
Conformal Distortion in SpaeCh. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. VuorinenApril 10, 2000AbstratWe study the onformality problems for quasiregular mappings in spae. Our ap-proah is based on some new Gr�otzsh { Teihm�uller type modulus estimates that areexpressed in terms of the mean value of the dilatation oeÆients.1991 Mathematis Subjet Classi�ation. AMS (MOS) 30C55,60.1. IntrodutionLet G be an open set in Rn : A ontinuous mapping f : G ! Rn is alled K {quasiregular, K � 1; if f 2W 1;nlo (G) and ifjjf 0(x)jjn � K Jf (x) a:e:(1.1)where Jf (x) stands for the Jaobian determinant of f 0(x) and jjf 0(x)jj = sup jf 0(x)hjwhere the supremum is taken over all unit vetors h 2 Rn : A homeomorphi K {quasiregular mapping is alled K { quasionformal. We shall employ the followingdistortion oeÆientsKf (x) = jjf 0(x)jjnJf (x) ; Lf (x) = Jf (x)`(f 0(x))n ; Hf (x) = kf 0(x)k`(f 0(x)) ;(1.2)that are alled the outer, inner and linear dilatation of f at x; respetively. Here`(f 0(x)) = inf jf 0(x)hj: These dilatation oeÆients are well{de�ned at regular pointsof f and, by onvention, we let Kf (x) = Lf (x) = Hf (x) = 1 at the nonregular pointsand for a onstant mapping.It is well{known that if n � 3 and one of the dilatation oeÆients of a quasiregularmapping f; say Lf (x); is lose to 1; then f is lose to a M�obius transformation. In spiteof this Liouville's phenomenon the pointwise ondition Lf (x) ! 1 as x ! y; y 2 G;does not imply in general neither onformality for f at y nor the properties typial forthe onformal mappings. The mappingf(x) = x(1� log jxj); f(0) = 0;(1.3)shows that jf(x)j=jxj ! 1 as x ! 0 although Lf (x) = (1 � 1= log jxj)n�1 ! 1:Nevertheless, the onformal behavior of f at a point an be studied using another1



2 Conformal Distortion in Spaemeasures of loseness of the distortion oeÆient to 1: The �rst suh result is due toTeihm�uller [T℄ and Wittih [W℄. They proved that if f : G! R2 is a quasionformalhomeomorphism suh that Zjx�yj<r Lf (x)� 1jx� yj2 dx! 0 as r! 0;(1.4)for some y 2 G then jf 0(y)j = �; where � > 0: In what follows we will all suh �the onformal distortion oeÆient of f at y: Similar problems have been studied byBelinski [B℄, Shabat [SH℄, Lehto [L℄, Reih and Walzak [RW℄, Brakalova and Jenkins[BJ℄ in plane and by Reshetnyak [R2℄ and Suominen [Su℄ in spae. Another approahto the investigation of the pointwise behavior of the quasionformal mappings basedon the Beltrami equation is due to Bojarski [BO℄ (see, also [Sh℄, [Iw℄).Consider the lass of spae radial mappings f : B ! B de�ned on the unit ball Bin Rn entered at the origin asf(x) = xe��(jxj); �(jxj) = 1Zjxj Lf (t)� 1t dt; f(0) = 0;(1.5)where Lf (t) stands for an arbitrary loally integrable funtion on [0; 1℄ suh thatLf (t) � 1 for almost all t 2 [0; 1℄: It follows from (1.5) that Lf (x) = Jf (x)=`(f 0(x))na.e. and therefore Lf (x) agrees with the inner dilatation oeÆient of f at x: A simpleobservation shows that f is onformally di�erentiable at the origin i� the integral in(1.5) onverges as x! 0: For an arbitrary quasiregular mapping f : B ! B; f(0) = 0;the latter onvergene assumption an be written in the formZjxj<r Lf (x)� 1jxjn dx! 0 as r! 0(1.6)and one an expet that the ondition (1.6) is neessary for f(x) to be onformal atx = 0:In this paper we derive Gr�otzsh type modulus inequalities for quasiregular map-pings in Rn ; n � 2; where integrals similar to (1.6) ontrol the distortion. Then wemake use of suh estimates to prove that a spae version of the Teihm�uller { Wittihresult for nononstant quasiregular mappings holds if we replae the assumption (1.4)by (1.6). Finally we give a ondition that guarantees the existene of the onformaldistortion oeÆient for f at every point of a ompat set E � G and apply the lat-ter result to study Carleson's reti�ability problem for quasispheres, see [CA℄, [BP℄,[ABL℄. For onveniene we will prove the main statements only for the inner dilatationoeÆient Lf (x) beause for the other dilatations the orresponding results will followfrom the well{known relations (see, e.g., [V℄, p. 44)Lf (x) � Kn�1f (x); Kf (x) � Ln�1f (x); Hnf (x) = Kf (x)Lf (x)(1.7)that hold for every n � 2:The following standard notations will be used in this paper. The norm of a vetorx 2 Rn is written as jxj = (x21 + : : : + x2n)1=2 where x1; : : : ; xn are the oordinates of



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 3x: If 0 < a < b < 1; the domain R(a; b) = B(b) n B(a) is alled a spherial annulus,where B(r) is the ball fx 2 Rn j jxj < rg:
2. Modulus EstimatesLet E be a family of Jordan ars or urves in spae Rn : A nonnegative and Borelmeasurable funtion � de�ned in Rn is alled admissible for the family E if the relationZ �ds � 1(2.1)holds for every loally reti�able  2 E : The quantityM(E) = inf� ZRn �ndx;(2.2)where the in�mum is taken over all � admissible with respet to the family E is alledthe modulus of the family E (see, e.g, [V℄, p.16, [G2℄). This quantity is a onformalinvariant and possesses the monotoniity property whih says, in partiular, that ifE1 < E2; that is every  2 E2 has a suburve whih belongs to E1; then (see, e.g., [V℄,p. 16) M(E1) � M(E2):(2.3)A spae ring R is de�ned as a �nite domain in Rn whose omplement onsists oftwo omponents C0 and C1: A urve  is said to join the boundary omponents in Rif  lies in R; exept for its endpoints that lie in di�erent boundary omponents of R:In these terms the modulus of a spae ring has the representation (see, e.g., [G2℄,[H℄) modR = �!n�1M(�)�1=(n�1)(2.4)where � is the family of urves joining the boundary omponents in R and !n�1 is the(n� 1){dimensional surfae area of the unit sphere Sn�1 in Rn ( see, e.g., [Z℄, [G2℄).Note also, that the modulus M(�) oinides with the onformal apaity of thespae ring R by a result of L�owner [LC℄ (see, e.g., [G2℄).In the sequel we will employ only the following two families of urves, lying inthe spherial annulus R(a; b); and its images under quasionformal mappings. The�rst one, that we denote by �R(a;b); onsists of all loally reti�able urves  that jointhe boundary omponents in R(a; b): The seond family ��R(a;b); with � 2 Sn�1 �xed,onsists of all loally reti�able urves  that join in R(a; b) the two omponents ofL \R(a; b) where L = ft� : t 2 Rg:In order to derive the desired estimates we need the following two statements.



4 Conformal Distortion in Spae2.5. Lemma. Let f : G ! G0 be a quasionformal mapping with the inner di-latation oeÆient Lf (x): Then for eah urve family � in GM(f(�)) � ZG �nLf (x)dx(2.6)for every � admissible for �:Proof. To prove (2.6) we �rst reall the following V�ais�al�a's inequalityM(�) � ZG ��n(f(x))kf 0(x)kndx(2.7)that holds for every urve family � in G and every �� admissible for �0 = f(�): Thisinequality is ontained in the proof of Theorem 32.3 from [V℄.Indeed, let �0 denote the family of all loally reti�able urves  2 � suh that f isabsolutely ontinuous on every losed suburve of : Sine f is ACLn; it follows fromFuglede's theorem (see, e.g., [V℄, p. 95) that M(� n �0) = 0: Hene M(�) = M(�0):Let �� be admissible for �0: De�ne � : Rn ! R by�(x) = ��(f(x))L(x; f)(2.8)for x 2 G and �(x) = 0 for x =2 G whereL(x; f) = lim suph!0 jf(x+ h)� f(x)jjhj :(2.9)If  2 �0 then Theorem 5.3 from [V℄ yieldsZ �ds � ZfÆ ��ds � 1(2.10)Thus, � is admissible for �0 and thereforeM(�) = M(�0) � ZG �ndx = ZG ��n(f(x))Ln(x; f)dx =(2.11) = ZG ��n(f(x))kf 0(x)kndx;sine f is di�erentiable almost everywhere in G and L(x; f) = kf 0(x)k at every pointof di�erentiability.Applying formula (2.7) to the inverse of f yieldsM(f(�)) � ZG �nLf (x)dx(2.12)for every � admissible for �:



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 52.13. Lemma. Let R be a spae ring that ontains the spherial annulus R(a; b)and let E1; E2 be two disjoint subsets of R suh that eah sphere Sn�1(t); a < t < b;meets both E1 and E2: If E is the family of all urves joining E1 and E2 in RnfE1[E2gthen M(E) � n log ba(2.14)where n = 12!n�20� 1Z0 t 2�nn�1 (1 + t2) 11�n1A1�n :(2.15)If R = R(a; b) and E1; E2 are the omponents of L\R(a; b); where L is a line throughthe origin in the diretion of a unit vetor �; thenM(E) = n log ba:(2.16)This useful result, the proof of whih is based on the ombination of the spaemoduli tehnique and Hardy{Littlewood{Polya's symmetrization priniple, is due toGehring [G1℄ (see, also, [V℄, p. 27, [C℄, p. 58, [R1℄, p. 108).Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasionformal mapping. We will use thefollowing standard notationsMf (r) = maxjxj=r jf(x)j; mf (r) = minjxj=r jf(x)j:(2.17)2.18. Theorem. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasionformal mappingwith the inner dilatation oeÆient Lf (x): Then for every spherial annulus R(a; b)log ba �mod f(R(a; b)) �(2.19) � modn f(R(a; b))Pn�1k=1 logn�k bamodk f(R(a; b)) 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:Proof. Let R(a; b) be an arbitrary spherial annulus in Rn and let �R(a;b) be thefamily of urves whih join the boundary omponents of R(a; b): Then (2.6) yieldsM(f(�R(a;b))) � ZR(a;b) �nLf (x)dx(2.20)for every � admissible with respet to a family �R(a;b):Using the formula (2.4), we obtain from (2.20)(mod f(R(a; b)))1�n � 1!n�1 ZR(a;b) �nLf (x)dx:(2.21)



6 Conformal Distortion in SpaeOn the other hand the funtion �0(x) = 1jxj log ba ;(2.22)is admissible with respet to �R(a;b) sine for every urve  2 �R(a;b)Z �0ds � bZa 1r log ba dr = 1:(2.23)Substituting �0 in (2.21) and noting that1!n�1 ZR(a;b) �n0 (x)dx = �log ba�1�n(2.24)we arrive at the inequality(mod f(R(a; b)))1�n � �log ba�1�n � 1!n�1(log ba )n ZR(a;b) Lf (x)� 1jxjn dx(2.25)that an be rewritten in the form (2.19). The proof is ompleted.2.26. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasionformal map-ping with the inner dilatation oeÆient Lf (x): Then for every spherial annulus R(a; b)log ba �mod f(R(a; b)) � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.27)Proof. If log(b=a) � mod f(R(a; b)); then the inequality (2.27) is trivial. Iflog(b=a) > mod f(R(a; b)); then (2.25) an be rewritten as����n�1 � 1 � M�where � = log(b=a); � = mod f(R(a; b)) and M is the right hand side of (2.27). Now�� � 1 � ����n�1 � 1 � M� � M�and this gives (2.27).2.28. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasionformal map-ping with the inner dilatation oeÆient Lf (x): Then for every spherial annulus R(a; b)log ba � log Mf (b)mf (a) � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.29)



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 7Proof. Sine the spae ring f(R(a; b)) is ontained in the spherial annulusR(mf (a); Mf (b)); the monotoniity priniple for the modulus yieldsmod f(R(a; b)) � modR(mf (a);Mf (b)) = log Mf (b)mf (a)(2.30)beause for every annulus R(a; b)modR(a; b) = log ba(2.31)(see, e.g., [V℄, p. 22).2.32. Theorem. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasionformal mappingwith the inner dilatation oeÆient Lf (x): Then for every spherial annulus R(a; b)M(f(��R(a;b)))� n log ba � ZR(a;b) �n0 (x; �)Lf (x)� 1jxjn dx(2.33)where �0(x; y) = (n=!n�2) 1n�1 �1� hx=jxj; y=jyji2� 2�n2(n�1)(2.34)and n is the onstant de�ned by (2.15).Proof. Fix a unit vetor � = y=jyj 2 Rn and onsider the family ��R(a;b) of urveswhih join ft� : �b < t < �ag to ft� : a < t < bg in R(a; b): By Lemma 2.5M(f(��R(a;b))) � ZR(a;b) �nLf (x)dx(2.35)for eah admissible � with respet to ��R(a;b):Now we are going to show that the funtion��(x) = 1jxj�0(x; y)(2.36)is admissible for the family ��R(a;b) for every �xed � = y=jyj:Indeed, let  be a reti�able urve in ��R(a;b) and let '(x) = x=jxj: Then ' Æ  is aurve on Sn�1 and  joins the antipodal points �y=jyj: Sine j'0(x)j = 1=jxj then (see[V℄, Cor. 5.4) Z ��(x)ds = Z �0('(x); y)j'0(x)jjdxj � Z'Æ �0(x; y)ds:(2.37)In order to ontinue the estimation of the above integral, let us rewrite �0(x; y) inthe form �0(x; y) = p�1n  (1� hx=jxj; y=jyji2) 122 ! 2�nn�1(2.38)



8 Conformal Distortion in Spaewith pn = 2 1Z0 r 2�nn�1 (1 + r2) 11�n dr(2.39)and introdue a ertain oordinate system on the sphere Sn�1:Denote by Vn�1 a hyperplane passing through the origin and orthogonal to thevetor y=jyj: Let t = P (x) : Sn�1 ! Vn�1 be the stereographi projetion with thepole at the point y=jyj and F (t) be the inverse mapping. Provide the sphere Sn�1with the spherial oordinates �1; :::; �n�1 in suh a way that �1 stands for the anglebetween the radius vetors going from the origin to the points x and �y=jyj of the unitsphere. In these terms jtj = tan(�1=2) and therefore, sin�1 = 2jtj=(1 + jtj2): On theother hand, 1� hx=jxj; y=jyji2 = sin2 �1; so�0(�; y) Æ F (t) = p�1n  1 + jtj2jtj !n�2n�1 :(2.40)Sine x = F (t) is onformal and jF 0(t)j = 2=(1 + jtj2) we getZ'Æ �0ds = ZFÆ'Æ �0 Æ F jF 0(t)jjdtj � 2p�1n 1Z0 jtj 2�nn�1 (1 + jtj2) 11�ndjtj = 1(2.41)having ompleted the veri�ation of the admissibility.Noting that ZR(a;b) �n�dx = bZa 0B� ZSn�1(r) �n�dmn�11CAdr =(2.42) bZa 24 ZSn�1 �n� (ru)rn�1dmn�1(u)35 dr = bZa drr ZSn�1 �n0dmn�1(x) = n log ba;sine ZSn�1 �n0dmn�1(x) = n(2.43)and substituting ��(x) in the inequality (2.35) we getM(f(��R(a;b)))� n log ba � ZR(a;b) �n0 (x; y)Lf (x)� 1jxjn dx(2.44)and arrive at the stated onlusion. Here we have also used the following relationZSn�1 �n0dmn�1(x) = 2n�1 ZVn�1 �n0 (F (t); y)(1 + jtj2)n�1dmn�1(t) =(2.45) p�nn 2n�1 ZVn�1 jtjn(2�n)n�1 (1 + jtj2)n(n�2)n�1 (1 + jtj2)1�ndmn�1(t) =



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 9!n�2p�nn 2n�1 pn2 = !n�2p1�nn 2n�2 = n:The proof is ompleted.2.46. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a K { quasionformalmapping with the inner dilatation oeÆient Lf (x): ThenZSn�1 M(f(��R(a;b)))dmn�1(�) � n ZR(a;b) Lf (x)dxjxjn :(2.47)Proof. The funtion �0(x; y) is symmetri in the sense that �0(x; y) = �0(y; x);x; y 2 Sn�1; and thereforeZSn�1 �n0dmn�1(y) = ZSn�1 �n0dmn�1(x) = n:(2.48)If we integrate the inequality (2.33) with respet to the parameter y over the sphereSn�1 then, by Fubini's theorem and relation (2.48), we getZSn�1 M(f(��R(a;b)))dmn�1(�) � n ZR(a;b) Lf (x)dxjxjn :(2.49)The proof is omplete.2.50. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a K { quasionformalmapping with the inner dilatation oeÆient Lf (x): Thenlog mf (b)Mf (a) � log ba � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.51)Proof. If mf (b) � Mf (a) then the inequality (2.51) is trivial. Assume thatmf (b) > Mf (a): Then the spae ring R = f(R(a; b)) ontains the spherial annulusR(Mf (a); mf (b)): The urve family f(��R(a;b)) satis�es all the assumptions of Lemma2.13 with the spherial annulus R(Mf (a);mf (b)) as a subset of f(R(a; b)): Therefore,inequality (2.14) and (2.16) imply thatM(f(��R(a;b))) � M(��R(Mf (a);mf (b))) = n log mf (b)Mf (a) :(2.52)This together with (2.47) yields (2.51).The following statements may be of independent interest.



10 Conformal Distortion in Spae2.53. Theorem. Let f be a K { quasionformal mapping of a spherial annu-lus R(a; b) onto another spherial annulus R(; d) with the inner dilatation oeÆientLf (x): Then � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx � log ba � log d �(2.54) � logn(d=)Pn�1k=1 logn�k(b=a) � logk(d=) � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:Proof. The left inequality follows from Corollary 2.50 and the right one is aonsequene of Theorem 2.18.If f is a K { quasionformal mapping in the plane, then (2.54) yields� ba� 1K � d � � ba�K(2.55)and we reognize the lassial Gr�otzsh inequality for annuli (see, e.g., [LV℄, p. 38).2.56. Corollary. Let f be a K { quasionformal mapping of a spherial annu-lus R(a; b) onto another spherial annulus R(; d) with the inner dilatation oeÆientLf (x): Then ����log d � log ba ���� � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.57)Indeed, if log(d=) > log(b=a) then (2.57) follows from the inequality (2.51). Iflog(d=) < log(b=a) then (2.57) follows from the inequality (2.29).For n = 2 we arrive at the modulus estimations under quasionformal mappings inthe plane with the variable dilatation oeÆient established by Belinski [B℄.Note that all the inequalities proved in this setion remain valid also for ACLnhomeomorphisms in Rn with loally integrable dilatation oeÆients. Moreover, theestimates (2.54) and (2.57) are sharp. For instane, the radial mappings of the type(1.5) provide the equality in (2.57).
3. Conformal DistortionWe apply estimates proved in Setion 2 to a spae version of the regularity problemstudied by Teihm�uller [T℄ and Wittih [W℄.



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 113.1. Theorem. Let f : Rn ! Rn ; n � 3; f(0) = 0; be a nononstant K {quasiregular mapping with the inner dilatation oeÆient Lf (x) andI(r) = 1!n�1 Zjxj<r Lf (x)� 1jxjn dx! 0 as r ! 0:(3.2)Then the radius of injetivity of f at 0; Rf (0); satis�es Rf (0) > 0 and there exists aonstant C; minjxj=R jf(x)je�I(R)R � C � maxjxj=R jf(x)jeI(R)R ; 0 < R � Rf (0);(3.3)suh that jf(x)jjxj ! C as x! 0:(3.4)3.5. Remark. The proof of Theorem 3.1 is also valid if n = 2 and f is a home-omorphism.3.6. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a K { quasionformalmapping satisfying (3.2). Then jf(x)j � Cjxj as x ! 0 and inequalities (3.3) an bereplaed by minjxj=1 jf(x)je�I(1) � C � maxjxj=1 jf(x)jeI(1):(3.7)In the ase n = 2 we arrive at the Teihm�uller { Wittih result for K { quasion-formal mappings in the plane (see, also, [LV℄, Lemma 6.1). For n � 3 the asymptotibehavior of f desribed in Corollary 3.6 has been proved by Suominen [Su℄ for K {quasionformal mapping in Riemannian manifolds.3.8. Remark. The above statements hold if we replae the inner dilatation Lf (x)by the outer dilatation Kf (x) or linear dilatation Hf (x), respetively.It is well-known that a sense-preserving loally L-bilipshitz mapping f : G ! Rnis L2(n�1) - quasiregular; a loally L-bilipshitz mapping f satis�es for eah L0 > L;x 2 G; and for some Æ > 0 the double inequality1=L0 � jf(y)� f(z)j=jy � zj � L0(3.9)whenever y; z 2 B(x; Æ): A more general lass than sense - preserving loally bilipshitzmappings is provided by the lass of mappings of bounded length distortion (BLD),see [MV℄. These mappings form also a sublass of quasiregular mappings as well.



12 Conformal Distortion in Spae3.10. Corollary. Let f : G! Rn ; be a bilipshitz mapping with the oeÆient ofquasiisometry L(x): If y 2 G and1!n�1 Zjx�yj<r L(x)� 1jx� yjn dx! 0 as r ! 0;(3.11)then there is a onstant C > 0 suh thatjf(x)� f(y)jjx� yj ! C as x! y:(3.12)This statement was proved reently in [K℄.3.13. Remark. If we replae (3.2) by the following stronger requirement1Z0 Æf (t)t dt <1;(3.14)where Æf (t) = ess supjxj<t (Kf (x)� 1);(3.15)then, by the well{known Reshetnyak theorem (see [R2℄, p. 204), f(x) will be onformallydi�erentiable at the origin.The well { known Liouville's theorem in spae states that if the dilatation oeÆientof a quasiregular mapping is lose to 1; then f is lose to a M�obius transformation. Thenext lemma, that gives a weak integral ondition for this phenomenon, will be used forthe proof of Theorem 3.1. Before its statement, let us reall some basi notions fromthe spae in�nitesimal geometry studied in [GMRV2℄.Let f : G ! Rn ; n � 2; be a nononstant K{quasiregular mapping, y 2 G; t0 =dist(y; �G); R(t) = t0=t; t > 0: For x 2 B(0; R(t)) we setFt(x) = f(tx+ y)� f(y)�(y; f; t) ;(3.16)where �(y; f; t) = �meas f(B(y; t))
n � 1n :(3.17)Here 
n denotes the volume of the unit ball B in Rn : Let T (y; f) be a lass of all thelimit funtions for the family of the mappings Ft as t ! 0; where the limit is takenin terms of the loally uniform onvergene. The set T (y; f) is alled the in�nitesimalspae for the mapping f at the point y: The elements of T (y; f) are alled in�nitesimalmappings and the family (3.16) is alled an approximating family for f at y: T (y; f) isnot empty and onsists only of nononstant K { quasiregular mappings F : Rn ! Rnnormalized by F (0) = 0; F (1) =1; measF (B) = 
n; see [GMRV2℄, Th. 2.7.



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 133.18. Lemma. Let f : G ! Rn ; n � 2; be a nononstant K { quasiregularmapping with the inner dilatation oeÆient Lf (x) and let E be a ompat subset ofG: If 1
ntn Zjx�yj<t (Lf (x)� 1)dx! 0 as t! 0(3.19)uniformly in y 2 E then:i) The in�nitesimal spae T (y; f) onsists of the linear isometri mappings only;ii) For n � 3 the mapping f is loally homeomorphi in E;iii) The mapping f preserves in�nitesimal spheres and spherial annuli entered aty in the sense that maxjx�yj=r jf(x)� f(y)jminjx�yj=r jf(x)� f(y)j ! 1 as r ! 0;(3.20)and for eah  � 1; �1 � jxj=jzj � ;jf(x+ y)� f(y)jjf(z + y)� f(y)j � jxjjzj ! 0(3.21)as x; z ! 0 uniformly in y 2 E:Proof of Lemma 3.18. i) Let Ft be the approximating family for f at y: Assumethat tj ! 0 as j ! 1 and Ftj (x) ! F (x) loally uniformly as j ! 1: By formula(3.16) we get that KFtj (x) = Kf (tjx+ y) a:e:(3.22)and hene (3.19) an be written asZjxj<R (KFtj (x)� 1)dx! 0 as j !1(3.23)for every positive onstant R: The latter limit implies that KFtj (x) ! 1 as j ! 1 inmeasure in Rn : Without loss of generality we may assume that KFtj (x) ! 1 almosteverywhere and Ftj (x) ! F (x) loally uniformly as j ! 1. This an be ahieved bypassing to a subsequene. By Theorem 3.1 from [GMRV1℄, the limit mapping F (x) isa nononstant 1 { quasiregular mapping. Applying Liouville's theorem we see that fis a M�obius mapping. Beause of the above normalization, F (x) is a linear isomerty.ii) By Lemma 4.5 from [MRV℄ we see thatlim supj!1 iFtj (0) � iF (0) = 1;(3.24)where if (x) denotes the loal topologial index of f at x: Thus all the mappings Ftj (x)are loally injetive at 0 for j > j0: By (3.16) we dedue that f is loally injetive aty; too.iii) Let us assume the onverse. Then there exist  � 1; sequenes yj 2 E; xj; zj ! 0as j !1 satisfying the ondition �1 � jxj j=jzj j � ; suh that



14 Conformal Distortion in Spae����� jf(xj + yj)� f(yj)jjf(yj + yj)� f(yj)j � jxj jjyjj ����� � " > 0:(3.25)By analogy with the preeding onsiderations, we introdue the following auxiliaryfamily of nononstant K { quasiregular mappingsFj(x) = f(jxjjx+ yj)� f(yj)�(yj; f; jxj j)(3.26)with the distortion oeÆients KFj (x) = Kf (jxj jx+ yj): Then the onvergene1
ntn Zjx�yj j<t (Kf (x)� 1)dx! 0 as t! 0(3.27)uniform in y 2 E with t = jxj jR; R > 0; implies thatZjxj<R (KFj (x)� 1)dx! 0 as j !1(3.28)for every positive R: Sine E is a ompat subset of G; then we an repeat the orre-sponding sequential arguments to show that every limit funtion for the family of themappings Fj(x) as j ! 1; is a linear isometry F (x): Without loss of generality wemay assume that Fj(x)! F (x) as j !1:Set �j = xj=jxj j; wj = zj=jxj j: We may assume that �j ! �0; j�0j = 1; andwj ! w0; �1 � jw0j � ; as j ! 1: Otherwise we an pass to some appropriatesubsequenes. Sine Fj(�j) = (f(xj + yj)� f(yj))=�(yj ; f; jxj j)! F (�0) and Fj(wj) =(f(zj + yj)� f(yj))=�(yj ; f; jxjj)! F (w0) and F is linear isometry it follows that0 = jF (�0)jjF (w0)j � j�0jjw0j = limj!1 ����� jFj(�j)jjFj(wj)j � jxjjjzj j ����� =(3.29) limj!1 ����� jf(xj + yj)� f(yj)jjf(zj + yj)� f(yj)j � jxj jjzj j ����� :Formula (3.29) provides a ontradition to the inequality (3.25). The relation (3.21) isa simple onsequene of (3.20).Proof of Theorem 3.1 Let f : G! Rn ; n � 3; be a nononstant K { quasiregularmapping. For every suh mapping f(x) and every y 2 G we de�ne the radius ofinjetivity Rf (y) of f at y as a supremum over all � > 0 suh that f(x1) 6= f(x2) forx1 6= x2 in the ball jx� yj < � in G; see [MRV℄.Let us now assume that the integralI(r) = 1!n�1 Zjxj<r Lf (x)� 1jxjn dx(3.30)onverges. The evident inequality1rn Zjxj<r (Lf (x)� 1)dx � Zjxj<r Lf (x)� 1jxjn dx(3.31)



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 15yields 1
nrn Zjxj<r (Lf (x)� 1)dx! 0 as r ! 0;(3.32)and we make use of the weak onformality result, stated in Lemma 3.18. It providesus, in partiular, with the information that the mapping f is loally homeomorphi atthe origin, Rf (0) > 0; and that limr!0 log Mf (r)mf (r) = 0:(3.33)Hene, in order to dedue (3.4) it suÆes to show thatlimr!0 logMf (r)r = a(3.34)and for this we use the Cauhy riterion�" < log Mf (r2)Mf (r1) � log r2r1 < ":(3.35)Let us �x a positive number R; 0 < R < Rf (0); and �rst prove the left inequalityin (3.35).The onvergene of the integral (3.30) implies that given " > 0 there exists Æ > 0suh that I(Æ) < "=2: Therefore, for every 0 < r1 < r2 < Æ by Corollary 2.28log r2r1 � log Mf (r2)mf (r1) � I(Æ) < "=2:(3.36)On the other hand, without loss of generality, we may assume that the relation (3.33)yields logMf (r2)mf (r1) = log Mf (r2)Mf (r1) + logMf (r1)mf (r1) � log Mf (r2)Mf (r1) + "=2:(3.37)From (3.36) and (3.37) we derive the left inequality in (3.34).For proving the right inequality in (3.34) we �rst note that by Corollary 2.50 wemay assume that log mf (r2)Mf (r1) � log r2r1 � I(Æ) < "=2:(3.38)Applying (3.33) we see thatlog Mf (r2)Mf (r1) � log mf (r2)Mf (r1) = logMf (r2)mf (r2) < "=2:(3.39)Combining (3.38) with (3.39) we obtain the right side inequality (3.34) and therefore,the Cauhy riterion (3.35).In order to prove inequalities (3.3) let us �rst note that by Corollary 2.28log Rr � log Mf (R)mf (r) < I(R)(3.40)



16 Conformal Distortion in Spaefor every 0 < r � R: Using relation (3.33) we dedue thatlog Mf (r)r < logMf (R)R + I(R) +O(r):(3.41)Thus limr!0 log Mf (r)r � log Mf (R)R + I(R):(3.42)Next, by Corollary 2.50 log mf (R)Mf (r) � log Rr < I(R):(3.43)Sine (3.39) implies thatlogMf (r)r > �I(R) + log mf (R)R +O(r)(3.44)we get limr!0 log Mf (r)r � log mf (R)R � I(R)(3.45)and thus omplete the proof.The following statement is a strengthened version of Theorem 3.1.3.46. Theorem. Let ' : G ! Rn ; n � 3; be a nononstant K { quasiregularmapping and let E be a ompat set in G: IfI(r) = 1!n�1 Zjx�yj<r L'(x)� 1jx� yjn dx! 0 as r ! 0;(3.47)uniformly in y 2 E; then there exists a positive ontinuous funtion C(y); y 2 E; suhthat jf(x)� f(y)jjx� yj ! C(y) as x! y(3.48)uniformly in y 2 E and for 0 < R < Rf (y)minjx�yj=R jf(x)� f(y)je�I(R)R � C(y) � maxjx�yj=R jf(x)� f(y)jeI(R)R :(3.49)Here Rf (y) stands for the radius of injetivity of f at y:Proof. For eah �xed y 2 G we will onsider the following auxiliary K { quasireg-ular mappings f(x) = '(x+ y)� '(y)(3.50)de�ned for jx� yj < dist (y; �G): Denoting by Lf (x; y) the inner dilatation oeÆientfor f we see that Lf (x; y) = L'(x+y) a.e. in a neighborhood of the point y 2 G: Then(3.47) implies that



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 17Zjxj<r Lf (x; y)� 1jxjn dx! 0 as r ! 0(3.51)uniformly in y 2 E:So, the mapping f satis�es all the onditions of Theorem 3.1 and henejf(x)jjxj = j'(x+ y)� '(y)jjxj ! C(y) as x! 0(3.52)for every �xed y 2 E:In order to show that the limit (3.52) is uniform with respet to y 2 E we have toanalyze the proof of Theorem 3.1. It is based on the following two distortion estimatesof Corollary 2.50 and Corollary 2.28log r2r1 � logMf (r2)mf (r1) � 1!n�1 ZR(r1;r2) Lf (x; y)� 1jxjn dx;(3.53) log mf (r2)Mf (r1) � log r2r1 � 1!n�1 ZR(r1;r2) Lf (x; y)� 1jxjn dx;(3.54)and the weak onformality onsequenelogMf (r)mf (r) ! 0 as r ! 0;(3.55)provided by Lemma 3.18. Lemma 3.18 states also that the uniform onvergene (3.47)with respet to the parameter y implies the uniform onvergene (3.55). Hene from(3.53) { (3.55) and the uniform onvergene (3.47) we obtain that for every " > 0 thereis Æ > 0 suh that 0 < r1 < r2 < Æ implies�����logMf (r2)Mf (r1) � log r2r1 ����� < "(3.56)for every y 2 E whereMf (r) = maxjxj=r jf(x)j = maxjxj=r j'(x+ y)� '(y)j:(3.57)Thus, we have arrived at the Cauhy riterion for the funtionMf (r)=r to onverge toa nonzero limit uniformly in y 2 E: The proof is omplete.3.58. Corollary. Let f : G ! Rn ; be a loally bilipshitz mapping with the oef-�ient of quasiisometry L(x) and let E be a ompat set in G: IfZjx�yj<r L(x)� 1jx� yjn dx! 0 as r ! 0;(3.59)loally uniformly in y 2 E; then there exists a positive ontinuous funtion C(y); y 2 E;suh that jf(x)� f(y)jjx� yj ! C(y) as x! y(3.60)



18 Conformal Distortion in Spaeuniformly in y 2 E:This statement follows immediately from Theorem 3.46 if we reall that every loallyL-bilipshitz mapping in G is K - quasiregular with K � L2(n�1):3.61. Corollary. Let f : G! Rn ; n � 2; be a K { quasionformal mapping andlet E be a ompat subset of G: If1!n�1 Zjx�yj<r Lf (x)� 1jx� yjn dx! 0 as r ! 0(3.62)uniformly in y 2 E; then there exists a positive onstant L suh that1L jx� zj � jf(x)� f(z)j � Ljx� zj(3.63)whenever x; z 2 E:Proof. We �rst show thatM = supx;z2E;x6=z jf(x)� f(z)jjx� zj <1:(3.64)Let us assume the onverse. Then there exist sequenes xj ; zj 2 E suh thatlimj!1 jf(xj)� f(zj)jjxj � zj j =1:(3.65)Without loss of generality we may assume that xj ! x0; zj ! z0: Sine E is a ompatset then x0; z0 2 E: If x0 6= z0 thenlimj!1 jf(xj)� f(zj)jjxj � zj j = jf(x0)� f(z0)jjx0 � z0j 6=1:(3.66)If x0 = z0 = y then limj!1 jf(xj)� f(zj)jjxj � zj j = C(y);(3.67)by Theorem 3.46. Sine C(y) <1 then (3.67) provides a ontradition to the relation(3.65).Repeating the preeding arguments and taking into aount both the injetivity off in G and the inequality C(y) > 0; y 2 E; we get thatN = infx;z2E;x6=z jf(x)� f(z)jjx� zj > 0:(3.68)The inequalities (3.64) and (3.68) imply the existene of a positive onstant L suhthat (3.63) holds whenever x; z 2 E:Next we will apply Theorem 3.46 to a spae version of the reti�ability problem forquasionformal mappings studied by Carleson [CA℄. It is well-known that a quasion-formal mapping f : G ! Rn being an ACLn homeomorphism need not be absolutely



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 19ontinuous on some subsets E of G of a smaller dimension than n: Hene the imagef() of a reti�able urve  � G under quasionformal mapping f may fail to be re-ti�able. The following statement provides a suÆient ondition that guarantees thereti�ability of f():3.69. Corollary. Let f : G! Rn ; n � 2; be a K { quasionformal mapping andlet  be a reti�able urve in G: If1!n�1 Zjx�yj<r Lf (x)� 1jx� yjn dx! 0 as r ! 0(3.70)uniformly in y 2 ; then � = f() is reti�able and moreover,Zf() dS = Z C(y)ds;(3.71)where C(y) is de�ned by (3.48).Proof. The following double inequality is trivial`(f 0(y))ds � dS � jjf 0(y)jjds(3.72)where ds and dS stand for the element of the length of the urve  at the point y 2 and its image under the mapping f; respetively. On the other hand, Theorem 3.46provides the expliit representation for the onformal distortion oeÆient of f at yand hene `(f 0(y)) = jjf 0(y)jj = limh!0 jf(y + h)� f(y)jjhj = C(y):(3.73)From (3.72) we dedue that the line elements of  and f() are onneted by therelation dS = C(y)ds and thus, we arrive at the formula (3.71). Reti�ability of f()now follows from Corollary 3.61 beause  is ompat and therefore C(y) � L; y 2 :Note that formula (3.71) provides the following double inequality1L � length f()length � L(3.74)and the onstant L an be also estimated by means of formula (3.49).Using the preeding approah we an apply Theorem 3.46 to the study of somegeometri properties of K - quasispheres, that is, images of the unit sphere Sn�1 of Rnunder K { quasionformal mappings of Rn :When n = 2; they are alled quasiirles orquasionformal urves and studied in details in a number of the well-known papers, see,e.g., [ABL℄, [BP℄, [BG℄. The problem onerns suÆient onditions whih guaranteethe reti�ability of a quasisphere.For a set E � Rn and for Æ > 0 let�Æ�(E) = n;� inffBjg Xj d(Bj)�;(3.75)



20 Conformal Distortion in Spaewhere the in�mum is taken over all ountable overings fBjg of E with d(Bj) < Æ:Here the Bj are balls of Rn and d(Bj) is the diameter of Bj (see, e.g., [F℄, p. 7). Thequantity ��(E) = limÆ!0�Æ�(E);(3.76)�nite or in�nite, is alled the �-dimensional normalized Hausdor� measure of the setE: P. Mattila and M. Vuorinen [MVM℄ proved that if f : Rn ! Rn is K { quasion-formal, K(t) = (f j [jxj=1 B(x; t)); �(t) = K(t)1=(n�1); then the Dini ondition1Z0 1� �(t)t dt <1(3.77)implies that �n�1(f(Sn�1)) <1:This result an be strengthened in the following diretions. First, the well { knownReshetnyak's theorem states that the Dini ondition (3.77) implies the uniform on-formal di�erentiability of the mapping f in Sn�1 (see [R2℄, p. 378). Hene (3.77)gives a suÆient ondition for the quasisphere f(Sn�1) to be smooth. On the otherhand, the following statement provides a ondition weaker then (3.77) for f(Sn�1) tobe reti�able.3.78. Corollary. Let f : Rn ! Rn ; n � 2; be a K { quasionformal mappingand let Zjx�yj<r Lf (x)� 1jx� yjn dx! 0 as r ! 0(3.79)uniformly in y 2 Sn�1: Then��(f(Sn�1)) = Zf(Sn�1) d� = ZSn�1 Cn�1(y)d� � Ln�1!n�1(3.80)where L = maxy2E C(y): Here d� stands for the (n � 1) - dimensional surfae areaelement for Sn�1 and C(y) is de�ned by (3.48).Referenes[ABL℄ Anderson J.M., Beker J., Lesley F.D., Boundary values of asymp-totially onformal mappings, J. London Math. So. 38 (1988), 453 { 462.[BP℄ Beker J., Pommerenke Ch., �Uber die quasikonforme Fortsetzungshlihten Funktionen, Math. Zeit., 161 (1978), 69{80.[B℄ Belinskii P.P., General properties of quasionformal mappings, Nauka,Novosibirsk, 1974. (Russian)[BO℄ Bojarski B., General solutions of a system of di�erential equations of the�rst order and of ellipti type with disontinuous oeÆients, Mat. Sb. N.S.,43 (85) (1957), 451{503.
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