulus of the path family of closed curves in the plane that separate

[−P, 0] from [1,∞]. We will denote this modulus by M(P ). The transformation

z → (z − 1)/(z + P ) sends 0, 1,∞,−P to − 1
P
, 0, 1,∞, so by the Möbius invariance

of modulus and the fact that conjugate quadrilaterals have reciprocal moduli, we see

that

MH(
1

P
) =

1

MH(P )
,(7)

and hence MH(1) = 1 and M(1) = 1/2.

In [1] Ahlfors gives the following formula (page 46, equation (16)) relating P and

M

P + 1 = exp(2πM)
1

16

∞
∏

n=1

(
1 + exp((1 − 2n)2πM)

1 + exp((−2n)2πM)
)8.
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For M > 0 the infinite product converges and for M large (say M ≥ 1) we have
∞
∏

n=1

(
1 + exp((1 − 2n)2πM)

1 + exp((−2n)2πM)
)8 = 1 + 8e−2πM + O(e−4πM).

Thus for P ≥ 1, (equivalently M ≥ 1), we have

log(P + 1) = 2πM − log 16 + 8e−2πM + O(e−4πM),

which implies

P ≃ exp(2πM).

For 0 < P ≤ 1, (equivalently 0 < M ≤ 1), we can use (7) to deduce

log(
1

P
+ 1) =

π

2M
− log 16 + 8e−π/(2M) + O(e−π/M),

which implies

P ≃ exp(− π

2M
).

In other words,

M ≃ 1

2π
log P, P ≫ 1,

M ≃ π

2| log P | , P ≪ 1,

Thus for x = {x1, x2, x3, x4} ⊂ T, since ModD = 2M ,

MD(x) ≃ 1

π
log |cr(x)|, |cr(x)| ≫ 1,

MD(x) ≃ π

| log |cr(x)|| , |cr(x)| ≪ 1.

Another elegant connection between modulus and cross ratios is given by Bagby in

[3], where it is shown that conformal modulus for a ring domain is given by minimizing

an integral involving logarithms of cross ratios.

Appendix B. Quasiconformal mappings

Quasiconformal mappings are a generalization of conformal mappings that play an

important role in modern analysis and a central role in the current paper. There are

(at least) three equivalent definitions of a K-quasiconformal mapping between planar

domains. Suppose f : Ω → Ω′ is a homeomorphism.

Geometric definition: for any generalized quadrilateral Q ⊂ Ω, Mod(Q)/K ≤
Mod(f(Q)) ≤ KMod(Q).
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Analytic definition: f is absolutely continuous on almost every vertical and

horizontal line and the partial derivatives of f satisfy |fz̄| ≤ k|fz| where

k = (K − 1)/(K + 1). Here fz̄ = (1/2i)(fx + ify) and fz = (1/2)(fx − ify).

Metric definition: For every x ∈ Ω

lim sup
r→0

maxy:|x−y|=r |f(x) − f(y)|
miny:|x−y|=r |f(x) − f(y)| ≤ K.

For a proof of the equivalence of the first two, see [1] and for a discussion of the

third and a generalization to metric spaces see [24] and its references. A mapping

is conformal iff it is 1-quasiconformal and the composition of a K1-quasiconformal

map with a K2-quasiconformal map is (K1K2)-quasiconformal. Thus the distance

dQC from the introduction satisfies the triangle inequality.

Even though they do not have to be differentiable everywhere, by Mori’s theo-

rem every K-quasiconformal map is Hölder continuous of order 1/K. Moreover,

any quasiconformal map of D to itself extends continuously to the boundary. The

extension is also a homeomorphism and its restriction to the boundary is a qua-

sisymmetric homeomorphism, i.e., there is an M < ∞ (depending only on K) so

that 1/M ≤ |f(I)|/|f(J)| ≤ M , whenever I, J ⊂ T are adjacent intervals of equal

length. Conversely, any quasisymmetric homeomorphism of T can be extended to a

K-quasiconformal selfmap of the disk, where K depends only on M .

Quasiconformal maps of the unit disk to itself generalize hyperbolic bi-Lipschitz

maps, i.e., maps that satisfy

1

K
≤ ρ(f(x), f(y))

ρ(x, y)
≤ K.

Although a quasiconformal map f : D → D need not be bi-Lipschitz, it is a quasi-

isometry of the disk with its hyperbolic metric ρ, i.e., there are constants A,B such

that
1

A
ρ(x, y) − B ≤ ρ(f(x), f(y)) ≤ Aρ(x, y) + B.

In [19] Epstein, Marden and Markovic show that any K-quasiconformal selfmap of

the disk is a quasi-isometry with respect to the hyperbolic metric with A = K and

B = K log 2 if 1 ≤ K ≤ 2 and B = 2.37(K − 1) if K > 2.

A quasi-isometry of the disk to itself need not be quasiconformal (indeed, it need

not even be continuous), but there is a close connection in terms of boundary values.
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If h : D → D is a quasi-isometry then a result of Vaisala [32] implies that h has

a continuous extension to the boundary and that this extension is quasisymmetric,

with a constant that depends only on rough isometry constants of h. Hence there

is a K-quasiconformal self-map H of the disk with these same boundary values, and

with K depending only on rough isometry constants of h. Thus to prove that a circle

homeomorphism has a quasiconformal extension to the disk, it suffices to prove it has

a quasi-isometric extension. More generally, if Φ : Ω → D is a quasi-isometry of the

hyperbolic metrics and f : D → Ω is conformal, then Φ◦f : D → D is quasi-isometric

and hence there is a quasiconformal map Ψ : D → D with the same boundary values.

Thus Ψ ◦ f−1 : Ω → D is a quasiconformal map with the same boundary values of Φ.

This is the situation encountered in this paper.
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