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1. Introduction

We will call K ⊂ R
d a “norm ball” if it is compact, convex, symmetric, and contains

the origin in its interior. Under these conditions there is an associated norm ‖ · ‖K
defined on R

d by

‖x‖K = inf{λ > 0 : x/λ ∈ K}.

If E ⊂ R
d then the K-distance set of E is

∆K(E) = {‖x− y‖K : x, y ∈ E} ⊂ [0,∞).

Motivated by [12] and [15], we say Falconer’s (K,α)-conjecture holds if for any set E ⊂
R

d with dim(E) = α, the set ∆K(E) has positive 1-dimensional Lebesgue measure,

also referred to as length; here and below “dim” refers to Hausdorff dimension. In

this note we give new examples where this fails for α = d.

When K is the usual closed unit ball B in R
d, d ∈ N = {1, 2, . . . }, we shall denote

∆B(E) simply by ∆(E). Falconer’s conjecture is a refinement of a well known result

of Steinhaus that ∆(E) contains an interval whenever E ⊂ R has positive Lebesgue

measure. Falconer [6] proved that the (B, α)-conjecture is true for all α > (d + 1)/2

and he asked if it holds for all α > d/2. Falconer’s result was subsequently improved

by Bourgain [2], Wolff [19] and Erdogan [5] and very recently there has been much

activity by various authors including Du, Guth, Iosevich, Ou, Wang, Wilson and

Zhang [3], [4], [10]. See Iosevich’s brief survey [13] for a summary of the history of

this problem, the best currently known bounds, the ideas behind these results, and

the close connection between Falconer’s conjecture and the Erdős distance conjecture

for finite sets (recently solved in the plane, [11]).

When K is not the round ball, much less is known. If ∂K is smooth and has non-

vanishing curvature, then Iosevich and  Laba [12] proved the (K,α)-conjecture is true

for α > (d + 1)/2, but Konyagin and  Laba [16] proved that the (K, 2)-conjecture is

false for various finite polygons in R
2, e.g., when the slopes of the sides are algebraic.

In [15] they extend this to polygons where the slopes belong to a certain set of full

measure, and prove that the (K,α) conjecture always fails if α > N/(N − 1), where

N is the number of sides of the polygon K. Corollary 4 of Falconer’s paper [7] claims

that the (K, d) conjecture fails for all finite polyhedral norm balls K ⊂ R
d, but the
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proof contains a gap, explained in Section 2. We will fill this gap by proving a slightly

stronger result:

Theorem 1.1. If K is a norm ball with countably many extreme points, then the

(K, d)-conjecture fails, i.e., there is a compact E ⊂ R
d of Hausdorff dimension d

such that ∆K(E) is a null set.

A null set in R is a set of zero Lebesgue measure. Recall that x ∈ ∂K is an extreme

point of K if it does not lie on any open line segment between distinct points of K.

For a finite polygon, these are exactly the vertices. We say that K is strictly convex

if every point of ∂K is an extreme point, i.e., the boundary contains no line segments.

Every point x on the boundary of a convex set K ⊂ R
d lies on a (d − 1)-plane that

misses the interior of K. The boundary of K is C1 if and only if there is only one

such plane at each x ∈ ∂K; see Lemma 4.3.

Theorem 1.2. There is a strictly convex norm ball K ⊂ R
d with C1 boundary such

that the (K, d)-conjecture fails.

So far as we know, Falconer’s (K,α)-conjecture was not previously known to fail

for any strictly convex set K and α > d/2.

2. Dimensions of intersections

Theorem 1 of [7] (see also Theorem 8.3 of [8]; 8.2 in earlier editions), claims that if

E and F are Borel subsets of Rd, then the set of homotheties σ on R
d (compositions

of dilations and translations) such that

dim(E ∩ σ(F )) ≥ dim(E) + dim(F ) − d,(2.1)

has positive measure in the group of all homotheties. However this claim is false: we

will show that there are compact sets E and F so that (2.1) does not hold for any Eu-

clidean similarity (a composition of dilations, translations, rotations and reflections).

For simplicity, consider the case dim(E) = dim(F ) = d = 1. Let {In} be the

collection of closed intervals [2−2n , 2
1

4
−2n ], n ∈ N, and for each n choose a compact

set En ⊂ In with dim(E) = 1 − 1/n. Then set E = {0} ∪ ⋃
n∈NEn. Similarly,

let Jn = [2−3n , 2
1

4
−3n ], choose compact Fn ⊂ Jn with dimensions 1 − 1/n and set

F = {0} ∪⋃
n∈N Fn.
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We claim that dim(E∩σ(F )) < 1 for any similarity σ. First note that dim(E\U) <

1 and dim(F \ U) < 1 for any neighborhood U of zero. Thus if dim(E ∩ σ(F )) = 1,

we must have σ(0) = 0, for otherwise there are disjoint neighborhoods U, V of 0 and

σ(0) and hence

dim(E ∩ σ(F )) ≤ max(dim(E \ U), dim(σ(F ) \ V )) < 1.

The restriction σ(0) = 0 already implies that the set of similarities (or homotheties)

such that dim(E ∩ σ(F )) = 1 has measure zero.

To show the set satisfying (2.1) is empty, we may assume σ(0) = 0, but that

E∩σ(F ) 6= {0}. Then some In must intersect some σ(Jm) (otherwise the intersection

is just the point {0}). Therefore σ must be a dilation of the form σ(x) = 2λ+2n−3mx,

for some λ ∈ [−1
4
, 1
4
]. We claim that only finitely many other pairs of the form Ik,

σ(Jj) can intersect. Assume (j, k) is such a pair and j > m, k > n. If σ(Jj) hits Ik

we must have

λ+ 2n − 3m − 2k = λ′ − 3j

for some λ′ ∈ [0, 1
4
]. Because the powers of 2 and 3 are integers, we must have

2n − 3m − 2k = −3j ,

or, equivalently,

2n(2k−n − 1) = 2k − 2n = 3j − 3m = 3m(3j−m − 1).

By unique factorization of integers, this implies

2n = 3j−m − 1.

Since n,m are fixed there is at most one j that can satisfy this equation. Similarly for

k. Since only finitely many pairs of intervals can overlap and the dimension of E,F

inside each of these intervals is strictly less than 1, we see that dim(E ∩ σ(F )) < 1.

It is easy to see that the same idea can be applied to sets in R
d: there exists

E,F ⊂ R
d both of dimension d, so that that dim(E ∩ σ(F )) < d for every similarity

σ of Rd. Indeed, only slightly more work shows this holds for every diffeomorphism

of Rd into itself.

The proof of Theorem 1 in [7] uses an induction argument on the dimension d

which breaks down at the first step d = 1; this case is quoted from [17], but the
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result is not found there, and our example shows it is incorrect. There are correct

versions of (2.1) under stronger hypotheses, e.g., Theorem 13.14 of [17] or [14].

3. The basic construction

Before giving our main construction, we recall a simple criterion for a set E ⊂ R
d

to have dimension d. Suppose b ∈ N, b ≥ 2. An nth generation b-adic cube Q ⊂ R
2 is

a product of intervals of the form [jb−n, (j+ 1)b−n], j ∈ Z. Fix a set S ⊂ N. Suppose

E is defined as an intersection of sets En, where each En is a union of nth generation

cubes. We assume E0 is a union of unit (i.e., 0th generation) b-adic cubes in R
d. In

general, suppose we obtain En+1 from En by taking all bd subcubes if n 6∈ S, and

by taking at least one child cube if n ∈ S. For example, for the construction of the

middle thirds Cantor set in the real line one would take b = 3, S = N, and would

choose the leftmost and rightmost children among the b = 3 children of an interval

in each generation.

We say S has zero density if

lim
n→∞

#(S ∩ [1, n])

n
= 0.

Lemma 3.1. With notation as above, if S has zero density then dim(E) = d.

Proof. Consider the subset E ′ of E constructed by choosing exactly one child cube

of a cube of En whenever n ∈ S. More precisely, E ′ is the intersection of sets E ′
n,

where E ′
n is a union of cubes such that E ′

0 = E0 and E ′
n+1 is obtained from E ′

n by

taking all bd subcubes if n /∈ S, and by taking exactly one child cube if n ∈ S. We

shall show that dim(E ′) = d, and thus dim(E) = d.

Let µ be the measure on E ′ that assigns mass 1 to each unit cube in the construction

and divides the mass of each cube evenly between its children. If Qn is a cube of nth

generation contained in a cube Qn−1 of (n− 1)th generation, then by construction

µ(Qn)

µ(Qn−1)
=

{
1, n ∈ S

bd, n /∈ S.

We therefore have,

µ(Qn) = bd(n−#(S∩[1,n])).
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By Billingsley’s lemma (see, for example, Lemma 1.4.1 of [1]), it follows that

dim(E ′) ≥ lim
n→∞

∣∣∣∣
log µ(Qn)

n log b

∣∣∣∣ = d

(
1 − lim

n→∞

#(S ∩ [1, n])

n

)
= d. �

The following strengthens Corollary 3 of [7] from finite collections of vectors to

countable collections.

Lemma 3.2. Suppose {θ1, θ2, . . . } is a countable collection of vectors in R
d. There is

a compact set E ⊂ B with dim(E) = d and so that for every n ∈ N, En = ∆(Πn(E))

has zero length, where Πn is the orthogonal projection onto the line in direction θn.

Moreover, there are closed null sets {Dn} ⊂ [0,∞), independent of the choice of {θn},
so that En ⊂ [0, 2] ∩Dn for every n ∈ N.

Proof. We start with a standard construction of a set Y ⊂ R of Hausdorff dimension

1 whose distance set has length zero. Choose a strictly increasing sequence of positive

integers {mk} and set nk = m1 + · · · +mk. Set I = [0, 1] and let Xk = 3−nk(I + 3Z);

this is an infinite union of closed intervals of length 3−nk separated by open intervals

of length 2 · 3−nk . For n ∈ N, set

Yn =
n⋂

k=1

Xk ⊂ Yn−1, Y = Y ({nk}) =
∞⋂

n=1

Yn.

The set Y can also be described by an inductive construction using 3-adic intervals as

in the setting described before Lemma 3.1: one starts with all integer unit intervals

and replaces an interval by its three children if n /∈ S := {nk}, and chooses only the

leftmost interval if n ∈ S. If mk → ∞, then S has zero density and Lemma 3.1 shows

that dim(Y ) = d.

The distance set D0 = ∆(Y ) of Y ⊂ R is the same as the projection of Y ×Y ⊂ R
2

onto the real line via lines of slope 1. See Figure 1. By construction, the projection of

Yn+1×Yn+1 can be obtained from the projection of Yn×Yn by replacing each interval

I in the latter set by a union of subintervals covering at most 2/3 of the length of I.

Thus, in the limit, the projection has zero length, and hence so does D0.

For each k = 1, 2, . . . , define Zk = Yk ×R
d−1 and let Z = ∩kZk = Y ×R

d−1. Then

Zk consists of infinitely many infinite, parallel “slabs” of thickness 3−nk . Each slab is

a union of d-cubes of side length 3−nk and disjoint interiors. We call these the cubes

associated to Zk. The main observation we need is that we can choose a dilation
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Figure 1. The reason why D0 = ∆(Y ) has zero length.

factor 0 < λ = 3−t ≤ 1/(2
√
d+ 3), t ∈ N, (see Figure 2) so that each cube associated

to Zn contains a cube associated to λτ(Zn), where τ is any rotation of R
d (this is

also true for all rigid motions, but we don’t need that much generality).

1

r

λ

Figure 2. The center of a unit cube in Z0 is contained in a λ-
sized cube in λτ(Z0) and we either keep that cube or an adjacent
one. In either case the kept cube is contained in disk of radius
r = λ

√
d+ 3 around the center and hence it is inside the unit cube

if λ ≤ 1/(2
√
d+ 3). This holds even if the cubes come from grids that

are rotated with respect to each other.
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Set F k
n = τk(λkZn), where τk is any rigid rotation of Rd that takes the first coordi-

nate axis into the line Lk in direction θk. Set

F k = B ∩
∞⋂

n=1

F k
n .

Note that the orthogonal projection of F k into Lk is contained τk(λkY ) and hence its

distance set is contained in λkD0.

We now give the construction of E in the case of finitely many direction vectors,

and then show how to adapt it to the countable case. If there are N direction

vectors θ1, . . . , θN then E =
⋂N

k=1 F
k will work if the increasing sequence {mk} is

chosen correctly. We require that mk ≥ t(N + 1); recall that λN+1 = 3−t(N+1).

Then each of the cubes Q1 of side length 3−n1 associated to F 1
1 contains one cube

Q2 with side length λ3−n1 associated to F 2
1 (by the choice of λ), and so on until we

reach one cube QN associated to FN
1 which has size λN3−n1 = 3−n1−tN . We now

consider a cube Q̃1 ⊂ QN of side length 3−m1−t(N+1) = λ3−n1−tN that is the product

of intervals of the form [j3−m1−t(N+1), (j + 1)3−m1−t(N+1)] and intersects the set F 1
2 .

Then we take all the cubes associated to F 1
2 that are contained in Q̃1; these have size

3−n2 = 3−m1−m2 ≤ 3−m1−t(N+1).

We repeat the construction above, taking one cube from F k
2 , k = 1, . . . , N , and

then all the cubes associated to F 1
3 . Continuing in this way defines nested collections

of 3-adic cubes, whose intersection we call E. This procedure can also be described

as an iterative construction on 3-adic cubes where we always choose all 3d children,

except for generations n ∈ [nk, nk + t(N + 1)]. Since mk = nk+1 − nk → ∞, the

exceptional generations have zero density and so Lemma 3.1 proves that dim(E) = d.

Now we modify the argument for countably many vectors. Each cube Q1 of side

length 3−n1 associated to F 1
1 contains one cube Q2 of side length λ3−n1 associated

to F 2
1 . We now consider a cube Q̃1 ⊂ Q2 of side length λ23−n1 = 3−n1−2t that is the

product of intervals of the form [jλ23−n1 , (j + 1)λ23−n1 ] and intersects the set F 1
2 .

Then we take all the cubes associated to F 1
2 that are contained in Q̃1; these have size

3−n2 = 3−n1−m2 ≤ λ23−n1 , provided that 3−m2 ≤ λ2. This completes the first step of

the construction.

Let now R1 be a cube of F 1
2 that has side length 3−n2 . There exists a cube R2 ⊂ R1

of side length λ3−n2 associated to F 2
2 . Now, we also choose a cube R3 ⊂ R2 of side
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length λ23−n2 associated to F 3
2 . We end the second step by choosing a cube R̃1 of side

length λ33−n2 = 3−n2−3t that is the product of intervals of the form [jλ33−n2 , (j +

1)λ33−n2 ] and intersects the set F 1
3 . Then we take all the cubes associated to F 1

3

that are contained in R̃1; these have size 3−n3 = 3−n2−m3 ≤ λ33−n2 , provided that

3−m3 ≤ λ3. This completes the second step of the construction.

We continue the construction in this way, choosing every time sufficiently large mk,

so that the construction can go through. This procedure can also be described as an

iterative construction on 3-adic cubes where we always choose all 3d children, except

for generations n ∈ [nk, nk + t(k + 1)]. We define S = ∪k[nk, nk + t(k + 1)]. If, in

addition, mk is chosen to be so large that mk/k → 0 as k → ∞, then S has density

zero, so dim(E) = d.

The projection of E onto direction θn is contained in a copy of λanY ({ñk}) where

an is the generation in which we first use a cube associated to F n (for example, a3 = 2

from the construction above) and {ñk} is the truncation of {nk} starting at index an.

Thus the corresponding distance set, Dn, is a set of zero length that depends on our

choice of {mk}, but not on the {θk}. �

Lemma 3.3. Suppose K is a norm ball with countably many extreme points. Then

there is a countable set of vectors {θn} such that for each x ∈ R
d there exists n ∈ N

with

‖x‖K = |x · θn| = max
k

|x · θk|.

Moreover, if B(0, R1) ⊂ K ⊂ B(0, R2) for some 0 < R1 < R2, then 1/R2 ≤ |θn| ≤
1/R1 for all n ∈ N. If K is a polyhedron, then the vectors {θn} may be taken to be

parallel to the normal vectors of the faces of K.

Proof. Every point x on the boundary of a convex set K ⊂ R
d lies on a (d− 1)-plane

Px, called a supporting hyperplane, that misses the interior of K. In other words,

there is a linear functional fx so that fx(x) = 1 and fx(y) ≤ 1 for all y ∈ K, and

Px = {y : fx(y) = 1}; see [18, Theorem 11.6].

Moreover, Carthéodory’s theorem [18, Theorem 17.1] states that every non-extreme

boundary point x is a convex combination x =
∑k

j=1 pjxj of k extreme points with

0 < pj < 1 for 1 ≤ j ≤ k, and 2 ≤ k ≤ d + 1. Let E(x) denote the set of k extreme

points associated to x. Then fx(y) = 1 for every y ∈ E(x) (otherwise fx(x) < 1), and
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hence fx(y) = 1 for every convex combination y of points in E(x). Thus the plane

Px covers the convex hull of E(x). Since there are only countably many k-tuples of

a countable set, there are countably many (d− 1)-planes that cover ∂K.

We take normal vectors νn, n ∈ N, to these planes such that νn, as a point of

R
d, lies on the corresponding plane. If we define θn = νn/|νn|2, then these vectors

have the desired properties. It suffices to check the claim whenever ‖x‖K = 1. Then

x ∈ Px and suppose that νn is the normal to Px. The vector (x · νn/|νn|)νn/|νn| =

(x · νn/|νn|2)νn is the projection of x to the direction νn, which is precisely the vector

1νn. Hence, x · νn/|νn|2 = 1 = ‖x‖K .

If P is some other supporting hyperplane not containing ±x with normal vector

νm, then there exists a constant λ ∈ (−1, 1) such that x ∈ Pλ := ν⊥m + λνm and

the hyperplane Pλ has normal λνm ∈ Pλ. Then (x · νm/|νm|)νm/|νm| = λνm, so

|x · νm/|νm|2| = |λ| < 1 = ‖x‖K .

For the last assertion note that νn ∈ B(0, R2) \ B(0, R1) for all n ∈ N. Hence

|θn| = 1/|νn| ∈ [1/R2, 1/R1]. �

It will be crucial below that we have a maximum in the previous lemma and not

just a supremum; the latter version is always true by taking a dense set of directions.

Proof of Theorem 1.1. This is the same as the proof of Corollary 4 in [7]. By Lemma

3.3, there are countably many vectors {θn} ⊂ R
d so that for each x, y ∈ R

d there

exists n such that

‖x− y‖K = |(x− y) · θn|.
Let E and {Dn} be the sets from Lemma 3.2. We have

∆(Πn(E)) = {|(x− y) · θn/|θn|| : x, y ∈ E} ⊂ Dn.

Then

{‖x− y‖K : x, y ∈ E} ⊂
∞⋃

n=1

{|(x− y) · θn| : x, y ∈ E} ⊂
∞⋃

n=1

(|θn|Dn),

which is a countable union of zero length sets. �

Given a Banach space X, a subset B ⊂ X∗ of its dual space is called a (James)

boundary if for every x ∈ X, there is a b ∈ B so that ‖x‖X = b(x). For example,

the unit sphere in X∗ is such a boundary, as is the set of extreme points of the unit

ball in X∗. Thus another way to state Lemma 3.3 is that if X is a finite dimensional
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Banach space whose unit ball has countable number of extreme points, then X has

a countable boundary. Certain infinite dimensional Banach spaces also have this

property, e.g., c0, the space of real valued sequences that tend to zero. Is there an

interesting version of Theorem 1.1 for such spaces? What is the the correct notion

of a “large” set whose distance set has zero length? Infinite Hausdorff dimension?

4. A strictly convex example

Given two subsets E,F ⊂ R
d, recall that the Hausdorff distance between E and F

is defined as

dH(E,F ) = inf{ε > 0 : E ⊂ Nε(F ) and F ⊂ Nε(E)},

where Nε(E), Nε(F ) denote the open ε-neighborhoods of E and F respectively.

Lemma 4.1. For each 0 < R1 < R2 there is a function ϕ : N → (0, 1] so that the

following holds. Suppose K ⊂ R
d is a norm ball and {Kn} ⊂ R

d is a sequence of

finite polyhedral norm balls such that

(a) B(0, R1) ⊂ K,Kn ⊂ B(0, R2) for all n ∈ N, and

(b) Kn has sn sides for each n ∈ N, where sn strictly increases to ∞ as n→ ∞.

Moreover, consider the set E given by Lemma 3.2 and corresponding to the countably

many normal directions of the sides of all polyhedrons Kn.

(i) If dH(K,Kn) ≤ ϕ(sn) for some n ∈ N, then ∆K(E) has length at most 1/s2n.

(ii) If dH(K,Kn) ≤ ϕ(sn) for all n ∈ N, then the (K, d)-conjecture fails.

In other words, the (K, d)-conjecture not only fails for finite polyhedrons, but also

for any convex body that is “very well approximated” by finite polyhedrons.

Proof. Claim 1: Consider an infinite ray R emanating from 0 and hitting ∂Kn, ∂K at

points x, y, respectively. We first claim that there exists a constant C1 = C1(R1, R2) >

0 such that

|x− y| ≤ C1dH(K,Kn).

Here, the roles of K and Kn are symmetric, so suppose that y ∈ ∂K satisfies |y| > |x|.
Let z ∈ ∂K be the point closest to x ∈ ∂Kn, so |x− z| ≤ dH(K,Kn); see Figure 3.

If |x−y| > C1dH(K,Kn) for a constant C1 > 0 then we would have |x−z|/|x−y| <
1/C1. In the extreme case that z = y we have C1 < 1, so if we choose C1 ≥ 1, then
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R2

R1

z
y

0 x

w

R

ψ

KK n

z

L

Figure 3. Illustration of the proof of Claim 1.

z 6= y. Consider the line L through y and z and let ψ be the angle between L

and the ray R. Then ψ < π/2, since z 6= y. Therefore, the line L hits a point w

on the hyperplane that is perpendicular to R and passes through the origin, with

|w| = |y| tan(ψ) ≤ R2 tan(ψ). We claim that z is on the segment between w and y if

C1 is sufficiently large. Indeed, otherwise we have |x− z| ≥ R1 because x /∈ B(0, R1),

so 1/C1 > R1/|x−y| > R1/(R2−R1). Therefore, if we choose C1 ≥ (R2−R1)/R1, then

our claim follows. Since z is on the segment between w and y, if the point w is in the

interior of K, so is z by convexity, a contradiction. Hence, w is either on the boundary

of K or is outside K. In either case |w| ≥ R1. We have R2 tan(ψ) ≥ |w| ≥ R1, which

implies that tan(ψ) ≥ R1/R2.

Now, let z′ be the point of the line L that is closest to x, so |x − z′| ≤ |x −
z|. It follows that sin(ψ) = |x − z′|/|x − y| ≤ |x − z|/|x − y| < 1/C1. Hence,

C1 < 1/ sin(arctan(R1/R2)), i.e., C1 <
√

(R2/R1)2 + 1. Therefore, if we choose

C1 ≥
√

(R2/R1)2 + 1, then we have the desired conclusion.

Claim 2: Next, we claim that if dH(K,Kn) ≤ ϕ for some number ϕ > 0, then

for any Borel set F ⊂ B = B(0, 1) the distance set ∆K(F ) is contained in the

C2ϕ-neighborhood of ∆Kn
(F ) for some constant C2 > 0 depending only on R1, R2.

Indeed, let |x| ≤ 2 be arbitrary. Then there exist α, αn > 0 such that αx ∈ ∂K and
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αnx ∈ ∂Kn. In particular, ‖x‖K = 1/α and ‖x‖Kn
= 1/αn. By Claim 1 we have

|αx− αnx| ≤ C1dH(K,Kn) ≤ C1ϕ. It follows that

|‖x‖K − ‖x‖Kn
| =

|αn − α|
αnα

≤ C1ϕ

αnα|x|
≤ 2C1ϕ

|αnx||αx|
≤ 2C1

R2
1

ϕ = C2ϕ.

Now, if x, y ∈ F , then |x−y| ≤ 2, so ∆K(F ) lies in the C2ϕ neighborhood of ∆Kn
(F ),

proving Claim 2.

To continue the proof of Lemma 4.1, we need the following elementary lemma that

is proved later. Here m1 denotes the 1-dimensional Lebesgue measure.

Lemma 4.2. Let F ⊂ R be a bounded set.

(i) For each c, δ > 0 we have m1(Ncδ(F )) ≤ max{1, c} ·m1(Nδ(F )).

(ii) For each r, δ > 0 we have m1(Nδ(rF )) ≤ max{1, r} ·m1(Nδ(F )).

Let {Dn} be as in Lemma 3.2 and setWk = [0, 2]∩Dk, k ∈ N. This is a compact null

set for each k ∈ N. Thus for each n ∈ N there is a δn > 0 so that the δn-neighborhood

of Wk has length less than 2−k/(C3n) for k = 1, . . . , n, where C3 = (1+C2)(1+1/R1)

and our choice will be evident later. Here we have used the fact the length of the

δ-neighborhood of a compact null set in R tends to zero with δ by the Lebesgue

dominated convergence theorem. Let ϕ(n) = δn2 ; note that this definition depends

only on R1, R2 and not on K,Kn.

Now suppose dH(K,Kn) ≤ ϕ(sn) as in the statement of Lemma 4.1(i). For n ∈ N

let tn :=
∑n

k=1 sk ≤ nsn ≤ s2n. Enumerate the normal vectors corresponding to

the sides of K1, K2, . . . and let these be the θk in Lemma 3.3 and in Lemma 3.2;

also let E ⊂ B be the d-dimensional set given by Lemma 3.2for this sequence. The

enumeration of the θk is such that the normal vectors for the sides of Kn are accounted

for among the first tn = sn + tn−1 vectors in the list, and therefore, as in the proof of

Theorem 1.1, we have

∆Kn
(E) ⊂

tn⋃

k=1

|θk|Wk ⊂
s2n⋃

k=1

|θk|Wk.

Since Kn approximates K to within ϕ(sn), we deduce from Claim 2 that ∆K(E) lies

inside the C2ϕ(sn)-neighborhood of ∪s2n
k=1|θk|Wk. Hence, ∆K(E) lies inside the union

of the C2ϕ(sn)-neighborhoods of the sets |θk|Wk, k = 1, . . . , s2n. By Lemma 4.2, and
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using the fact that |θk| ≤ 1/R1 by Lemma 3.3, we have

m1(NC2ϕ(sn)(|θk|Wk)) ≤ max{1, C2} ·m1(Nϕ(sn)(|θk|Wk))

≤ max{1, C2} · max{1, |θk|} ·m1(Nϕ(sn)(Wk))

≤ (1 + C2)(1 + 1/R1)m1(Nδ
s2n

(Wk))

≤ C3
2−k

C3s2n

for k = 1, . . . , s2n. Since C3 > C2, it follows that

m1(∆K(E)) ≤
s2n∑

k=1

m1(NC2ϕ(sn)(|θk|Wk)) ≤ 1

s2n
,

which completes the proof of part (i). Since 1/s2n → 0, part (ii) also follows. �

Proof of Lemma 4.2. If c ≤ 1, then (i) is immediate since Ncδ(F ) ⊂ Nδ(F ). Suppose

that c > 1 and consider the δ-neighborhood of F , which is a bounded open set.

Hence, it can be written as a finite union of bounded disjoint open intervals Ii, i ∈ I,

each having length at least 2δ. We append to each Ii two closed intervals of length

(c− 1)δ, disjoint from Ii, so that one is appended to the left endpoint and the other

to the right endpoint of Ii. We let I ′i, i ∈ I, be the resulting collection of intervals,

which satisfy m1(I
′
i) = m1(Ii) + 2(c− 1)δ. Note that the union ∪i∈II

′
i covers Ncδ(F ).

It follows that

m1(Ncδ(F )) ≤
∑

i∈I

(m1(Ii) + 2(c− 1)δ) ≤
∑

i∈I

cm1(Ii) = cm1(Nδ(F )).

Part (ii) follows from (i) and the observation that Nδ(rF ) = rNδ/r(F ). �

We will give a separate proof of Theorem 1.2 in the case d = 2, since it is quite

visual and simple to state. However, the proof for general dimensions, given later,

also applies to the planar case.

Proof of Theorem 1.2 for d = 2. We first build a strictly convex example and then

explain how to make it C1. We will construct K as as a limit of nested, increasing,

finite convex polygons {Kn}. Let K1 be a square centered at the origin. Suppose,

in general, we are given a polygon Kn with 2n+1 sides. Let Ik be one face of ∂Kn,

denote the midpoint of Ik by xk, and define yk as the outward normal vector to Kn at

xk. Let zk = xk +εnyk, where εn ≤ 1
2
ϕ(2n+2); here ϕ is the function from Lemma 4.1,
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corresponding to a small fixed R1 > 0 and a large fixed R2 > 0, and the convex sets

Kn, K are constructed so that B(0, R1) ⊂ K,Kn ⊂ B(0, R2). Replace the edge Ik

by an arc Jk consisting of two edges, connecting the endpoints of Ik to the point zk.

This gives the polygon Kn+1. See Figure 4. If εn is small enough (but positive) Kn+1

will still be convex. Moreover, if εn+1 ≤ εn/2 is sufficiently small, then the limiting

region K will not contain any line segments in its boundary so it will be a strictly

convex norm ball which is approximated to that 2εn by Kn. Thus by Lemma 4.1,

there is a compact set E of dimension 2 so that ∆K(E) has length zero, as desired.

kJ

Ik−1 Ik+1

Ik

εn

Figure 4. Constructing Kn+1 from Kn to give a strictly convex example.

The example described above is not C1 since there are countably many extreme

points where the exterior angle is strictly larger than π. However we can eliminate

these corners as follows. Instead of replacing each edge Ik by two edges as above, we

replace it by a polygonal arc Jk with 4 edges, as illustrated in Figure 5.

Ik−1 Ik+1

kJ

Ik
π−θ

θ/2

θ/2

ε

θ

< θ/2

n

Figure 5. Constructing Kn+1 from Kn to give a C1 boundary in the limit.

If the two points near each endpoint of Ik are chosen correctly (see Figure 5), then

the exterior angle at each of these points is approximately half the angle θ at the

corresponding endpoint of Ik (and can certainly be chosen to be less than 2/3 of that

angle). The angle at the central vertex is as close to zero as we wish. Thus all the



THE (K, d) CONJECTURE CAN FAIL FOR STRICTLY CONVEX SETS 15

exterior angles for Kn+1 are less than the maximum exterior angle for Kn by a fixed

factor strictly less than 1. This implies ∂K is has a (unique) tangent at each point.

By Lemma 4.3 below we conclude that ∂K is C1. �

Lemma 4.3. Let K ⊂ R
d be a norm ball such that there exists a unique supporting

hyperplane at each point of ∂K. Then ∂K is a C1-smooth (d− 1)-submanifold of Rd.

This lemma follows from Theorem 25.1 and Corollary 25.5.1 of [18], if one uses as

local coordinates the projection from ∂K to a tangent hyperplane of ∂K. In fact,

∂K is homeomorphic to the (d− 1)-sphere under the map x 7→ x/|x|.
In our construction above, the boundary curvature of the limiting set K will be a

measure µ supported ∂K that is singular to length measure. Can this measure have

positive dimension? Is there some relation between whether the (K,α)-conjecture

holds and the dimension of the measure µ, say α > 2 − dim(µ)?

Proof of Theorem 1.2 for d ≥ 2. We use Proposition 2.1 of [9] which states that any

convex body K ⊂ R
d can be approximated as closely as we wish in the Hausdorff

metric by a C∞ strictly convex body that contains K. Although it is not explicitly

stated there, the proof in [9] shows that if K is symmetric then the approximation

will be too.

Start with a cube centered at the origin and approximate it by a smooth convex

body S1 to within ε1 > 0, where ε1 will be fixed below, subject to several additional

conditions. Choose a finite, symmetric collection points that are sufficiently dense

on ∂S1 that the intersection of half-spaces containing S1 and touching ∂S1 at these

points defines a polytope approximating S1 within ε1.

Since S1 is strictly convex, its boundary contains no line segment and hence for any

δ > 0 there is a η > 0 with the following property: any segment of length δ that lies

outside the interior of S1 contains a point at least distance 2η from S1. In particular,

any convex body K1 that contains S1 and approximates it to within η cannot contain

any δ-long segment in its boundary. Thus by taking ε1 small enough we may assume

that ∂K1 contains no line segment of length 1/2.

Using the smoothness of S1, given any δ > 0 we can also choose η > 0 so small that

if a (d− 1)-plane P that misses the interior of S1 comes within η of a point x ∈ ∂S1,

then the normal to P is within angle δ of the normal to S1 at x. This implies that
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any convex K that contains S1 and approximates it to within η, has normals that

approximate the normals to S1. Again, by taking ε1 small enough, we can assume

that any ray from the origin intersects S1 and K1 at points where the normals agree

to within angle 1/2 (for K1, there might be multiple choices of the normal direction

at some points, but they all satisfy this estimate).

Using these arguments repeatedly, we obtain a sequence of smooth, strictly convex,

symmetric bodies {Sn}, finite symmetric polytopes {Kn}, and positive numbers {εn}
so that

(1) Kn contains Sn and approximates Sn to within εn in the Hausdorff metric.

(2) Sn+1 contains Kn and approximates Kn to within εn+1 in the Hausdorff metric.

(3) εn+1 ≤ ϕ(sn)/2 where sn is the number of faces of Kn and ϕ is as in Lemma

4.1. Hence the distance set ∆K(E) for any body K approximating Kn to

within 2εn+1 has length less than 1/s2n.

(4) εn is so small that any (d− 1)-plane that comes within 2εn of a point x ∈ Sn

without hitting Sn has normal direction that is within 2−n of the normal to

Sn at x.

(5) εn is small enough that any convex body that contains Sn and approximates

it to within 2εn contains no segment of length 2−n in its boundary.

(6) εn+1 ≤ εn/4.

Condition (6) implies the limiting bodyK approximates Sn to within εn+
∑

k≥n+1 εk ≤
2εn and hence contains no segments at all by condition (5). Hence K is strictly con-

vex. Conditions (6) and (3) imply the distance set ∆K(E) has zero length. Conditions

(6) and (4) imply that ∂K has a unique supporting hyperplane at each of its points.

Indeed, if x ∈ ∂K has two supporting hyperplanes with unit normals ν1 and ν2 re-

spectively, then each of ν1, ν2 is within 2−n of the normal of Sn at a point xn. This

implies that ν1 = ν2. By Lemma 4.3 we conclude that ∂K is a C1, as desired. �
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