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Abstract. We show that every open Riemann surface X can be obtained by glueing
together a countable collection of equilateral triangles, in such a way that every vertex
belongs to finitely many triangles. Equivalently, X is a Belyi surface: There exists a
holomorphic branched covering f : X → Ĉ that is branched only over −1, 1 and ∞, and
with no removable singularities at the boundary of X. It follows that every Riemann
surface is a branched cover of the sphere, branched only over finitely many points.

1. Introduction

This article considers the following question: which Riemann surfaces can be built
from equilateral triangles?

More precisely, let T be a closed equilateral triangle. Starting from either a finite even
number or a countably infinite number of copies of T , glue these triangles together by
identifying every edge with exactly one edge of another triangle, in such a way that the
identification map is the restriction of an orientation-reversing symmetry of T . Assume
furthermore that the resulting space E is connected, and that any vertex is identified
with only finitely many other vertices; see Figure 1. Then E is an orientable topological
surface, which is compact if and only if the number of triangles we started with was
finite. We say that E is an equilateral surface.

Every equilateral surface comes equipped with a Riemann surface structure: On the
interior of a face or of an edge, the complex structure is inherited from T . It is easy
to see that each vertex is conformally a puncture, and therefore the complex structure
extends to all of E; indeed, local charts can be defined by using appropriate power maps.
(Recall that each vertex lies on the boundary of some finite number of faces, which are
necessarily arranged cyclically around it.) We say that a Riemann surface is equilaterally
triangulable if it is conformally equivalent to an equilateral surface; compare [VS89] and
Section 2.

1.1. Question. Which Riemann surfaces are equilaterally triangulable?

We emphasise that Question 1.1 concerns complex rather than metric structures. That
is, a conformal isomorphism from a given Riemann surface X to an equilateral surface E
induces a flat metric on X having isolated cone singularities; different triangulations will
lead to different metrics. Question 1.1 asks whether X supports any such “equilateral
triangulation”.
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Figure 1. An equilateral surface of genus 0, built from 24 equilateral
triangles, and the corresponding triangulation of the Riemann sphere.

There are only countably many constellations in which one may glue finitely many
triangles together. So there are only countably many compact equilateral surfaces,
and hence most compact Riemann surfaces can not be equilaterally triangulated. The
first explicit mention of equilateral triangulations on compact surfaces in the litera-
ture of which we are aware is in the context of string theory [BKKM86]. In response
to [BKKM86], and making use of ideas from Grothendieck’s 1984 “Esquisse d’un pro-
gramme” [Gro97] relating to work of Belyi [Bel79], Shabat and Voevodskii [VS89] point
out that X is equilaterally triangulable if and only if there exists a Belyi function
f : X → Ĉ; that is, a meromorphic function whose only critical values are −1, 1 and
∞.1 Compare Proposition 2.7.
Such a surface is called a Belyi surface. Belyi’s theorem [Bel79, Theorem 4], see

also [Bel02], states thatX is a Belyi surface if and only ifX is defined over a number field.
(That is, X can be represented as a smooth projective variety, defined by equations with
algebraic coefficients.) In particular, this classical theorem gives a complete answer to
Question 1.1 in the compact case. Belyi functions on compact surfaces are the subject of
intense research, particularly in connection with Grothendieck’s programme for studying
the absolute Galois group. Compare [Sch94, LZ04, JW16].

It seems natural to study Question 1.1 also for non-compact surfaces. See below for
motivations of this problem from complex dynamics, in terms of the existence of finite-
type maps, and from the point of view of conformal tilings. The answer is trivial in the
case of the Euclidean or hyperbolic plane or the bi-infinite cylinder. Indeed, the plane
can be tesselated using equilateral triangles; since this tesselation is periodic, it also
provides a tesselation of the cylinder C/Z. Equilateral triangulations of the hyperbolic
plane are provided by the classical hyperbolic triangle groups. Furthermore, it is not
difficult to obtain equilaterally triangulated surfaces that are conformally equivalent to
the three-punctured sphere or the once-punctured disc; see Section 2 and Figure 5.

1More often, the values 0, 1, and ∞ are used in the definition of Belyi functions, but our choice turns
out to be more convenient for explicit formulae. Either normalisation can be obtained from the other
by postcomposition with a Möbius transformation.
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Every Riemann surface X is triangulable by Radó’s theorem [Rad25]. Replacing
each element of the triangulation by an equilateral triangle, we see that there is an
equilaterally triangulable surface topologically equivalent to X. However, in general the
two surfaces are not conformally equivalent. Indeed, Riemann surfaces are arranged
in moduli spaces, which are nontrivial real or complex manifolds except in the finitely
many cases mentioned above. The simplest examples of non-trivial moduli spaces of
non-compact surfaces are provided by round annuli {1 < |z| < R}, which form a real
one-dimensional family parameterised by R ∈ (1,∞), and four-punctured spheres, which
are organised in a one-complex-dimensional moduli space, locally parameterised by the
cross ratio of their punctures. As far as we are aware, Question 1.1 is open even for
these two simple cases. We give a complete answer for all non-compact surfaces, which
shows that this case differs fundamentally from that of compact Belyi surfaces.

1.2. Theorem. Every non-compact Riemann surface is equilaterally triangulable.

As with compact surfaces, we can rephrase equilateral triangulability in terms of Belyi
functions.

1.3. Definition. Let X be a (compact or non-compact) Riemann surface. A meromor-

phic function f : X → Ĉ is a Belyi function if f is a branched covering whose branched
points lie only over −1, 1 and ∞.

Remark 1. Here f is called a branched covering if every point w ∈ Ĉ has a simply
connected neighborhood U such that each connected component V of f−1(U) is simply
connected and f : V → U is a proper map topologically equivalent to z 7→ zd for some
d ≥ 1.

Observe that, by definition of a branched covering f : X → Ĉ, X is the natural domain
of f . That is, there is no Riemann surface Y ⊋ X such that f extends to a holomorphic
function f̃ on Y . Indeed, otherwise let z belong to the relative boundary of X in Y and
set w ..= f̃(z). If U is a small neighbourhood of w, then there is a connected component
V of f−1(U) such that f : V → U is not onto, and in particular not proper.

Remark 2. The Belyi functions f : C → Ĉ are precisely the transcendental meromorphic
functions with three critical values and no asymptotic values. See [Lan02] and [Ere04]
for a discussion of the function-theoretic properties of these functions.

The following is an equivalent formulation of Theorem 1.2; see Proposition 2.7.

1.4. Theorem. Every non-compact Riemann surface supports a Belyi function.

It is a consequence of the classical Riemann-Roch theorem that every compact Rie-
mann surface is a branched cover of the Riemann sphere, branched over finitely many
points. Hence Theorem 1.4 implies a new result for all Riemann surfaces.

1.5. Corollary. Every Riemann surface is a branched cover of the sphere with only
finitely many branched values.

Remark 1. Gunning and Narasimhan [GN67] proved that every open Riemann sur-
face X admits a holomorphic immersion into the complex plane. That is, there exists
a holomorphic mapping f : X → C which is a local homeomorphism. However, this
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function cannot be a covering map if X ̸= C; so the inverse f−1 necessarily has some,
and potentially infinitely many, transcendental singularities in C. In particular, such f
is not a branched covering.

Remark 2. For a general compact Riemann surface X of genus g ≥ 2, the minimal
number of branched values required in the theorem is 3g. Indeed, the moduli space of X
has complex dimension 3g−3. The subset consisting of those surfaces for which there is
a branched cover branched over only B ≥ 3 values is a countable union of submanifolds
of dimension at most B − 3. Thus, for a general surface X, the number of branched
values in Corollary 1.5 is at least B = 3g. On the other hand, if X is any surface of genus
g, and P is a Weierstrass point of X, then there is a function f : X → Ĉ having a single
pole at P of degree at most g. By the Riemann-Hurwitz formula, f has at most 3g − 1
finite critical values, and hence 3g critical values in total. (We thank Alex Eremenko for
pointing out this argument.) For g = 1, the moduli space is one-dimensional, so we need
at least B = 4 critical values in general; this is achieved by the Weierstrass ℘-function.
On the other hand, Theorem 1.4 shows that B = 3 always suffices for non-compact X.

Theorems 1.2 and 1.4 may seem surprising since the function f is determined by an
underlying equilateral triangulation, which is determined by an infinite graph on the
surface, a discrete and non-flexible object. In contrast, Riemann surfaces are parame-
terised by complex manifolds, so the triangulation in Theorem 1.2 and the Belyi function
f in Theorem 1.4 cannot depend continuously on X as it varies in a given moduli space.
A similar phenomenon appears in the setting of circle packings : Every non-compact
Riemann surface of finite conformal type (see Section 2) can be filled by a circle packing
[Wil03]. Here a circle packing is a locally finite collection of circles whose tangency
graph is a triangulation, and again this tangency graph completely determines the sur-
face. However, despite the similarity of statements, the techniques used in [Wil03] have
no obvious counterpart in the setting of equilateral surfaces. Indeed, [Wil03, Section 3]
discusses how one may modify an existing partial packing to a full packing by replacing
only one of the circles by another chain of circles. On the other hand, an equilateral
triangulation is uniquely determined by any one of its triangles; see Remark 2.6.

There is a long history of constructing functions with finitely many singular values
using quasiconformal mappings. See [Wit55] and [GO08, Chapter 7]; for a modern exam-
ple, compare Bergweiler and Eremenko [BE19]. The control of the geometric behaviour
of the resulting functions that can be achieved with classical methods is limited, but
recently the first author introduced the conept of quasiconformal folding [Bis15]. This
technique allows the very flexible construction of functions with finitely many singular
values and prescribed behaviour. It has subsequently been used by authors including
Fagella, Godillon and Jarque [FGJ15], Lazebnik [Laz17], Osborne and Sixsmith [OS16],
and the second author [Rem16] to construct examples in transcendental dynamics on
the plane. Compare Mart́ı-Pete and Shishikura [MPS20] for a related construction that
does not use quasiconformal folding.

While quasiconformal folding has been applied mostly to construct entire functions
f : C → C, it also allows the construction of meromorphic functions on more general
Riemann surfaces. More precisely, given any Riemann surface X (compact or not), qua-
siconformal folding allows one to construct a quasiregular map f on X that is branched
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only over −1, 1 and ∞. Moreover, f can be chosen to be “almost” holomorphic (more
formally, its dilatation is bounded by a uniform constant and supported on a subset
of X of arbitrarily small area). It follows that there is a Belyi function on a surface
X̃ close to X, establishing that equilaterally triangulable surfaces are dense in every
moduli space; compare [Bis15, Section 15]. However, in general X̃ and X have different
complex structures.

Establishing Theorem 1.4 hence requires new ideas, which can be outlined as follows.
We begin by subdividing X into countably many pieces of finite topological type. We
construct a finite triangulation on the first such piece S that is almost equilateral; more
precisely, it becomes equilateral after a quasiconformal change of the complex structure
on S. By a careful analysis we see that this change can be kept so small that the
new surface S̃ re-imbeds into X. This allows us to continue with our construction.
An additional subtlety arises from the fact that choices made at earlier stages of the
construction will influence how small we can keep our change in complex structure on
subsequent pieces. It turns out that it is possible to control this influence by choosing the
equilateral triangulation on each S carefully, together with results on the area distortion
under quasiconformal mappings.

The partial equilateral triangulations could be constructed by quasiconformal folding.
Instead, we use a direct and more elementary method – though still motivated by the
ideas of [Bis15] – which has the additional advantage that the number of triangles meet-
ing at a single point is bounded by a universal constant. In particular, we obtain the
following strengthening of Theorem 1.4.

1.6. Theorem. There is a universal constant D such that the Belyi function in Theo-
rem 1.4 can be chosen to have local degree ≤ D at every point.

Our proof allows many choices at each stage of the inductive construction, and hence
even shows the existence of uncountably many different Belyi functions on X. We thus
obtain a new characterisation of compact Riemann surfaces.

1.7. Corollary. A Riemann surface X is compact if and only if supports at most count-
ably many different Belyi functions, up to pre-composition by conformal automorphisms.

Finite-type maps. Let X and Y be Riemann surfaces, where Y is compact. Following
Epstein [Eps93], a holomorphic function f : X → Y is a finite-type map if there is a
finite set S such that

f : X \ f−1(S) → Y \ S
is a covering map, and furthermore f has no removable singularities at any punctures
of X. The smallest such set S is called the set of singular values, and denoted by S(f).
Epstein proved that finite-type maps have certain transcendence properties near the

boundary, reminiscent of the Ahlfors five islands theorem [Eps93, Proposition 9]. In
particular, he proved that, whenX ⊂ Y , the fundamental results of the classical iteration
theory of rational functions, and of entire/meromorphic functions with a finite set of
singular values, remain valid for finite-type maps. Compare also [CE18] and [Rem09,
Section 2].

It is a natural question for which pairs ofX and Y finite-type maps exist. Corollary 1.5
shows that there are finite-type mapsX → Ĉ for every Riemann surfaceX. In particular,
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when X ⊊ Ĉ, we obtain the existence of many new non-trivial finite-type dynamical
systems.

It is also possible to prove the existence of finite-type maps f : X → T with #S(f) = 1
for every non-compact Riemann surface X and every torus T . This is achieved by a
modification of our methods that leads to the existence of a Shabat function on X; i.e. a
branched covering map from X to the complex plane C which is branched only over two
values. Postcomposing the Shabat function with a projection to the torus that identifies
the two critical values yields the desired finite-type map. The details of the construction
will be given in a subsequent article.

The question of the existence of finite-type maps with target Y becomes more subtle
when Y is hyperbolic. By Liouville’s theorem, X must be hyperbolic if such a map is
going to exist. In fact, it is possible to show that the boundary of X must be uniformly
perfect. That is, the hyperbolic length of any non-contractible closed curve in X is
bounded uniformly from below.

In [Bis15, Section 16], the first author uses quasiconformal folding to construct finite-
type maps from certain finite Riemann surfaces U (see Section 2) to all compact hyper-
bolic surfaces. This is achieved by constructing a branched covering U → D with only
two branched points in D, and postcomposing with the universal covering map. If U ′ is
any finite Riemann surface, then a refinement of the method of [Bis15, Section 16] shows
that U can be chosen arbitrarily close to U ′ in its moduli space. In particular, if U ′ is
a subpiece of some compact Riemann surface Y , bounded by disjoint analytic bound-
ary circles, then the perturbed surface U is also embeddable in Y (see Proposition 4.1
below), and we obtain new examples of finite-type dynamical systems with hyperbolic
target Y . The following appears plausible in view of our results.

1.8. Conjecture. On every finite Riemann surface U , there is a branched covering
f : U → D branched over at most two points. In particular, if Y is any compact hyperbolic
surface, and π : D → Y is its universal cover, then π ◦ f : U → Y is a finite-type map.

The method of [Bis15, Section 16] can also be used to construct finite type maps to
hyperbolic surfaces on some infinitely-connected U . It is an interesting question whether
such functions exist on all hyperbolic surfaces with uniformly perfect boundary.

Conformal tilings. Bowers and Stephenson [BS97, BS17, BS19] study conformal tilings
of a Riemann surface X, which are obtained by allowing general regular polygons, of
the same fixed side-length, in our construction above. In particular, every equilateral
triangulation of X is also a conformal tiling. Conversely, the barycentric subdivision
of a conformal tiling is an equilateral triangulation, so a tiling exists if and only if the
surface is equilaterally triangulable.

Bowers and Stephenson are mainly interested in the case where X is simply connected.
As mentioned above, these surfaces are equilaterally triangulable for elementary reasons;
the cited articles exhibit many interesting and beautiful different such conformal tilings.
However, [BS17, Appendix B] also raises the question which multiply-connected surfaces
admit conformal tilings; this is equivalent to Question 1.1, and Theorem 1.2 (together
with Belyi’s theorem for the compact case) gives a complete answer.
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Random equilateral triangulations. There is an extensive literature on random
equilateral triangulations of compact surfaces; see e.g. [BM04, Mir13, BCP19]. In sta-
tistical physics, there has been intensive study of the metric and conformal structures
on compact surfaces built from random equilateral triangulations, quadrangulations or
more general random maps, and especially of the limits of these random surfaces when
the number of triangles tends to infinity but the genus is held constant. For example, a
recent major result of Miller and Sheffield [MS20, MS16a, MS16b] shows that two such
limiting objects – “Liouville quantum gravity” and the “Brownian map” – are essentially
the same. Compare also [LG07, LG19, Mie14]. For analogous constructions on higher
genus compact surfaces, see e.g. [DR15, BM17].

In all of these cases, the distribution of the conformal structures of the discrete random
surfaces is supported on a countable set in moduli space (Belyi surfaces in the case of
random equilateral triangulations), but for a fixed genus, the distributions conjecturally
converge to continuous distributions. What can be said about random non-compact
triangulations? For the Euclidean plane, this question has been addressed by Angel and
Schramm [AS03]: they show how to define a probability measure on the metric space
of rooted planar triangulations, called a uniform infinite planar triangulation (UIPT).
Hyperbolic versions have also been considered; compare [AR15, Cur16, Bud20].

The UIPT can be thought of as a uniformly random surface with the topology of a
plane. Can one also make sense of the notion of a uniformly random surface with the
topology of a cylinder, or some other non-compact topology, such as a compact surface
with a puncture? Scott Sheffield suggested the following formulation of this problem.
Begin with the UIPT, which comes with a distinguished ”origin” triangle, and then cut
out that origin triangle and glue in some finite genus graph. By our results, it is at least
possible that there is a continuous limiting distribution. Do all conformal structures
occur if we glue in a random finite genus graph? Does a neighborhood of a point in
moduli space occur if we glue in a fixed choice?

Basic notation. The symbols C and Ĉ denote the complex plane and Riemann sphere,
respectively. The (Euclidean) disc of radius ρ around w ∈ C is denoted by D(w, ρ);
the unit disc is denoted D ..= D(0, 1). In a slight abuse of terminology, we also denote

the complement of the closed unit disc by D(∞, 1) = Ĉ \ D. For R > 1 we define the
following annuli (see Figure 3):

A(R) ..= {1/R < |z| < R};
A−(R) ..= {1/R < |z| < 1} = A(R) ∩ D; and

A+(R) ..= {1 < |z| < R} = A(R) \ D.

We assume throughout that the reader is familiar with the theory of Riemann surfaces
and quasiconformal mappings, and refer e.g. to [For91, LV73, Hub06] for reference. In
addition, the proofs in Section 4 use background from Teichmüller theory. However,
this technique is not required to understand the statements of the main results in these
sections, or their applications in the proofs of our main theorems.

Acknowledgements. This research arose from an interesting and stimulating e-mail
discussion concerning finite-type maps with Adam Epstein and Alex Eremenko; we thank
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them both for the initial inspiration and subsequent helpful comments and conversations
on this work. We are grateful to J. Martel [Mar13] for pointing out the result of Williams
on circle packing, Curt McMullen for helpful comments on the case of compact surfaces,
and Daniel Meyer for highlighting the connection with conformal tilings. We thank
Dmitry Chelkak and Scott Sheffield for providing helpful comments and references on
random triangulations.

2. Riemann surfaces, triangulations and Belyi functions

In this section, we collect background on Riemann surfaces and triangulations. In par-
ticular, we recall the proof of the fact that a Riemann surface is equilaterally triangulable
if and only if it supports a Belyi function.

Riemann surfaces and conformal metrics. A Riemann surface X is a connected
one-dimensional complex Hausdorff manifold. By a conformal metric on a Riemann
surface we mean a length element that takes the form ds = ρ(z)|dz| in local coordinates
(where ρ is a continuous positive-valued function). Note that each conformal metric
gives rise to an area element, ρ2(z)|dz|2. When such a metric ρ is given, we shall write
distρ for the corresponding distance function; i.e. distρ(z, w) is the largest lower bound
for the ρ-length of a curve connecting z and w. (We omit the subscript ρ when it is clear
from the context which metric ρ is to be used.)

By the uniformisation theorem, every Riemann surface can be endowed with a con-
formal metric of constant curvature; in the case of positive or negative curvature, this
metric becomes unique by requiring that the curvature is 1 or −1, respectively. We em-
phasise that we use conformal metrics only in an inessential way, to provide a measure of
“smallness” of area on compact pieces of a Riemann surface. Any two conformal metrics
on a compact surface (or surface-with-boundary) are equivalent; indeed, the quotient of
their densities is a continuous function and hence assumes a positive and finite maximum
and minimum. Thus the precise choice of metric will be irrelevant.

Finite pieces of Riemann surfaces. A Riemann surface X is said to be finite if
it is of finite genus with a finite number of boundary components, none of which are
degenerate. In other words, X is conformally equivalent to a compact Riemann surface
with at most finitely many topological discs removed. This notion should not be confused
with that of finite type: A surface has finite topological type if it is homeomorphic to
a compact surface with finitely many points removed, and finite conformal type if this
homeomorphism can be chosen analytic. In particular, a non-compact finite Riemann
surface has finite topological type, but is never of finite conformal type. (See Figure 2.)
To avoid ambiguities, we do not use the notion of finite conformal type in the remainder
of the article.

In our context, finite Riemann surfaces often arise as subsets of a larger surface X.
The following notation will be convenient.

2.1. Definition (Finite pieces). Let X be a Riemann surface, and let U ⊊ X be a
finite Riemann surface. If U is pre-compact in X, then we say that U is a finite piece of
X. If furthermore ∂U ⊂ X consists of finitely many analytic Jordan curves (called the
boundary curves of U), then U is said to be analytically bounded.
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(a) Finite Riemann surface (b) Finite conformal type (c) Finite topological type

Figure 2. Three different notions of finiteness of Riemann surfaces.

Boundary coordinates and hemmed surfaces. We shall construct triangulations on
finite pieces of our Riemann surfaceX. To be able to combine such partial triangulations,
we also need to record, for a finite piece, suitable parameterisations of its boundary. We
hence introduce the following notion. (See Figure 3.)

2.2. Definition. A hemmed Riemann surface is a non-compact finite Riemann surface
U , together with analytic parameterisations of its boundary curves. More precisely, let
Γ be the set of boundary curves of U (or, in other words, the set of ends of U). For each
γ ∈ Γ, let

φγ : A−(Rγ) → Aγ,

where Rγ > 1, be a conformal map to an annulus Aγ ⊂ U such that φγ(z) → γ
as |z| → 1. We furthermore assume that the image annuli Aγ have pairwise disjoint
closures. Then we say that U is a hemmed Riemann surface with boundary coordinates
(φγ)γ∈Γ.

Observe that the closure of every hemmed Riemann surface is a compact Riemann
surface-with-boundary, with charts on the boundary curve γ given by (φγ)−1. Con-
versely, any compact Riemann surface-with-boundary can be given the structure of a
hemmed Riemann surface by choosing an annulus Aγ around each boundary curve, and
letting φγ be a conformal map from a round annulus to Aγ. Different choices of annuli
will lead to different boundary coordinates, and hence to different “hemmed surfaces”.

Triangulations.

2.3. Definition. Let X be a Riemann surface, or a Riemann surface-with-boundary.
A triangulation of X is a countable and locally finite collection of closed topological
triangles that cover X, such that two triangles intersect only in a full edge or in a
vertex.

In other words, a triangulation furnishes X with the structure of a locally finite
simplicial complex. By a theorem of Radó from 1925 [Rad25] (see [For91, §23] or [Hub06,
Theorem 1.3.3]), every Riemann surface is second countable, and hence triangulable.
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A+(R)

A−(R)

A(R)

Aγ

γ

Figure 3. The annuli A+(R) and A−(R) (left), and a hemmed Riemann
surface (right)

Let T be a triangulation and let ∆ be the Euclidean equilateral triangle inscribed in
the unit circle, with a vertex at 1. For each topological triangle T ∈ T , let φT denote
a biholomorphic isomorphism that takes T to ∆, mapping vertices to vertices. Observe
that φT is unique up to postcomposition by a rotational symmetry of ∆.

2.4. Definition. The triangulation T is equilateral if, on every edge e with two adjacent
triangles T and T̃ , the maps φT and φT̃ agree up to a reflection symmetry of ∆. If such
a triangulation exists, we say that X is equilaterally triangulable.

It is elementary to see that this agrees with the definition given in the introduction,
with one caveat: The “triangulations” mentioned there allowed two triangles to intersect
in more than one edge; let us call these generalised triangulations in the following. Given
an equilateral generalised triangulation, we can perform a barycentric subdivision of all
triangles, inserting a new vertex in the barycenter of each face and the mid-point of
each edge. In this triangulation, no two triangles intersect in more than one edge. The
following observation shows that this triangulation is also equilateral; see Figures 4
and 5(c). Compare [BS17, §1.3].

2.5. Lemma (Equilateral triangulations and reflections). A generalised triangulation of
X is equilateral if and only if the two triangles adjacent to a given edge are related by
reflection. That is, suppose that the triangles T and T̃ are both adjacent to an edge e.
Then there exists an antiholomorphic homeomorphism ι : T → T̃ that fixes e pointwise
and maps the third vertex of T to the corresponding vertex of T̃ .

Proof. Let e, T and T̃ be as in the statement, and let φT and φT̃ be as defined above.
Suppose that φT̃ |e = R ◦ φT |e, where R is a reflection symmetry of ∆. Then

ι ..= φ−1

T̃
◦R ◦ φT

is an antiholomorphic bijection as in the statement of the observation.
Conversely, suppose ι is such a bijection. Then R ..= φT̃ ◦ ι◦φ

−1
T is an antiholomorphic

automorphism of the triangle ∆, mapping vertices to vertices. Thus R is a reflection
symmetry of ∆, as required. ■

2.6. Remark. It follows from the Schwarz reflection principle that, if a “reflection”
ι : T → T̃ as above exists, then ι and hence T̃ are uniquely determined by T . In
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Figure 4. Any equilateral triangulation can be refined by barycentric
subdivision into a new equilateral triangulation that is bipartite and 3-
coloured, as described after the proof of Proposition 2.7.

particular, an equilateral triangulation T is uniquely determined by any given triangle
T ∈ T .

The equivalence of Theorems 1.2 and 1.4 is a consequence of the following fact.

2.7. Proposition (Triangulations and Belyi functions). A Riemann surface X is equi-
laterally triangulable if and only if there is a Belyi function on X.

Proof. Proposition 2.7 is well-known in the compact case; see [VS89], and the proof in the
general case is the same [BS17, §1.3]. For the reader’s convenience, we present it briefly.
First suppose that f : X → Ĉ is a Belyi function. Consider the generalised triangulation
of the sphere into two triangles corresponding to the upper and lower half-plane, with
vertices at 1, −1 and ∞. By the Schwarz reflection principle and Observation 2.5,
this triangulation is equilateral. Since the critical values of f are at the vertices of the
triangulation, we may lift it to X, to obtain a generalised equilateral triangulation. As
discussed above, a barycentric subdivision leads to a triangulation in the stricter sense,
and the proof of the “if” direction is complete.

Now suppose that an equilateral triangulation of the surface X is given. Let T be the
corresponding collection of topological triangles, with conformal maps φT : T → ∆ for
T ∈ T , as above. Let ψ : ∆ → D be the conformal isomorphism that fixes 0 and 1, and
consider the function

f : X → Ĉ; : z 7→ F3(ψ(φT (z))) (z ∈ T ),

where F3 is the degree 6 rational map

F3(z) :=
1

2
(z3 + z−3).

Let ρ denote rotation by 60◦ around 0, and let σ denote complex conjugation. Observe
that ψ commutes with both operations, and that F3◦ρ = F3◦σ = F3 on ∂D. The group of
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symmetries of ∆ is generated by ρ and σ, and thus f is indeed a well-defined holomorphic
function on X. Clearly f is a branched covering with no critical values outside of −1, 1
and ∞; so f is a Belyi function. ■

2.8. Remark. The generalised equilateral triangulation obtained from the Belyi func-
tion f in the above proof is 3-colourable: Its vertices may be coloured with the three
colours {−1, 1,∞} in such a way that adjacent vertices have different colours. Con-
versely, suppose T is a generalised equilateral triangulation together with a 3-colouring
of its vertices; let us call this a 3-coloured triangulation. Then the three vertices of
any triangle T ∈ T may be coloured with the three different colours −1, 1 and ∞,
and we may map T conformally to either the upper or lower half-plane in such a way
that each vertex corresponds to the point indicated by its colour. By Schwarz reflection
the collection of these conformal maps extends to a Belyi function on X. Hence the
Belyi functions on X are in one-to-one correspondence with the 3-coloured generalised
equilateral triangulations on X.
Not every equilateral triangulation T (generalised or otherwise) can be 3-coloured;

consider, for example, the triangulation of the sphere into four congruent spherical equi-
lateral triangles. However, the barycentric subdivision of T is always 3-colourable; in-
deed, we may mark the original vertices with the colour 1, the new vertices added on
existing edges with the colour −1, and the vertices added in each face with ∞ (Figure 4).
This yields precisely the triangulation corresponding to the Belyi function in the “only
if” direction of Proposition 2.7.

Elementary cases of Theorem 1.2. The triangular lattice, which tesselates the plane
into equilateral triangles, provides an equilateral triangulation of both the plane and the
bi-infinite cylinder; i.e., the punctured plane. This triangulation is 3-colourable; the
corresponding Belyi function is elliptic, and can be described as the universal orbifold
covering map of the sphere with signature (3, 3, 3); see [Mil06, Appendix E].
The unit disc D is equilaterally triangulated by the classical hyperbolic triangle groups.

We may obtain an equilateral triangulation of the punctured disc D∗ = D\{0} as follows.
The Klein j-invariant j : H+ → C is a branched covering map from the upper half-plane
H+ to the complex plane which is invariant under the modular group and has only two
branched values, which we may arrange to be 0 and 1. In particular, j(ζ + 1) = j(ζ)
for all z ∈ H+, and hence J : D∗ → C; z 7→ j(log z/(2πi)) is a well-defined branched
covering map with branched values 0 and 1. Let T be a triangulation of the complex
plane for which 0 and 1 are vertices (for example, the triangular lattice Teucl discussed
above, chosen such that [0, 1] is the edge of one of the triangles). Then the preimage of
T under J is an equilateral triangulation of D∗; see Figure 5(e).
A similar construction leads to triangulations of multiply-punctured spheres. Note

that

g : Ĉ → Ĉ; z 7→ zn

zn − 1
is a degree n branched covering of the sphere, branched over 0 and 1. The preimage
under g of an equilateral triangulation T of Ĉ \ {1} (for example, the image of the
triangular lattice under z 7→ (z + 1)/z) is an equilateral triangulation of the sphere
punctured at the n-th roots of unity; see Figure 5(c).
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(a) The complex plane C (b) The punctured plane C∗

(c) The three-punctured sphere

(d) The unit disc D (e) The punctured disc D∗

Figure 5. Equilateral triangulations of non-compact Riemann surfaces
with trivial moduli spaces.



14 CHRISTOPHER J. BISHOP AND LASSE REMPE

In particular, the thrice-punctured sphere is equilaterally triangulable, and there exist
equilaterally triangulable n-punctured spheres for all n. However, for n > 3, we have
equilaterally triangulated only one specific member of the moduli space of n-punctured
spheres, which has positive dimension. We may obtain others by modifying the con-
struction, e.g. by using different degree d covering maps whose critical values lie in the
triangular lattice. Nonetheless, this yields at most countably many different surfaces
among the uncountably many possible choices.

3. Triangulations of hemmed Riemann surfaces

Let X be a hemmed Riemann surface, in the sense of Definition 2.2. Our goal in this
section is to show that there is a triangulation ofX that is close to an equilateral triangu-
lation, in a quasiconformal sense. Moreover, in boundary coordinates, the triangulation
will simply subdivide each boundary circle γ into a large number dγ of equal arcs, where
the dγ can be chosen independently of each other as long as they are sufficiently large.
This will later allow us to glue together triangulations of different finite pieces of a given
Riemann surface X.

To make this statement precise, we use the following notion.

3.1. Definition. Let d ≥ 1, and let

Ξd
..= {e2πij/d : j ∈ Z}

denote the set of all d-th roots of unity. We call Ξd the standard partition of S1 of size
d; the intervals of S1 \ Ξd are called the edges of the partition.

3.2. Proposition (Triangulations on hemmed Riemann surfaces). There are K0 > 1,
d0 ≥ 6 and a function ∆: (1,∞) → N, with the following property.

Let U be a hemmed Riemann surface with boundary coordinates

φγ : A−(Rγ) → Aγ.

Denote the set of all boundary curves by Γ, and let ρ be a conformal metric on U . Fix
dγ ≥ ∆(Rγ) for each γ ∈ Γ, and let η > 0.
Then there is a homeomorphism g from U to a finite equilateral surface-with-boundary

E such that the following hold.

(a) Every vertex of E is incident to at most d0 edges.
(b) For γ ∈ Γ, the map g ◦φγ : S1 → g(γ) maps each edge of Ξdγ to a boundary edge

of E in length-respecting fashion.
(c) g is K0-quasiconformal on U .
(d) The dilatation of g is supported on the union

⋃
γ A

γ, together with a set that has
measure at most η with respect to the metric ρ.

Remark 1. A map respects length if it changes distances by a constant factor [Bis15, §4].
Note that the equilateral surface E comes equipped with a natural distance inherited
from its representation by equilateral triangles; this is a flat conformal metric, except
possibly for cone singularities at the vertices of the triangulation.

We may rephrase (b) more explicitly as follows. Let e be an edge of Ξdγ . Then
g(φγ(e)) is a boundary edge of E; let T be the unique adjacent face. By the definition of
an equilateral surface, T is a copy of a planar equilateral triangle; in these coordinates,
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g ◦ φγ ◦ exp, restricted to a component of log e, is required to be the restriction of a
complex affine map.

Remark 2. It is crucial that the number dγ can be chosen arbitrarily large on each
boundary curve γ, independently of the choice for the others.

The idea of the proof of Proposition 3.2 can be summarised as follows.

(I) By cutting along finitely many essential curves, we may assume that U has genus
0, and hence is a subset of the plane.

(II) We cover the complement of the annuli Aγ in U with small Euclidean equilateral
triangles arranged in a triangular lattice.

(III) We are left with finitely many annuli, one in each Aγ, between γ and a curve
consisting of edges taken from the above lattice. We interpolate between the
partitions of these two boundaries by a triangulation that has bounded geometry,
and hence is quasiconformally equivalent to an equilateral triangulation.

For the final step, we use an elementary statement concerning triangulations of rect-
angles.

3.3. Definition (Bounded-geometry partition of a rectangle boundary). Let R be a
Euclidean rectangle. By a boundary partition of R we mean a finite set P of points on
∂R that includes the four vertices of R (i.e., a union of partitions of the four sides of
∂R). The edges of the partition are the connected components of ∂R \P ; two edges are
adjacent if they have a common endpoint.

We say that the boundary partition P has bounded geometry with constant λ > 1 if

(a) the lengths of adjacent edges differ by at most a factor of λ, and
(b) all edges have length at most λℓ, where ℓ is the length of the two shorter sides

of R.

3.4. Proposition (Triangulations of a rectangle). Let λ > 0. Then there is a constant
ϑ0 > 0 with the following property. If Q is a rectangle and P is a bounded-geometry
boundary partition with constant λ, then there is a triangulation T of the closed rectangle
Q into finitely many Euclidean triangles such that

(1) all angles in all triangles in T are bounded below by ϑ0;
(2) the vertices of T on ∂Q are precisely the elements of P .

Since we are not aware of a reference, we give a proof of Proposition 3.4 in an appendix
(Section 6.) We remark that the result can also be obtained using the (much more
general) methods used in [Bis10].

Proof of Proposition 3.2. Set ∆(R) ..= 1/ logR. As mentioned in (I), we prove the propo-
sition first when U has genus 0. In this case, it turns out that the dilatation is supported
only on the annuli Aγ, so we can take η = 0.
For each γ ∈ Γ, glue a copy Dγ of the closed disc D(∞, 1) = Ĉ \D into the surface U

at γ. More precisely, we obtain a Riemann surface structure on U ∪
⋃

γ D
γ by using the

original charts of U , and adding the charts (with values in Ĉ)

z 7→

{
z if z ∈ Dγ

(φγ)−1(z) if z ∈ Aγ
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U
~

γ~

U 

γ

α(γ)

Figure 6. Definition of α(γ). For simplicity, the figure is drawn when U
is simply connected, with a single boundary curve γ.

on Dγ ∪ Aγ. (For simplicity of notation, we use z to denote both the point of Dγ and

the one of D(∞, 1) that it represents.)
The result is a compact Riemann surface of genus 0, and hence conformally equivalent

to the Riemann sphere Ĉ. In other words, we are now in the following situation:

U = Ĉ \
⋃
γ∈Γ

Φγ(D)

is an analytically bounded surface, bounded by the curves γ = Φγ(S1). Here each Φγ is
a conformal map defined on the disc D(0, Rγ), and the images of these functions have
disjoint closures. Note that Φγ(z) = φγ(1/z) on A+(Rγ). We may choose coordinates
on the sphere such that Φγ(0) = ∞ for some γ, so that U ⊂ C. Let

γ̃ ..= Φγ(∂(D(0,
√
Rγ)))

denote the core curve of the annulus Aγ, and let Ũ denote the subset of U bounded
by the curves γ̃. (In Figure 6, Ũ is the union of the light grey annulus and the white
region.)

For any ε > 0, let L = Lε be a tiling of the plane by equilateral triangles of side-
length ε. Let Ẽ be the union of all triangles of L that intersect Ũ . Since the curves
γ̃ are smooth, for small ε the domain Ẽ is a finite equilateral Riemann-surface with
boundary, with one boundary curve α(γ) contained in each Aγ and homotopic to γ. See
Figure 6. Note that Ẽ and the remainder of the construction depend on ε; we suppress
this dependence for simplicity of notation.

Set

Σ+
..= exp−1((Φγ)−1(α(γ)));

see Figure 7. Let V+ and E+ denote the sets of vertices and edges of Σ+; that is, the
preimages of the vertices and edges of the polygonal curve α(γ) under Φγ ◦ exp. Also let
Σ− denote the imaginary axis, and let S denote the domain bounded by Σ− on the left
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Σ
+

Σ −

S
~

Σ
+

~

Φ exp

S

x=0

γ

|z|=1

x=(log R  )/2
γ

γ
x=log R

|z|=R

Figure 7. The definition of the strips S and S̃.

and Σ+ on the right. So Φγ ◦ exp maps the strip Sγ to the annulus bounded by α(γ)
and γ as a universal covering map. Also define the strip

S̃ ..= {x+ iy : 0 < x < ρ ..= (logRγ)/2},
and let Σ̃+ = ρ+ iR be its right boundary. Note that Φγ(exp(S̃)) is bounded by γ and
γ̃, and in particular S ⊂ S̃.

Claim. There are universal K1 > 1 and λ > 1 with the following property. If ε > 0
is chosen sufficiently small in the definition of L, then there is a K1-quasiconformal
homeomorphism

Ψ = Ψγ : S → S̃

such that:

(a) Ψ(z + 2πi) = ψ(z) + 2πi for all z;
(b) Ψ(z) = z for z ∈ Σ−;
(c) Ψ(V+) contains ρ;
(d) the length of the intervals in Ẽ+

..= {Ψ(e) : e ∈ E+} is bounded above by ρ;
(e) the lengths of adjacent intervals in Ẽ+ differ at most by a factor of λ;
(f) Let e ∈ E+ and ẽ ..= Ψ(e). Then Φγ ◦ exp ◦Ψ−1 respects length when restricted

to ẽ.

Proof of the claim. The claim can be proved using the methods of [Bis15, Sections 3–4].
Instead, we sketch a direct argument. If ε is sufficiently small, then by Koebe’s theorem,
the edges of Σ+ are very close to straight line segments. Moreover, the difference in
angle between the edges of α(γ) and γ̃ is bounded away from π/2 (again, for small ε).
Indeed, if ε is small enough, then γ̃ is nearly a straight line segment near each triangle.

An edge of α(γ) cannot be the side of a triangle T that has two vertices in Ũ ; in that
case all three sides hit Ũ and so all three adjacent triangles also hit Ũ . Therefore either
no vertex lies in Ũ or exactly one vertex v does. In the first case, one side of T is nearly
parallel to γ̃ and the opposite sides make an angle of approximate π/3 with γ̃. In the
second case, the angle bisector at v cannot be close to parallel without a second vertex
inside Ũ , so the side opposite v is not close to perpendicular to γ̃. Thus if the triangles
are small enough, each segment of α(γ) is within, say, angle 3π/7 of being parallel to γ̃
at points near the segment. See Figure 8.
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Figure 8. An edge of α either belongs to a triangle with no vertex in Ũ ,
or to a triangle with a single vertex in Ũ . In either case, the edge cannot
be nearly perpendicular to γ̃.

Hence the edges of Σ+ are inclined at an angle that is bounded away from being
horizontal. So if π(v) is the horizontal projection of v ∈ Σ+ onto Σ̃+, then π defines
a homeomorphism Σ+ → Σ̃+. We may extend π to a homeomorphism π : S → S̃ that
linearly maps any horizontal segment of S onto the horizontal segment of S̃ at the same
imaginary part. In particular, π agrees with the identity on Σ−. It follows easily from
the above that, for small ε, the map π is K2-quasiconformal, where K2 is a universal
constant. Moreover, the length of the elements of Ẽ+

..= π(E+) tends to zero as ε → 0,
and adjacent intervals have comparable lengths, up to a universal multiplicative constant
λ > 1.
Let ẽ be an element of Ẽ+. Then there is a unique homeomorphism ψ1 : ẽ → ẽ that

fixes the endpoints of ẽ such that Φγ ◦ exp ◦π−1 ◦ ψ1 is length-respecting on ẽ. Note
that this defines a homeomorphism ψ1 : Σ̃+ → Σ̃+. Applying Koebe’s theorem again, we
see that the derivative of ψ1 on ẽ tends to 1 uniformly as ε → 0. Extend ψ1 to a map
ψ1 : S̃ → S̃ that agrees with the identity on Σ− and is linear on each horizontal segment
of S̃. By the above fact on the derivative of ψ1 on Σ̃+, the dilatation of the extension
tends to 1 as ε→ 0.

Finally, let ψ2 : S̃ → S̃ be the real-affine map that is the identity on Σ̃− and a trans-
lation on Σ̃+ that maps the point of π(V+) with smallest imaginary part to logRγ/2. If
K1 > K2, then the composition Ψ ..= ψ2 ◦ ψ1 ◦ π is K1-quasiconformal for sufficiently
small ε.

Since each of the maps ψ2, ψ1 and π satisfies (a) and (b), so does Ψ. Claim (c) holds
by choice of ψ2. We have Ψ(E+) = Ẽ+, and the latter set satisfies (d) and (e), as noted
above. Finally, (f) holds by definition of ψ1. This concludes the proof of the claim. △

Now consider the rectangle

Q ..= Qγ ..= {a+ ib : 0 ≤ a ≤ logRγ/2 and 0 ≤ b ≤ 2π}.

The set A+
..= Ψ(V+)∩Q is a bounded-geometry partition of the left vertical side of Q.

Set

A−
..= {2πij/dγ : j = 0, . . . , dγ};
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this provides a partition of the right side of Q. By the claim, and since dγ ≥ ∆(Rγ),
all of the edges of the two partitions have length at most 2π logRγ. It follows easily
that we can extend A+ ∪ A− to a bounded-geometry partition of ∂Q in the sense of
Proposition 3.4, where furthermore the partition of the upper and lower boundary agree
up to translation by 2πi. Now apply Proposition 3.4 to obtain a triangulation Qγ of
Q = Qγ, where the angles of all triangles are bounded below by ϑ0. Observe that, in
particular, no vertex is incident to more than s1 ..= ⌊2π/ϑ0⌋ edges.
Map Qγ to an equilateral surface Eγ by a homeomorphism gγ that is real-affine on

each triangle. Then gγ is K3-quasiconformal, where K3 depends only on ϑ0, and hence
is a universal constant. We now form an equilateral surface as the union of Ẽ and
all Eγ, by identifying each boundary edge e of Ẽ on α(γ) with the corresponding edge
gγ(Ψ(Log((Φγ)−1(e)))) of Eγ. (Here Log is the branch of the logarithm taking imaginary
parts between 0 and 2π.)

By the length-respecting property of Ψ, the function

g : U → E; z 7→

{
z if z ∈ Ẽ

gγ(Ψ(Log((Φγ)−1(z)))) if z ∈ Eγ

is continuous, and hence a K0
..= K1 · K3-quasiconformal homeomorphism which is

conformal on Ẽ. Every vertex of E is incident to at most max(6, d1 + 4) edges. Finally,
for any edge of Ξdγ , we have

g ◦ φγ = gγ ◦ Log
on E. Log takes e to one of the complementary intervals of A− in length-respecting
fashion; this interval in turn is one of the edges of the triangulation Qγ. The restriction
of gγ to this edge is a real-affine map, and hence length-respecting. This establishes (b)
and completes the proof when U has genus 0.

If U has positive genus g > 0, then by definition g is the largest number such that
there are g pairwise disjoint closed curves β1, . . . , βg ⊂ U such that

Ũ ..= U \
g⋃

i=1

βi

is connected. We may choose the βi to be analytic. Let ψi : S
1 → βi be analytic

parameterisations, which extend to analytic biholomorphic maps

ψi : A(Ri) → Ai ⊂ U

for some Ri > 1. We choose the Ri sufficiently small to ensure that the closures of the
annuli Ai are pairwise disjoint, and also disjoint from the closures of the Aγ, and that
additionally their combined ρ-area is at most η.

Clearly Ũ has genus 0. We can think of Ũ as a hemmed Riemann surface, whose
boundary curves are those inherited from U , together with two copies β+

i and β−
i of

each βi. The boundary parameterisations are given by

φβ−
i : A−(Ri) → Ũ ; z 7→ ψi(z) and φβ+

i : A−(Ri) → Ũ ; z 7→ ψi(1/z).

Now apply Proposition 3.2 to the genus 0 surface Ũ , with constant η/2, where we

take dβ
+
i = dβ

−
i ≥ ∆(Ri) for each i. We obtain an equilateral surface-with-boundary Ẽ

and a quasiconformal map g̃ : Ũ → Ẽ. For each edge e of the partition of βi given by
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ψi(Ξdβi ), there are two corresponding intervals e+ and e− on β+
i and β−

i . Identifying the

edges g(e+) and g(e−) on Ẽ, for every edge e, we obtain a new equilateral surface-with-
boundary E. Condition (b) ensures that g̃ induces a homeomorphism g : U → E with
the desired properties. ■

4. Corrections on Riemann surfaces

As previously mentioned, our goal is to build the desired triangulations of the non-
compact surface X “piece by piece” on finite pieces (in the sense of Definition 2.1) of
X, applying the construction of the preceding section. Recall that we may “straighten”
these triangulations by a quasiconformal map to obtain an equilateral triangulation.
This straightening changes the surface on which the triangulation is defined, but by
Proposition 3.2 the dilatation of the quasiconformal maps in question is bounded and
supported on sets of small area. Our goal is now to justify that the change to the
complex structure is so small that the resulting perturbed piece can be re-embedded
into our original surface X.

4.1. Proposition (Realising quasiconformal changes). Let X be a Riemann surface,
equipped with a conformal metric ρ, and let S ⊊ X be an analytically bounded finite
piece of X.

Let 0 < K < 1, and let δ > 0. Then there is a constant η > 0 with the following
property. Let µ be a Beltrami form on S whose support supp(µ) has area at most η
(with respect to the metric on X) and whose dilatation is bounded by K. Then there is
a quasiconformal homeomorphism

ψ : S → ψ(S) ⊂ X

whose complex dilatation is µ, which is isotopic to the identity and which satisfies

dist(z, ψ(z)) < δ

for all z ∈ S.

4.2. Lemma. To establish Proposition 4.1, it is sufficient to prove it in the special case
where X is compact and hyperbolic, and ρ is the hyperbolic metric on X.

Proof. If X is not compact, let S̃ be a larger finite piece of X, extending S by a small
annulus at each boundary curve; so S ⊂ S̃ ⊂ X. Now form a new, compact, Riemann
surface X̃ by glueing, into each boundary curve of S̃, a compact Riemann surface with
a disc removed. By choosing at least one of these surfaces to have genus at least 2, we
ensure that X̃ is hyperbolic.

Let ρ̃ be the hyperbolic metric on X̃. Since ρ and ρ̃ are comparable on the closure
of S̃, there is δ̃ > 0 with the following property. If z ∈ S and w ∈ X̃ are such that
distρ̃(z, w) < δ̃, then w ∈ S̃ and distρ(z, w) < δ.

Suppose that Proposition 4.1 has been proved for the compact surface X̃; we apply
it with S, K and δ̃ to obtain a number η̃ > 0. Let η > 0 be so small that any subset of
S of ρ-area at most η has ρ̃-area at most η̃. (Again, this is possible by comparability of
the Riemannian metrics.) Then η satisfies the conclusion of Proposition 4.1 for X, S,
K and δ. ■
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So it remains to establish Proposition 4.1 forX compact and hyperbolic2. To do so, we
require some well-known results from the theory of Riemann surfaces, quasiconformal
mappings and Teichmüller spaces. Let us begin with two simple facts related to the
compactness of quasiconformal mappings.

4.3. Lemma (Compactness of quasiconformal mappings). Let X be a compact hyperbolic
Riemann surface, let K ≥ 1, and let ψn : X → X be a sequence of K-quasiconformal
self-maps of X. Then there is a subsequence (ψnk

)∞k=0 that converges uniformly to a
quasiconformal map ψ : X → X. Moreover, if the dilatations µnk

of ψnk
converge in

measure to some Beltrami differential µ, then µ is the dilatation of ψ.

Proof. According to [Hub06, Theorem 4.4.1], the family of K-quasiconformal self-maps
of X is equicontinuous. Since X is compact and the inverse of a K-quasiconformal map
is K-quasiconformal, the family is indeed compact, proving the first claim.
The second claim follows from [Leh87, Theorem I.4.6] by lifting the maps to the disc

via the universal covering map π : D → X. (Recall that, if µnk
→ µ in measure, then

there is a subsequence along which it converges almost everywhere.) ■

4.4. Lemma (Area distortion). Let X be a compact hyperbolic Riemann surface, with
its hyperbolic metric ρX , and let K ≥ 1 and ϑ > 0. Then there is η > 0 with the
following property: If E ⊂ X is compact with areaX(E) ≤ η, then areaX(ψ(E)) ≤ ϑ for
all K-quasiconformal maps ψ : X → X.

Proof. It was first observed by Bojarski [Boy55] that K-quasiconformal mappings, suit-
ably normalised, distort area by a power depending only on K; see the first paragraph
of [GR66]. Also compare [Ast94, EH95] for the optimal result. These results are nor-
mally stated for self-maps of the unit disc fixing the origin. In particular, the statement
of Lemma 4.4 holds when X is replaced by D, equipped with the Euclidean metric ρC,
and ψ ∈ ΨD, where ΨD consists of all K-quasiconformal self-maps of D fixing the origin.
Now let X be compact and hyperbolic, and let π : D → X be a universal covering. Let

A ⊂ D with 0 ∈ A be a fundamental hyperbolic polygon for the deck transformations
of π. If ψ : X → X is K-quasiconformal, then we may lift ψ to a quasiconformal map
ψ̃ : D → D with π ◦ ψ̃ = ψ ◦ π, and such that ψ̃(0) ∈ A. Let α : D → D be the Möbius

transformation that maps ψ̃(0) to 0; then

φ ..= α ◦ ψ̃ ∈ ΨD.

The set ΨD is compact by [Hub06, Corollary 4.4.3]; it follows that there is r, depending
only on A and K, such that φ(A) ⊂ D(0, r). The Euclidean and hyperbolic metrics are

comparable on D(0, r) by a factor of at most C ..= 2/(1− r2).
Let ϑ > 0. By Bojarski’s observation, there is η > 0 (depending on K and r) such

that

(4.1) areaC(φ(Ẽ)) ≤
ϑ · (1− r2)2

4

2The requirement that X be hyperbolic is made purely for convenience. Everything that follows is
true in a suitable sense also for tori and the Riemann sphere, but assuming hyperbolicity means that
we can avoid normalisation assumptions in the statements and considerations of special cases in the
proofs.
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whenever Ẽ ⊂ D has area at most ϑ.
Now let E ⊂ X have hyperbolic area at most η, and let Ẽ = π−1(E) ∩ A. Then

areaC(Ẽ) < areaD(Ẽ) = areaX(Ẽ) ≤ η and hence

areaX(ψ(E)) = areaD(ψ̃(Ẽ)) = areaD(φ(Ẽ)) ≤
4

(1− r2)
· areaC(φ(Ẽ)) ≤ ϑ

by (4.1). ■

If X is a hyperbolic Riemann surface, we denote by T (X) the Teichmüller space of
X. Recall that T (X) can be defined as the set of equivalence classes [µ]T of bounded
measurable Beltrami differentials with ∥µ∥∞ < 1 [Hub06, Proposition 6.4.11]. Here two
such differentials µ and ν are equivalent if there is a quasiconformal homeomorphism
ψ : X → X, isotopic to the identity relative the ideal boundary ofX, such that ψ∗(ν) = µ
[Hub06, Proposition 6.4.11]. Here ψ∗(ν) is the pull-back of the differential ν by ψ; see
[Hub06, Definition 4.8.10 and Formula 4.8.34].

Alternatively, lift µ and ν to D via the universal covering map. Then ν ∈ [µ]T
if and only if the solutions φµ, φν : D → D of the corresponding Beltrami equations,
normalised to fix 0 and 1, agree on ∂D. T (X) is a complex Banach manifold, which
is finite-dimensional if and only if X is a compact surface with at most finitely many
punctures removed; see [Hub06, Section 6.5].

4.5. Lemma. Let X be a compact Riemann surface, let K ≥ 1, and let (µn)
∞
n=0 be

Beltrami differentials on X of dilatation at most K.
Then [µn]T → [0]T in Teichmüller space if and only if there are representatives νn ∈

[µn]T that converge to 0 in measure.

Remark 1. We shall only require the “if” direction. Note that this direction is false
when T (X) is infinite-dimensional; compare [Gar84, Section 7].

Proof. We use the Teichmüller metric on T (X); see [Hub06, Proposition and Defini-
tion 6.4.4]. With respect to this metric, the distance between [µn]T and [0]T is logK,
where K is the infimum of the dilatations of µ ∈ [µn]. In particular, if [µn]T → [0]T ,
then there are representatives of [µn] whose maximal dilatation converges to 1. Hence
these differentials converge to 0 in measure.

For the “if” direction, note that the points having Teichmüller distance at most logK
from [0]T is compact. (It is here that we use the fact that our Teichmüller space is finite-
dimensional.) Now lift the Beltrami differentials µn to the universal cover and solve the
Beltrami equation, obtaining K-quasiconformal maps φµn : D → D fixing 0 and 1. By
[Leh87, Theorem I.4.6], the only limit function of φµn as n→ ∞ is given by the identity,
showing that indeed [µn]T → [0]T . ■

We also require a result concerning the tangent space of T (X) at X, which is rep-
resented by infinitesimal classes [µ]B of bounded measurable Beltrami differentials. By
definition, µ ∈ [0]B if

(4.2) ⟨µ, q⟩ ..=

∫
X

µ · q = 0
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for all q ∈ A1(X), and µ ∈ [ν]B are infinitesimally equivalent if µ − ν ∈ [0]B. Here
A1(X) is the Bergman space of integrable holomorphic quadratic differentials on X. In
fact, the pairing (4.2) induces an isomorphism between the tangent space to Teichmüller
space and the dual space of A1(X) [Hub06, Proposition 6.6.2].

4.6. Lemma. Let X be a compact hyperbolic Riemann surface, D ⊂ X a non-empty
sub-surface, and let µ be a Beltrami differential on X. Then there is ν ∈ [µ]B such that
ν = 0 a.e. on X \D.

Proof. Let φ be the linear functional on A1(X) induced by µ via the pairing (4.2).
The restriction of any element of A1(X) to D is an element of A1(D). So we can

think of A1(X) as a finite-dimensional linear subspace of A1(D). Since the space is
finite-dimensional, the linear functional φ is continuous also with respect to the norm
on A1(X) induced from that of A1(D). By the Hahn-Banach theorem, φ extends to a
continuous linear map φ̃ : A1(D) → C. By [Hub06, Proposition 6.6.2], this functional φ̃
is generated by some Beltrami differential ν̃ on D.

Extend ν̃ to X by setting it to be 0 outside of D. Then ν̃ is in the same infinitesimal
class as µ by construction, and we are done. ■

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. By Lemma 4.2, we may assume that X is compact and hy-
perbolic, and endowed with the hyperbolic metric. Let D be an open disc in X \ S.
Let V̂ denote the set of Beltrami differentials supported on D and whose dilatation is
bounded by K, and let V ⊂ T (X) be the corresponding subset of Teichmüller space.
The projection map π : µ → [µ]T from Beltrami differentials to Teichmüller space is
analytic [Hub06, Theorem 6.5.1]. The derivative at [0]T of this map is precisely the pro-
jection µ→ [µ]B [Hub06, Corollary 6.6.4]. Hence Lemma 4.6 implies that the restriction

π : V̂ → V is a submersion near [0]T , and therefore covers a neigbourhood of [0]T in
T (X).

Indeed, recall that T (X) is finite-dimensional, so by Lemma 4.6 there are Beltrami

differentials µ1 . . . , µn ∈ V̂ whose infinitesimal classes form a basis of the tangent space
of T (X) at [0]T . Consider the finite-dimensional subset U = ⟨µ1, . . . , µn⟩ ∩ V̂ ; then the
derivative at [0]T of π : U → V is invertible, and the claim follows by the inverse mapping
theorem.

By Lemma 4.5, if η is sufficiently small, then [µ]T ∈ V for any Beltrami differential
µ on X which has maximal dilatation at most K and is supported on a set of measure
less than η. So for any such µ, there is a Beltrami differential ν ∈ V̂ and an at most
K2-quasiconformal map ψ : X → X, isotopic to the identity, such that ψ∗(ν) = µ.
Let µn be a sequence of Beltrami differentials on S of dilatation bounded by K, and

such that the area of the support of the dilatation tends to 0 as n → ∞. Furthermore,
let Dk ⊂ X \ S be a shrinking sequence of discs whose area tends to zero.
For n sufficiently large, we can construct a map ψn as above, using D = Dk(n), with

k(n) → ∞ as n → ∞. Then the support of the dilatation µ̃n of ψn is contained in
the union of the support of µn (whose area tends to zero) and the set ψ−1

n (Dk(n)). By
Lemma 4.4, the area of the latter set also tends to zero as n→ ∞.
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By Lemma 4.3, every limit function of (ψn) as n → ∞ is a conformal automorphism
of X; since each ψn is isotopic to the identiy, so are the limit functions. But a non-
trivial conformal isomorphism φ of X cannot be isotopic to the identity (this result is
usually attributed to Hurwitz). Indeed, if we lift φ to the universal cover, we obtain a
Möbius transformation M on the disc; φ is isotopic to the identity if and only if the
boundary values of M , and therefore M itself, agree with the identity; compare [Hub06,
Proposition 6.4.9].

So ψn converges to the identity. It follows that, by choosing η sufficiently small in
the statement of the proposition, the map ψ we have constructed can be chosen as close
to the identity as desired. In particular, we can ensure that ψ−1(D) ∩ S = ∅, and the
restriction ψ|S solves the Beltrami equation for µ, as desired. ■

Remark. Recent work of Kahn, Pilgrim and Thurston [KPT15] more generally describes
when a topologically finite Riemann surface can be embedded into another, using an
extremal length criterion. This can also be used to deduce Proposition 4.1, but the
approach above is more elementary.

Finally, we record the following version of Lemma 4.4, for application on compact
subsets of non-compact surfaces.

4.7. Proposition (Area distortion). Let X be a Riemann surface, equipped with a
conformal metric ρ, and let S ⊊ X be a finite-type piece of X. Let K ≥ 1 and let B ⊂ S
be compact. Then there is ε > 0 and a function ϑ : (0,∞) → (0,∞) with ϑ(t) → 0 as
t → 0, such that the following holds. Suppose that ψ is a K-quasiconformal mapping
from S into X such that distρ(ψ(z), z) ≤ ε for all z ∈ S. Then, for all A ⊂ B,

areaρ(ψ(A)) ≤ ϑρ(area(A)).

Proof. We can deduce the claim by applying Lemma 4.4 to a compact hyperbolic Rie-
mann surface X̃ containing S, obtained exactly as in the proof of Lemma 4.2.

Let Ŝ ⊃ B be a slightly smaller finite-type piece Ŝ ⊂ S. If ε is chosen sufficiently
small, we have ψ(Ŝ) ⊂ S and we may extend ψ|Ŝ to a K̃-quasiconformal map X̃ → X̃
which is the identity off S. Furthermore – again for sufficiently small ε – the constant
K̃ is independent of ψ. Now the claim follows from Lemma 4.4. ■

5. Construction of equilateral triangulations

Our proof of Theorem 1.2 relies on a decomposition of our non-compact Riemann
surface X into analytically bounded finite pieces; see Figure 9

5.1. Proposition. Every non-compact Riemann surface X can be written as

X =
∞⋃
j=0

Uj,

where the Uj are pairwise disjoint analytically bounded finite pieces of X, such that every
boundary curve γ of Uj is also a boundary curve of exactly one other piece Uj′ (j

′ ̸= j).

Proposition 5.1 is a purely topological consequence of Radó’s theorem. Since we are
not aware of a modern elementary account of this nature, we give the simple deduction
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Figure 9. A decomposition as in Proposition 5.1, for an infinite-genus
Riemann surface X.

below. The existence of a decomposition appears to have been first observed – for general
open, triangulable, not necessarily orientable surfaces – by Kerékjártó in 1923 [vK23,
§5.1, pp 166–167]. However, for his application (the topological classification of open
surfaces), Kerékjártó requires additional properties of the decomposition, which means
that some additional care is required in the construction.
Though favourably reviewed by Lefschetz in 1925 [Lef25], in subsequent years Kérek-

jártó’s work has been criticised, sometimes harshly [Fre73], for a lack of rigour. In
particular, Richards [Ric63] observes that the justification for Kerékjártó’s classification
theorem contains gaps (which Richards fills). Nonetheless, Kérekjárto’s argument for
the existence of the decomposition is correct, if somewhat informal. Of course, much
more precise statements are known, particularly in the case of Riemann surfaces; see
e.g. [AR04]3.

Proof of Proposition 5.1. It is equivalent to show thatX can be written as the increasing
union of analytically bounded finite pieces (Xj)

∞
j=0 with Xj ⊂ Xj+1. Indeed, the desired

decomposition then consists of X0 together with the connected components of Xj+1\Xj,
which are themselves finite pieces of X.

Let T be a triangulation of X, which exists by Radó’s theorem. Fix a triangleK0 ∈ T ;
recall that K0 ⊂ X is compact. We inductively define a sequence (Kj)

∞
j=0 of compact,

connected sets by

Kj+1
..=

⋃
{T ∈ T : T ∩Kj ̸= ∅}.

Then
⋃
Kj = X, and each interior int(Kj) is connected, contains Kj−1, and is a finite

piece of X. Hence we may shrink Kj (whose boundary may not be analytic) slightly to
obtain an analytically bounded finite piece Xj that still contains Kj−1. ■

Proof of Theorem 1.2. Let X be a non-compact Riemann-surface; we shall construct an
equilateral triangulation on X. Let ρ be a complete conformal metric on X; for example,
a metric of constant curvature. As mentioned in the introduction, Theorem 1.2 is trivial
when X is Euclidean (and hence either the plane or the punctured plane). So we could
assume that X is hyperbolic, and ρ the hyperbolic metric. However, our construction
works equally well regardless of the nature of the metric, so we shall not require this
assumption.

3Observe that Theorem 1.1 of [AR04], for topological surfaces, also follows from the earlier work of
Kérekjárto and Richards.
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Figure 10. The definition of Xj and its set of boundary curves Γ(Xj).

For the remainder of the section, fix a decomposition (Uj)
∞
j=0 of X into analytically

bounded finite pieces, as in Proposition 5.1.
Let Γ be the set of all boundary curves of the Uj. For every γ ∈ Γ, there are unique

j1 < j2 such that γ is on the boundary of Uj1 and of Uj2 . We say that γ is an outer curve
of Uj1 and an inner curve of Uj2 , and write ι−(γ) ..= j1 and ι+(γ) ..= j2. For j ≥ 0, let
Γ−(Uj) denote the set of inner boundary curves of Uj, and let Γ+(Uj) denote the set of
all outer boundary curves of Uj.

We may assume that the pieces Uj are numbered such that

Xj =

j⋃
k=0

Uk ∪
⋃

{γ ∈ Γ: ι+(γ) ≤ j}

is connected for all j ≥ 0; hence Xj is a finite piece of X. Let Γ(Xj) denote the boundary
curves of Xj; that is,

Γ(Xj) = {γ ∈ Γ: ι−(γ) ≤ j < ι+(γ)}.
See Figure 10.

For each γ, we fix an analytic parameterisation φγ : S1 → γ. Let R̂γ > 1 be so small
that φγ extends to a conformal isomorphism from A(R̂γ) onto an annulus Âγ; we may

assume that different Âγ have pairwise disjoint closures. Set

Âγ
+

..= φγ(A+(R̂
γ)) and Âγ

−
..= φγ(A−(R̂

γ)).

Precomposing by z 7→ 1/z and decreasing R̂γ if necessary, we can ensure that Aγ
+ ⊂ Uι+(γ)

and Aγ
− ⊂ Uι−(γ). For R ≤ R̂γ, we also define

Aγ(R) ..= φγ(A(R)) and Aγ
±(R)

..= φγ(A±(R)).

For example, Âγ = Aγ(R̂γ).

We use these annuli to define annular extensions of Xj in X as follows. Let X̂j be the

union of Xj and the annuli Âγ for all boundary curves γ of Xj; i.e.,

X̂j = Xj ∪
⋃{

(γ ∪ Âγ
+) : ι−(γ) ≤ j < ι+(γ)

}
.

Then Xj an analytically bounded finite piece of X̂j.
Fix the constant K0 from Proposition 3.2. We define the desired triangulation piece-

wise, through an inductive construction. The underlying strategy can be described as
follows.
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Apply Proposition 3.2 to construct a K0-quasiconformal function g0 : U0 → E0, where
U0 is considered as a hemmed surface with boundary parameterisations φγ, and E0 is an
equilateral surface-with-boundary. In the following, we shall use without comment the
properties described in the conclusion of Proposition 3.2. In particular, the equilateral
triangulation of E0 has local degree bounded by d0, and g0 ◦ φγ maps every edge of
the partition Ξdγ to an edge of E0 in length-respecting fashion. If the degrees dγ are
sufficiently large, then the dilatation of g0 is supported on a set of small area, and by
Proposition 4.1, there is a quasiconformal map ψ0 from X̂0 intoX such that f0 ..= g0◦ψ−1

0

is conformal, and ψ0 is close to the identity.
Thus we have obtained an equilateral triangulation of the finite piece X̃0

..= ψ0(X0)
of X, which is bounded by the curves ψ0(γ) for γ ∈ Γ(X0). Consider the piece Ũ1 whose
outer boundary curves are the outer boundary curves of U1, and whose inner boundary
curves are given by ψ0(γ) for γ ∈ Γ−(U1). Then Ũ1 is a hemmed Riemann surface, where
for the inner curves we use the boundary correspondence given by

φγ
1(ζ)

..= ψ0

(
φγ

(
1

ζ

))
,

defined on some annulus A−(Rγ). Observe that

f0 ◦ φγ
1

is length-respecting on S1, for each γ.
We may apply Proposition 3.2 to this hemmed surface, using the same values dγ on

the inner boundary curves of Ũ1 – assuming they were chosen sufficiently large in step
0. We obtain a map g : Ũ1 → E1. By the length-preserving properties of g and f0, it
follows that g extends f0 continuously to a quasiconformal map g1 from

Y1 ..= X̃0 ∪ Ũ1 ∪
⋃

γ∈Γ−(U1)

ψ0(γ) ⊂ X̂1

to an equilateral surface E1, which is the union of E0 and E1, glued along corresponding
boundary curves. Again, assuming that all degrees are sufficiently large, we straighten g1
using a quasiconformal map ψ1 from X̂1 intoX. The result is an equilateral triangulation
of the finite piece X̃1

..= ψ1(Y1), and we continue inductively.
More formally, the construction depends on a collection of numbers (Rγ)γ∈Γ, with

1 < Rγ < R̂γ, and positive integers (dγ)γ∈Γ with dγ ≥ ∆(Rγ). (Here ∆ is the function
from Proposition 3.2.) After the (j − 1)-th stage of the construction, we will have
constructed the following objects.

(1) X̃j−1 is a finite piece of X, homotopic to Xj−1 and contained in X̂j−1.

(2) For each boundary curve γ ∈ Γ(Xj−1), the corresponding boundary curve of X̃j−1

is the image of γ under a K0-quasiconformal map Ψγ
j−1. This map is defined on

Aγ(Rγ) and conformal on Aγ
+(R

γ); furthermore,

Ψγ
j−1(A

γ
−(R

γ)) ⊂ X̃j−1 and Ψγ
j−1(A

γ
+(R

γ)) ∩ X̃j−1 = ∅.

(3) Ψγ
j−1(A

γ(Rγ)) ⊂ Âγ for each γ as in (2).
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(4) fj−1 : cl(X̃j−1) → Ej−1 is a homeomorphism that is conformal on X̃j−1, where
Ej−1 is a finite equilateral surface-with-boundary. For γ ∈ Γ(Xj−1), the map

fj−1 ◦Ψγ
j−1 ◦ φγ

maps each edge of the partition Ξdγ to a boundary edge of Ej−1 in length-
preserving fashion.

(5) In Ej−1, every inner vertex is incident to at most 2d0−2 edges, and every boundary
vertex is incident to at most d0 edges.

For j = 0, we use the convention that X̃−1 = Γ(X−1) = E−1 = ∅, so that the hypotheses
are trivial.

The inductive construction proceeds as follows.
Step 1. We define Ũj to be the finite piece of X bounded by the curves in Γ+(Uj)

and the curves Ψγ
j−1(γ) for γ ∈ Γ−(Uj). This piece becomes a hemmed surface when

equipped with the boundary parameterisations φγ for the boundary curves γ ∈ Γ+(Uj)
and

φγ
j−1(ζ)

..= Ψγ
j−1 (φ

γ(1/ζ))

for the others.
Step 2. We apply Proposition 3.2 to obtain a quasiconformal map

gj : cl(Ũj) → Ej,

where Ej is a finite equilateral surface-with-boundary, and every vertex of Ej has local
degree at most d0. For each γ ∈ Γ−(Uj), the function gj ◦ Ψγ

j−1 ◦ φγ maps each edge of
Ξdγ to an edge of Ej in length-respecting fashion. (Note that the map ζ 7→ 1/ζ is itself
length-respecting on S1.)

Step 3. Next, we apply Proposition 4.1, where S = X̂j and µ is the Beltrami

differential of gj on Ũj, and 0 elsewhere. We obtain a quasiconformal homeomorphism
ψj : S → ψ(S) ⊂ X, isotopic to the identity. Of course, we can only apply Proposition 4.1
if the support of µ is sufficiently small; we show below that it is possible to ensure this
by choosing the sequence (Rγ)γ∈Γ appropriately.

Step 4. Finally, we define X̃j, functions Ψ
γ
j , an equilateral surface Ej and a function

fj : cl(X̃j) → Ej such that (1), (2) and (4) hold (with j − 1 replaced by j).
Firstly, set

Yj ..= X̃j−1 ∪ Ũj ∪
⋃

γ∈Γ−(Uj)

Ψγ
j−1(γ) and X̃j

..= ψj(Yj).

Then X̃j is a finite piece of X, homotopic to Xj.
Note that

Γ(Xj) = (Γ(Xj−1) \ Γ−(Uj)) ∪ Γ+(Uj).

The boundary curves of X̃j are given by the curves Ψγ
j (γ), where

(5.1) Ψγ
j = ψj ◦Ψγ

j−1

when γ ∈ Γ(Xj−1) \ Γ−(Uj) and Ψγ
j = ψj when γ ∈ Γ+(Uj). In (5.1), recall that ψj is

conformal outside of Ũj, and hence on Âγ for γ ∈ Γ(Xj−1) \ Γ−(Uj). So Ψγ is indeed



NON-COMPACT SURFACES ARE EQUILATERALLY TRIANGULABLE 29

K0-quasiconformal on Aγ(Rγ) and conformal on Aγ
+(R

γ). It follows that (2) holds for
our maps Ψγ

j .
Finally, let γ ∈ Γ−(Uj), let e be an edge of Ξdγ , and consider ẽ ..= Ψγ

j−1(φ
γ(e)). Then

fj−1(ẽ) is a boundary edge of Ej−1, and gj(ẽ) is a boundary edge of Ej. We form an
equilateral surface-with-boundary Ej by identifying these two boundary edges for each
γ and each e. We identify Ej−1 and Ej with their corresponding subsets of Ej. Every
boundary vertex of Ej is a boundary vertex of Ej−1 or of Ej, and therefore has local
degree at most d0. Every inner vertex of Ej is either an inner vertex of Ej1 or of Ej, or
it is a common boundary vertex of both. In the latter case, the vertex is connected to
at most d0 − 2 inner edges of Ej−1, at most d0 − 2 inner edges of Ej, and two common
boundary edges of the two. This establishes (5) for Ej.
Both fj−1 and gj take values in Ej. Let γ, e and ẽ be as above, and define ê =

fj−1(ẽ) = gj(ẽ). By (4) and the observation on gj in Step 2, the map gj ◦ f−1
j−1 is an

isometry of the edge ê. Keeping in mind that fj−1 and gj are orientation-preserving,
and take values on opposite sides of ê in Ej, it follows that gj ◦ f−1

j−1 = id on ê. Thus

g : cl(Yj) → Ej; z 7→

{
fj−1(z) if z ∈ cl(X̃j−1)

gj(z) if z ∈ cl(Ũj)

is a well-defined homeomorphism. fj−1 is K0-quasiconformal on X̃j−1, and gj is K0-

quasiconformal on Ũj. Since the common boundary curves (Ψγ
j−1(γ))γ∈Γ−(Uj) are quasi-

circles, g is K0-quasiconformal on all of Yj.
Now define

fj ..= g ◦ ψ−1
j : cl(X̃j) → Ej.

Then fj is conformal on X̃j and satisfies (4).
It remains to see that Proposition 4.1 can always be applied in Step 3, and that ψj

is sufficiently close to the identity that (3), and therefore (1), hold. This requires that
the dilatation of the map gj can be chosen to be supported on a sufficiently small set.
By Proposition 3.2, this dilatation is supported on the annuli Ψγ

j−1(A
γ
+(R

γ)) for inner
curves of Uj and on the annuli φγ(Aγ

−(R
γ) for outer curves of Uj, together with a set of

negligible area. The area of the latter annuli can be made small simply by choosing Rγ

small enough.
For the former annuli, on the other hand, we must be slightly more careful. Indeed,

the map Ψγ is the composition of ψj−1, ψj−2, . . . , ψι−(γ). The last of these depends on d
γ,

which in turn depends on Rγ. So Rγ must be chosen so that the image Aγ
−(R

γ) under Ψγ

is small, independently of the choices that determine Ψγ. Happily, since the dilatation
of Ψγ is uniformly bounded, we can do so using the area distortion of quasiconformal
mappings (Proposition 4.7).

To make all of this precise, for each γ ∈ Γ choose annuli Âγ
1 and Âγ

2 with

γ ⊂ Âγ
1 ⋐ Âγ

2 ⋐ Âγ.

We set
εγ1

..= dist(Âγ
2 , ∂Â

γ).

Also let εγ2 be the constant ε from Proposition 4.7, with K = K0, S = Âγ
2 , and B =

cl(Âγ
1). Also let ϑ = ϑγ : (0,∞) → (0,∞) be the function from the same proposition.
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So a K0-quasiconformal map from Âγ
2 into X maps sets of area at most η to sets of area

at most ϑγ(η), provided that it does not move points by more than εγ2 . Define

εγ ..= min(1, εγ1 , ε
γ
2).

Next, for j ≥ 0, choose ηj according to Proposition 4.1, where we use S = X̂j, K = K0,
and

δ = δj ..= 2−(j+1) · min
γ∈Γ(Xj)

εγ.

Finally, choose Rγ sufficiently close to 1 to ensure that

• Aγ(Rγ) ⊂ Âγ
1 ,

• area(Aγ
−(R

γ)) ≤
ηι−(γ)

2#Γ(Uι−(γ))
, and

• ϑγ(area(Aγ
+(R

γ))) ≤
ηι+(γ)

2#Γ(Uι+(γ))
.

Observe that this choice of (Rγ)γ∈Γ depends only on the surface X, its metric ρ and
the decomposition (Uj)j≥0 of X into finite pieces. We claim that, in our inductive
construction, we can ensure

(6) Ψγ
j−1 is defined on Âγ

2 , where it satisfies

dist(Ψγ
j−1(z), z) ≤ (1− 2−j) · εγ,

in addition to (1)–(4).
Observe that, by choice of εγ1 and Rγ, (6) implies

(5.2) Ψγ
j−1(A

γ(Rγ)) ⊂ Ψγ
j−1(Â

γ
1) ⊂ Ψγ

j−1(Â
γ
2) ⊂ Âγ.

In particular, (3) and (1) follow.
In order to obtain (6), we use η = ηj/2 when applying Proposition 3.2 in Step 2 of

the inductive construction. The dilatation of gj is then supported on the union of

(a) a set of area at most η;
(b) the annuli Aγ

−(R
γ) for the outer curves of Uj; i.e., those γ ∈ Γ for which ι−(γ) = j;

(c) the annuli Ψγ
j−1(A

γ
+(R

γ) for the inner curves of Uj, i.e. those γ ∈ Γ for which
ι+(γ) = j.

By choice of Rγ and ϑγ, and by (5.2), we see that each of the annuli in (b) and (c) has
area at most

ηj
2#Γ(Uj)

.

So the support of the dilatation has area at most ηj.
By choice of ηj, this implies that Proposition 4.1 can indeed by applied in Step 2, and

ψj moves points at most a distance of δj. Now, using (6) for Ψj−1, it follows from the
definition of Ψγ

j that (6) also holds for Ψj. The inductive construction is complete.
To complete the proof, we claim that the functions fj converge to a conformal iso-

morphism f between X and an equilateral surface E . To show this, fix j ≥ 0 and
define

αn
..= ψn ◦ ψn−1 ◦ · · · ◦ ψj

for n ≥ j. Then αn is a quasiconformal map on X̂j, and

dist(αn(z), αn+1(z)) = dist(αn(z), ψn+1αn((z))) ≤ δn+1 ≤ 1/2n+2.
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(a) Subdivision of a boundary
triangle

(b) Subdividing all boundary triangles

Figure 11. Proof of Lemma 5.2.

So the maps αn form a Cauchy sequence, and converge to a non-constant quasiconformal
map α on X̂j, and their inverses converge to α−1. By definition of fn, we have

fn ◦ αn|Ũj
= fn−1 ◦ αn−1|Ũj

= · · · = gj,

and hence fn → gj ◦ α−1 uniformly on the closure of Ũj.
So fn converges to a conformal function

f : X → E ..=
∞⋃
j=0

Ej.

Hence X is conformally equivalent to the (infinite) equilateral surface E , and the proof
of Theorem 1.2 is complete. ■

Proof of Theorems 1.4 and 1.6. By Theorem 1.2, there is an equilateral triangulation T
on X. By Proposition 2.7, there is a Belyi function f on X. This proves Theorem 1.4.
Moreover, the triangulation T has the property that no vertex is incident to more than

2d0 − 2 edges (recall (5) in the proof of Theorem 1.2). The Belyi function constructed
in the proof of Proposition 2.7 has the property that every preimage of −1 has degree
2, every preimage of ∞ has degree 3. Furthermore, the preimages of 1 are precisely the
vertices of T , and the components of f−1([−1, 1)) are the edges of T . So every critical
point of f has degree at most 2d0 − 2. ■

It is intuitively clear that our proof of Theorem 1.2 involves infinitely many indepen-
dent choices, leading to uncountably many different combinatorially different triangula-
tions. To make this precise, and hence to prove Corollary 1.7, we will use the following
strengthening of Proposition 3.2.

5.2. Lemma. In Proposition 3.2, we may replace (a) by
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(A) There are universal constants D0 ≥ D1 > 4 with the following property. Every
boundary vertex of E has degree at least D1 and at most D0, and every inner
vertex of E has degree less than D1.

Proof. Let ∆ be an equilateral triangle with vertices A, B, C. We may triangulate T by
adding d0 vertices v1, . . . , vd0 inside T , where each di is connected to A and B and also
to di−1, with the convention that v0 = C. (See Figure 11(a).) Mapping these triangles in
an affine manner to equilateral triangles, we obtain a quasiconformal map h : T → E0,
where E0 is an equilateral surface-with-boundary. On this surface, the two boundary
vertices corresponding to A and B have degree d0 + 2, while C has degree 3 and the
interior vertices all have degree 3 or 4.

Let Ẽ be the equilateral surface obtained in Proposition 3.2, and let T be a boundary
triangle; i.e., a triangle in Ẽ that has an edge on ∂Ẽ. We may identify T with ∆
such that the boundary edge corresponds to the edge AB. We assume that C is an
interior vertex of Ẽ. (This is always true if we follow the construction in the proof of
Proposition 3.2, but the argument is easily adapted if this is not the case.)

We can glue a copy of E0 into Ẽ in place of T , for every such triangle T . The result is
a new equilateral surface E, and a quasiconformal homeomorphism h1 : Ẽ → E, whose
maximal dilatation coincides with that of h. Every boundary vertex of Ẽ belongs to
exactly two boundary triangles. Hence, on E, each of these vertices has local degree
at least D1

..= 2 + 2d0 ≥ 14, and at most D0
..= 3d0. On the other hand, any interior

vertex of Ẽ belongs to at most d0 triangles. Thus it arises as the vertex C in the above
construction for at most d0 different triangles, and has degree at most 2d0 < D1 in E.
Any new vertices in E have degree at most 4 < D1. This completes the proof. ■

Proof of Corollary 1.7. First suppose that X is non-compact. Let T be an equilat-
eral triangulation on X, and let f : X → Ĉ be the corresponding Belyi function from
Proposition 2.7. The vertices and edges of T are given by f−1(−1) and f−1([−1, 1)),
respectively. Hence it is enough to show that the proof of Theorem 1.2 can produce un-
countably many different triangulations of X, no two of which agree up to a conformal
isomorphism of X.

We use the notation from the proof of Theorem 1.2, but at each stage of the con-
struction, we apply the modified version of Proposition 3.2 from Lemma 5.2. Let γ ∈ Γ,
set j ..= ι−(γ), and let α = αj : X̂j → X be the quasiconformal map obtained at the
conclusion of the proof. Then αj(γ) consists of a cycle of dγ edges of T , with all vertices
on this cycle having degree at least 2D1 − 2 > D1. On the other hand, any vertex of T
that does not lie on one of these curves has degree strictly less than D1.
It follows that the sets

D ..= {dγ : γ ∈ Γ} and

Π(D) ..= {p prime: p divides d for some d ∈ D}

are uniquely determined by the combinatorial structure of T as an abstract graph. For
any infinite set P of prime numbers, we can choose a sequence (dγ)γ∈Γ in such a way
that dγ ≥ ∆(Rγ) and such that Π(D) = P . So there are uncountably many different
equilateral triangulations on X.
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On the other hand, the number of compact equilateral Riemann surfaces with n faces
is clearly finite for every n, so the number of compact equilateral Riemann surfaces is
countable. As mentioned in Remark 2.8, up to pre-composition by a conformal isomor-
phism, a Belyi function on a Riemann surface X is uniquely determined by an equilateral
Riemann surface together with a 3-colouring of its triangulation. ■

6. Appendix: Triangulations of rectangles

Proof of Proposition 3.4. Since an affine stretch x + yi 7→ x + ayi, for 1 ≤ a ≤ 2, only
changes angles by a bounded amount, we may assume

R = {x+ iy : 0 ≤ x ≤ m, 0 ≤ y ≤ 1}
for some natural number m. Thus int(R) is a union of dyadic squares as shown in
Figure 12(a) for a unit square; in general the decomposition consists of the 8m−4 dyadic
squares of side length 1/4 that don’t touch ∂R, surrounded by “rings” of progressively
smaller dyadic squares of side length 1/8, 1/16, . . . .
Let the N ..= #P points of the partition be labelled as x0, x1, . . . , xN = x0 in positive

orientation on ∂R, where x0 = 0 is the lower left corner of R. Indices are considered
modulo N . For each partition point xk, set Dk

..= min(|xk − xk+1|, |xk − xk−1|). By the
bounded geometry assumption, we have Dk ≤ λ and

1

λ
≤ Dk

Dk+1

≤ λ.

In particular, Dk/(8λ) ≤ 1/8, and so Dk/(8λ) belongs to a dyadic interval of the form
(2−j−1, 2−j] for some j ≥ 3. Let dk = 3

4
2−j be the center of this interval. Note that dk

and Dk/(8λ) are comparable within a factor of 2, so dk ≤ Dk/(4λ) ≤ min(1
4
, Dk/4).

If 0 = x0 < x1 < · · · < xn = m are the partition points along the bottom edge of R
let zk = xk + idk, k = 0, . . . ,m and consider the polygonal arc σ with these vertices.
(See Figure 13(a).) Note that this arc connects the two vertical sides of R and stays
within 1/4 of the bottom edge. Moreover, every segment has slope between −1/4 and
1/4, since

|dk − dk+1|
|xk − xk+1|

≤ max(dk, dk+1)

|xk − xk+1|
≤ 1

4
· max(Dk, Dk+1)

|xk − xk+1|
≤ 1

4
.

Our choice of dk means that zk is at a height that is half way between the top and
bottom edges of the dyadic square Q that contains it. Since the segments of σ have
small slope, σ leaves Q near the two vertical side of Q and this also holds for the dyadic
squares to the left and right of Q.
Making the same construction for each side we obtain four polygonal arcs σ0, . . . , σ3,

each approximating one side of the rectangle; see Figure 12(b). Consider a corner point
of the rectangle, say x0 = 0 to fix our ideas. The curves σ0 and σ3 reach the boundary
at the points id0 and d0, respectively, and by the bounds on their slope, intersect in a
single point within the dyadic square with centre d0 + id0.
Now take the union of dyadic Whitney squares whose interiors do not hit the curves σj

and are separated from ∂R by them (Figures 12(c) and 13(a)) This union is itself bounded
by an axis-parallel polygon γ, which is the union of four polygonal arcs γ0, . . . , γ3: The
arc γ0 begins at the upper right corner of the dyadic square centred at d0 + id0 (which
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(a) Whitney decomposition of a square (b) Polygonal arcs approximating ∂R

(c) Whitney squares separated from
∂R by the arcs from (a)

(d) Triangulation of the region between
the squares and ∂R

Figure 12. Illustration of the proof of Proposition 3.4

contains the intersection point σ0 and σ3), and ends similarly at the upper left corner
of the square centred at m − dn + idn. (Recall that xn is the lower right corner of the
rectangle. The arcs γ1, . . . , γ2 are characterised similarly.

If we consider the polygonal arc σ = σ0 corresponding to the bottom edge of R, then
the portion of γ0 above each partition arc I is monotone and has a uniformly bounded
number of vertices, depending only on λ. Because of the monotone property, all the
vertices in the polygonal arc can be connected to the same endpoint of I without hitting
γ and the angles between these connecting segments is bounded uniformly away from
zero. (Figure 13(b).)

Moreover, for every partition point xk on the bottom edge, except the two corners,
γ0 is horizontal on some interval centered at xk and with length ≃ dk; this is due to
the property of σ0 hitting only the vertical sides of dyadic squares near xk. Therefore,
connecting xk to the vertices of γ0 whose projections are closest to xk to the right and
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(a) The curves σ and γ

(b) Triangulating the region between γ and ∂R

Figure 13. An enlargement of the curves σ (small slopes) and γ (axis
parallel boundary of boxes). near the boundary. Above a partition point
xk the curve γ is parallel to the boundary on length comparable to dk,
and above each partition segment γ is monotone (either it is flat or forms
a steps that are all increasing or all decreasing). This makes it easy to
verify that the region between γ and ∂R can be triangulated with a lower
angle bound and without adding vertices to ∂R or γ. In this picture the
vertical scale is exaggerated to make σ easier to see.

left gives angles that are also bounded away from zero (as mentioned above, these two
points belong to the same horizontal line). Do this for each side of the rectangle R.
Finally, we connect each corner to the joint endpoint of the two corresponding γj; e.g.,
0 is connected to 4(d0 + id0)/3.

Now every pair xk and xk+1 is connected to a common vertex of γ, and likewise the
two endpoints of every segment of γ are connected to a common vertex of our partition.
Thus we have triangulated the region between γ and ∂R by triangles whose angles are
bounded away from zero. Any triangulation of the vertices of the Whitney squares also
has angles bounded away from zero, and this proves the proposition. ■

Remark. The method described above actually produces a triangulation with O(N)
elements where N is the number of partition points we start with. It is simple to
implement in practice; Figures 13 and 12 were produced using such an implementation
in MATLAB.
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