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UNIFORMLY ACUTE TRIANGULATIONS OF PSLGS

CHRISTOPHER J. BISHOP

Abstract. We show that any PSLG Γ has an acute conforming triangulation T
with an upper angle bound that is strictly less than 90◦ and that depends only on
the minimal angle occurring in Γ. In fact, all angles are inside [θ0, 90

◦ − θ0/2] for
some fixed θ0 > 0 independent of Γ, except for triangles T containing a vertex v of
Γ where Γ has an interior angle θv < θ0; then T is an isosceles triangle with angles
in the sharpest possible interval [θv, 90

◦ − θv/2].

1. Introduction

Every planar straight line graph (PSLG) has an acute conforming triangulation,

e.g., [2], [5], [11], [15], [17]. However, no upper angle bound strictly less than 90◦

holds for all PSLGs. If a PSLG Γ has an interior angle θ at a vertex v, then any

conforming triangulation T of Γ has a triangle T containing v with angle ≤ θ. Since

the angles of T sum to 180◦, T also has an angle ≥ 90◦ − θ/2. Therefore vertices of

Γ with small angles force triangles in T with large angles. Can we obtain a uniform

bound strictly less than 90◦ except for triangles containing such vertices? Is there

an acute angle bound for the whole triangulation that only depends on the minimal

angle of Γ?

Theorem 1.1. There is a θ0 > 0 so that any planar straight line graph Γ has a

conforming triangulation with every angle in [θ0, 90
◦ − θ0/2] except for triangles con-

taining a vertex v of Γ where Γ has an angle < θ0. If the minimal interior angle of Γ at

v is θv < θ0, then every triangle containing v is isosceles with angles in [θv, 90
◦−θv/2].

In particular, if Γ has minimal interior angle θ, then it has a triangulation with all

angles ≤ 90◦ −min(θ, θ0)/2.
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The last claim quantifies the 1960 result of Burago and Zalgaller [11] that any

polyhedral surface has an acute triangulation. The precise definition of a PSLG, of

an interior angle, and of a conforming triangulation will be given in Section 2.

Theorem 1.1 was originally motivated by the special case of triangulations. Recall

that a refinement of a triangulation T1 is another triangulation T2 of the same region

so that each element of T1 is a union of elements of T2. A φ-triangulation is one in

which every angle of every triangle is at most φ. Similarly for a φ-refinement.

Theorem 1.2. There is a θ0 > 0 so that any planar triangulation T1 with lower angle

bound θ > 0 has a φ-refinement T2 with φ = 90◦ − min(θ, θ0)/2. We can choose T2

so that each triangle in T1 contains at most O(1) triangles of T2, where the bound

depends only on θ.

The first statement is immediate from Theorem 1.1 and the second follows from its

proof. This result answers a question of Florestan Brunck: in [10], he uses Lemma

13.1 of this paper (a consequence of Theorem 1.2), together with a result from [9], to

transfer triangulations like the ones given in this paper from the Euclidean plane to

a general Riemannian triangle complex.

The value θ0 in Theorem 1.1 is given by a compactness argument and is not explicit,

but in the special case of simple closed polygons, a more concrete construction using

conformal mappings shows that Theorem 1.1 holds with θ0 = 30◦. See [8]. This

implies that every polygon P with minimal angle θ has a φ-triangulation with φ =

90◦ −min(θ, 30◦)/2. A sharper version is given in [7]: P has a φ-triangulation with

φ = 90◦ − min(θ, 36◦)/2. Moreover, [7] shows how to compute the optimal angle

bound for any particular polygon in linear time. The analogous problem for PSLGs

is open and probably much harder. Indeed, finding the sharp (or even an explicit)

value for θ0 in Theorem 1.2 for PSLGs already seems like a challenging problem,

given the difficulties encountered in this paper merely to get below 90◦.

Remark: Acute triangulations come with complexity bounds, but uniformly acute

triangulations do not. For example, every n-gon P has an acute triangulation where

the number of triangles is O(n) [13], [16], and every PSLG has an acute conforming

triangulation with O(n5/2) elements [5]. It is known that O(n2) triangles are some-

times required for PSLGs, and this lower bound is conjectured to be sharp. To see

that there are no such bounds for uniformly acute triangulations, consider a 1 × r
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rectangle R where r is large. If R is triangulated with a bounded number M of

triangles, one of them has diameter ≥ r/M but is contained in a strip of width one,

so it has an angle bounded by O(M/r). If M is bounded and r tends to infinity,

this means this triangle has an angle close to zero, and hence it has another angle

≥ 90◦ − O(M/r). Thus uniformly acute triangulations cannot satisfy a complexity

bound independent of the geometry.

A more detailed outline of the proof of Theorem 1.1 is given in Section 3, but

the main idea is as follows. Every PSLG has an acute triangulation, and acute

triangulations remain acute under small perturbations. Thus the space of PSLGs

is covered by open neighborhoods, on each of which the angle bound required for

triangulation is strictly less than 90◦ (depending on the neighborhood). If the space

of PSLGs were compact, we would be done: a finite number of these neighborhoods

would cover it, and we would simply take the worst of the finitely many bounds.

However, PSLGs do not form a compact space, and we need to seek compactness

elsewhere. Starting with a general PSLG, we first reduce to the case when each face

is bounded by a simple polygon. We then take a set of disjoint disks centered at

each vertex of the PSLG (called “protecting disks”) and inscribe a polygon in their

boundaries. The “unprotected” faces outside these polygons now have interior angles

bounded uniformly below. By adding extra vertices to the edges of unprotected faces

we can make these faces “thick” in the sense of [3]. Thick n-gons form a compact set;

this is the polygonal version of Mumford compactness for Riemann surfaces [14]. By

results in [4], the unprotected faces can be meshed by quadrilaterals with bounded

eccentricity and with angles bounded strictly above 0◦ and below 180◦, i.e., the quad-

mesh elements are drawn from a compact family. However, the quad-meshes need not

be consistent between different faces. By methods from [1] and [5] the quadrilaterals

are each acutely triangulated in a way that is consistent with the triangulations of

adjacent quadrilaterals, and compactness of the family of quadrilaterals implies we

get a uniform angle bound strictly less than 90◦. The final step is to extend the

triangulations inside the protecting disks, keeping a uniform angle bound except for

triangles that touch the vertex v at the center of the disk. This extension is done

by an explicit, but somewhat tedious, construction, and it completes the proof of

Theorem 1.1.
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As usual, if A and B are quantities that both depend on some parameter, we write

A = O(B) if there is a constant M < ∞ so that A ≤ MB for all parameter values.

If A ≤ MB and B ≤ MA for all parameters, we say A and B are comparable with

constant M . If this holds for some M <∞ we write A ≃ B.

I thank Joe Mitchell and Florestan Brunck for several helpful conversations about

the results in this paper. I also thank the two anonymous referees, whose numerous

thoughtful comments greatly improved the exposition.

2. Planar straight line graphs

In this section we recall some definitions and notation from [6]. A planar straight

line graph Γ (or PSLG from now on) is a compact subset of the plane R2, together

with a finite set V = V (Γ) ⊂ Γ (called the vertices of Γ) such that E = Γ \ V is

a finite union of disjoint, bounded, open line segments (called the edges of Γ). The

vertex set V includes both endpoints of every edge, and may include other points as

well (i.e., isolated points of the PSLG). Although a PSLG really consists of the pair

(Γ, V ), we will invariably refer to it as just Γ, with V implied by context. In several

parts of the construction we will obtain a new PSLG by adding vertices to edges of

a previous one, e.g., Γ = [−1, 1] with one edge and {−1, 1} as vertices, is made into

a new PSLG Γ′ with two edges and three vertices by adding {0} to the vertex set.

A polygon or polygonal curve is a PSLG consisting of a sequence of vertices

z1, . . . , zn and open edges (z1, z2), . . . , (zn, z1). A polygonal path or arc is a similar

list of vertices, but with edges (z1, z2), . . . (zn−1, zn); the last is not connected back

to the first. A polygon is simple if the vertices are all distinct and the edges are

pairwise disjoint.

A triangle is a simple polygon with three vertices (hence three edges). We say a

simple polygon P has a triangular shape if there is a triangle T so that P is obtained

by adding vertices to the edges of T . See Figure 1. Similarly, a quadrilateral Q is a

simple polygon with four vertices. We say a simple polygon P has a quadrilateral

shape (or is quad-shaped), if P is obtained by extra adding vertices to the edges

of a quadrilateral Q. The four vertices of Q will be called the corners of P . These

are the only vertices of P where the interior angle is not 180◦, unless Q happens to

be triangular shaped. The other vertices of P will be called interior edge vertices.
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A quadrilateral Q is called θ-nice if the interior angles are all in the interval

[90◦− θ, 90◦+ θ], e.g., a 0◦-nice quadrilateral is a rectangle. When θ = 30◦ we simply

call Q “nice”. Given 0 ≤ θ < 90◦, a θ-trapezoid is a θ-nice quadrilateral Q with two

parallel sides (called the base sides). A θ-isosceles trapezoid Q is a θ-trapezoid

where the two base sides have a common perpendicular bisecting line, called the axis

of the trapezoid, and Q is symmetric with respect to the axis. An (L,H, θ)-isosceles

trapezoid has shorter base length L, height H (the distance between base sides) and

angles exactly 90◦ ± θ. Note that in this case, the two non-base sides have length

H sec θ.

Figure 1. A triangle, a triangular shaped octagon, a trapezoid and
a trapezoid-shaped decagon. The black dots are the corners and the
white dots are the interior edge vertices.

A face of Γ is any of the bounded, open connected components of R2 \ Γ. Every

PSLG has a unique unbounded complementary component that we sometimes call

the unbounded face, but a PSLG may or may not have faces. We say that a

bounded, connected open set Ω is a polygonal domain if it is the face of some

PSLG (informally, ∂Ω is a finite union of points and line segments). It is a simple

polygonal domain if its boundary is a simple polygon. For a simple polygon, it is

clear what adjacent edges means. For the boundary of a general polygonal domain

Ω, we say that two edges are adjacent if they share an endpoint and if for any ǫ > 0

the interiors of the edges can be joined by a crosscut of Ω of length < ǫ. A crosscut

of a domain Ω is a Jordan arc whose interior is contained in Ω, and whose endpoints

are on the boundary of Ω.

The union of faces is called the interior of the PSLG. The polynomial hull of a

PSLG Γ is the union of Γ and its interior, and is denoted PH(Γ). The name comes

from complex analysis, where the polynomial hull of a compact set K is defined as

PH(K) = {z ∈ C : |p(z)| ≤ sup
w∈K

|p(w)| for all polynomials p}.
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This agrees with our definition in the case K is a PSLG. See Figure 2.

Figure 2. A PSLG, its polynomial hull, and a conforming triangulation.

A refinement (also called a sub-division) of a PSLG Γ is a PSLG Γ′ so that

V (Γ) ⊂ V (Γ′) and Γ ⊂ Γ′. Informally, Γ′ is obtained from Γ by adding new vertices

and edges and by subdividing existing edges. A mesh of Γ is a refinement Γ′ of

Γ such that Γ′ ⊂ PH(Γ) and every face of Γ′ is a simple polygonal domain. Note

that we allow the addition of new vertices (called Steiner points) when we mesh

a PSLG. A mesh Γ′ is called a triangulation if every face of Γ′ is a triangle and is

called a quadrilateral mesh or quad-mesh if every face is a quadrilateral.

A mesh in which each face is triangular shaped (but not necessarily a triangle) is a

triangular dissection. Thus a triangulation of each face of a PSLG automatically

gives a triangular dissection of the PSLG. See Figure 3. A triangulation of faces is a

Figure 3. A PSLG Γ with two faces, a triangular dissection of Γ,
a triangulation of each face, and a conforming triangulation of Γ. As
we move left to right, the type of subdivision becomes more restrictive,
and so the optimal upper angle bound potentially becomes larger. Does
it actually increase?

triangulation of the PSLG if it is consistent between faces, i.e., any two intersecting

triangles, even from different faces, either intersect at a single point that is a vertex

of both triangles or intersect in a segment that is a full edge of both triangles. When
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this holds for triangles from a sub-collection F of faces, we say the dissection is F-

consistent. We will consider several different types of decompositions of a PSLG

into triangles:

(1) triangular dissections (no consistency required),

(2) triangulations of faces (consistency within faces, but not across edges of the

PSLG),

(3) F -consistent triangulations (consistency within all faces and between mem-

bers of F),

(4) triangulations (consistency within and between all faces).

To emphasize the difference between a dissection of a PSLG, a triangulation of its

faces, and a triangulation of the PSLG, we will sometimes call the latter a “conforming

triangulation” or “consistent between all faces”. Similar definitions and terminology

holds for quadrilateral dissections, quad-meshes of faces, and quad-meshes of the

whole PSLG. Every triangular or quadrilateral dissection of a PSLG can be refined

to a conforming triangulation or quad-mesh respectively, with polynomial growth in

complexity. See [5] and [6].

Theorem 1.1 of [4] says that a simple polygon with all interior angles ≥ 60◦ has

a mesh by nice quadrilaterals. If the polygon has n sides, then this mesh can be

taken with O(n) elements, but there is no uniform bound on their eccentricity, i.e.,

the ratio of an element’s longest edge length to its shortest edge length. We say a

quad-mesh is a (θ, E)-quad-mesh if every element is a θ-nice quadrilateral, with

eccentricity ≤ E. We say that Γ′ is a (θ, E, δ)-quad-dissection if each quad-shaped

face is θ-nice, has eccentricity ≤ E and each edge e of a quad-shaped face Q has

length ℓ(e) ≥ δ · diam(Q). Similarly, a (θ, E, δ)-marked quadrilateral is a θ-nice

quadrilateral with eccentricity E, together with a finite collection of points on its

edges so that the resulting segments all have length ≥ δ · diam(E). Note this is a

special case of a quad-shaped polygon, defined earlier. Later we will use the fact that

for fixed values of (θ, E, δ), such marked quadrilaterals form a compact set (at least

when normalized to have diameter 1 and contain the origin).

If v is a vertex of Γ, then an angle of Γ at v is an angle between two edges of Γ

that have a common endpoint at v. The angle is an interior angle if the two edges

bound the same face of Γ and are adjacent with respect to that face. Note that a
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PSLG may have more than one interior angle at v, but a simple polygon has exactly

one at each vertex. In the special case that the vertex v is the endpoint of a single

edge of Γ, and v is in the interior of PH(Γ), we set the interior angle at v to be 360◦.

Since it is enough to prove Theorem 1.1 for each connected component of PH(Γ),

we may assume from here on that PH(Γ) is connected (just take the sub-PSLG

consisting of all edges and vertices in this component). By the following result we

may also reduce to the case that each face is bounded by a simple polygon.

Lemma 2.1 (Lemma 3.1, [6]). If Γ is a PSLG with n vertices such that PH(Γ)

is connected, then by adding at most O(n) new edges and vertices, we can find a

connected refinement Γ1 of Γ so that every face of Γ1 is a simple polygon and any

interior angle of a face that is less than 60◦ was already an interior angle of a face

of Γ (i.e., such angles are not subdivided).

3. Outline of the proof

The proof of Theorem 1.1 will be given in several steps, each described in its own

section. Here we summarize the steps to give an overview of the proof.

In what follows, “disk” will always mean a circular disk D(x, r) = {y : |y−x| < r}.

The boundary of such a disk is the circle ∂D = {y : |y − x| = r}. Given a disk

D = D(x, r) and λ > 0 we let λD = D(x, λr) and λ∂D = ∂(λD). For example, 2D

is the disk concentric with D and of twice the radius. We call this the double of D.

Assume we start with a PSLG Γ1 with n vertices, and that each face of Γ1 is

bounded by a simple closed polygon. The nth step of the construction takes a PSLG

Γn and produces a new PSLG Γn+1 (usually a refinement of Γn and always a refine-

ment of Γ1 and Γ2).

• Step 1: Suppose θ0 > 0. A value of θ0 will be fixed at the end of Section 12. For

each vertex v of Γ1, let θv be the minimum of θ0 and the minimum interior angle of

Γ1 at v. For each vertex v of Γ1 we take a small enough disk Dv centered at v so that

the doubles of all the disks are pairwise disjoint. We inscribe polygons in ∂Dv and

(1− sv)∂Dv (for some 0 < sv < 1/2 depending on θv), and connect v to the vertices

on ∂Dv by radial segments. This gives a new PSLG that we call Γ2. The faces of Γ2

inside Dv are either isosceles triangles with vertex angles at v between θv and 2θv,

or they are θ-isosceles trapezoids with the same bounds on θ. These are called the
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protected faces of Γ2. The remaining faces are all bounded simple polygons with

all interior angles > 90◦ and are called the unprotected faces. These collections of

faces will be denoted P and U respectively.

• Step 2: The unprotected faces of Γ2 consist of a collection of simple polygons

for which all the interior angles are ≥ 90◦. We add extra vertices to the edges of

Γ2 to make a PSLG Γ3 whose faces are all simple polygons and 1

2
-thick. The latter

condition means that if e, f are two edges on the face of the PSLG then either e and f

share a vertex or dist(e, f) ≥ 1

2
min(diam(e), diam(f)), where dist(e, f) = inf{|x−y| :

x ∈ e, y ∈ f}. In other words, the distance between non-adjacent edges is at least

half the length of the shorter edge.

• Step 3: We show that each thick polygonal face of Γ3 can be meshed using nice

quadrilaterals that have uniformly bounded eccentricity. This gives Γ4.

• Step 4: By sliding vertices of Γ4 that lie on (interiors of) edges of Γ3, we obtain

a PSLG Γ5 that is a (θ, E, δ)-quadrilateral mesh of each of the unprotected faces of

Γ3. Here we can take any θ > 30◦, say θ = 40◦; E < ∞ and δ > 0 will be fixed

independent of the PSLG.

• Step 5: We will define a Gabriel cover of Γ5 by disks and add the centers and

tangency points of these disks to Γ5 to get a PSLG Γ′

5. Using a method of Bern,

Mitchell and Ruppert [1], we show that each quadrilateral face Q of Γ5 can be non-

obtusely triangulated and the boundary vertices of the triangulation are exactly the

vertices of Γ′

5 that lie on ∂Q. This gives a PSLG Γ6 that is an nonobtuse triangular

dissection of Γ2 and is U -consistent (consistent between the unprotected faces).

• Step 6: We show that the nonobtuse triangulation of each quadrilateral Q in Step

5 can be refined to an acute triangulation by twice bisecting each boundary segment

of the nonobtuse triangulation. This gives a PSLG Γ7 that is an acute triangular

dissection of Γ2 and is also U -consistent.

• Step 7: Since the set of quadrilaterals and boundary vertices is compact, we will

show the acute triangulations in Step 6 can be chosen with uniform upper angle

bound 90◦− η, if η > 0 is small enough. This may alter some of the triangulations in

Step 6, so we obtain a PSLG Γ8 that is a triangular dissection of Γ2, is U -consistent,

and has an upper angle bound strictly less than 90◦ inside the unprotected faces.
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• Step 8: We extend the mesh into the protecting disks in two steps. First we extend

the Gabriel cover in Step 5 to cover the boundaries of the protected isosceles trapezoid

faces of Γ2. This also extends the acute triangulations into these trapezoids. The

shorter base side of each trapezoid is divided into four segments with length ratios

bounded by 2. This gives a new triangulation Γ9 that is now consistent for all faces

except for the protected triangles touching vertices of Γ1.

• Step 9: The final step is to explicitly construct acute triangulations of the isosceles

triangles touching vertices of Γ1. This will reduce to finding acute triangulations of

isosceles trapezoids with angles 0 ≤ θ < θ1, for some positive θ1. These triangulations

must have exactly one boundary edge on the shorter base side e of the trapezoid,

exactly four specified edges on the other base, and the vertices on the other two

sides (radial with respect to v) must have distances from e that do not depend on θ.

The last condition implies the triangulations for neighboring trapezoids agree along

common edges, and so we get a triangulation of all of PH(Γ), finishing the proof.

We will show that this can be done if θ1 > 0 is small enough, by giving an explicit

construction for rectangles and then using the fact that acute triangulations are stable

under small perturbations. This gives a PSLG, Γ10, that satisfies Theorem 1.1 with

θ0 = min(η, θ1).

The remaining sections add details to the discussion above, and verify the claims

we have made.

4. Step 1: Protecting the vertices

Let V be the set of vertices of the PSLG Γ1. Without loss of generality we may

assume the polynomial hull is connected, every face of Γ1 is bounded by a simple

polygon, and each vertex of Γ1 is in the polynomial hull. Let {Dv} = {D(v, rv)}

be a collection of disjoint disks centered at the points v ∈ V so the doubles are

pairwise disjoint (as before, “double” means a concentric disk with twice the radius).

Then for each such disk PH(Γ1) ∩ Dv is a finite union of closed sectors of the form

{z : ψ1 ≤ arg(z − v) ≤ ψ2, |z − v| ≤ rv}. Consider one such sector.

This sector is divided into finitely many sub-sectors by the edges of Γ1. Recall

that θ0 > 0 has been fixed. Eventually θ0 will be chosen quite small, but for now

we just assume that θ0 ≤ 5◦. Let ψv denote the minimal angle at v formed by these
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v

Dv

Figure 4. The solid lines in the left picture are a part of Γ1 near v
and the shaded region is part of PH(Γ1). At each vertex v of Γ1 we
add edges from v to ∂Dv that cut the sectors of PH(Γ1) into sectors
with angles between θv and 2θv. The rightmost picture shows Γ2. The
thick polygon arc in the right picture is the inscribed arc between the
protected faces (dark gray) and the unprotected faces (lighter gray).

sub-sectors. Let θv = min(θ0, ψv). Leave each sub-sector with angle θ < 2θv alone,

but subdivide larger angles into further sub-sectors with angles satisfying θv ≤ θ <

2θv ≤ 10◦ by adding edges from v to ∂Dv. This can be done either by recursively

bisecting each sector until the angles satisfy the desired estimate, or by dividing

a sector of angle ψ into ⌊ψ/θv⌋ equal sub-sectors. Finally, we inscribe one set of

polygons where these radial segments hit {|z − v| = rv} = ∂Dv, and another where

it hits {|z − v| = (1− sv)rv}, where sv = 5

4
sin θv. Add the radial segments and add

the inscribed polygonal arcs to Γ1 to get a new PSLG Γ2. See Figure 4.

The definition of sv ensures that the trapezoids formed between the two polygonal

arcs have uniformly bounded eccentricity. To see this, rescale so rv = 1; then the

radial sides of the trapezoid each have length sv = 5

4
sin θv ≤ 5

4
sin 5◦ < 1

5
. The

distance d between the radial sides of such a trapezoid is equal to the length of

the shorter base side of the trapezoid. Using the fact that sin(x/2) > sin(x)/2 for

0 ≤ x ≤ 90◦ we can estimate:

d = 2(1− sv) sin(θ/2) ≥ 2(1− sv) sin(θv/2) > (1−
1

5
) sin θv ≥

16

25
sv.

distance between the two base sides of the trapezoid is at least

sv cos(θ/2) ≥ sv cos θv ≥ sv cos 5
◦ >

4

5
sv ≥

d

2
.
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Thus the distance between either pair of opposite sides of the trapezoids we create

is always at least half the length of the shorter side of the pair (this means that the

trapezoids are 1

2
-thick, a concept to be defined in the next section).

The faces of Γ2 are either isosceles triangles with vertex angles between θv and 2θv,

isosceles trapezoids adjacent to these triangles, or are bounded by simple polygons

with all interior angles larger than 90◦ (removing the triangular faces containing the

vertices of Γ1 and the adjacent trapezoids makes all the angles in the remaining faces

> 90◦). We call the isosceles triangles containing v and the adjacent trapezoids the

protected faces of Γ2 and the other faces the unprotected faces, and denote these

two collections by P and U respectively. The two types of faces are separated by

polygonal arcs (or possibly a closed polygonal curve for vertices v in the interior

of PH(Γ1)) inscribed on ∂Dv. We will call these the protecting arcs of Γ2. Our

construction will produce a series of refinements {Γn} of Γ2. Faces of Γn that are

subsets of unprotected faces of Γ2 will also be called unprotected. The unprotected

faces will all be triangulated with a uniform angle bound strictly less than 90◦. Only

the protected faces will eventually contain triangles touching the vertices of Γ and

with angles that depend on the corresponding θv.

5. Step 2: Making the faces thick

The paper [3] introduced the idea of decomposing the interior of a polygonal region

into thick and thin parts and showed this could be accomplished in linear time (linear

in the number of vertices of the polygon). The thin pieces come in two types: para-

bolic and hyperbolic (the names come from a precise analogy with the types of thin

parts of a Riemann surface or a hyperbolic manifold). For a simple polygon P , the

parabolic thin parts correspond to certain neighborhoods of each vertex, so a simple

n-gon has exactly n parabolic thin parts. Each hyperbolic thin part corresponds to

a pair of non-adjacent edges e, f of P that are very close to each other compared to

their diameters. The polygon P is called “thick” if no hyperbolic thin parts occur.

The precise definition of a hyperbolic thin part in terms of extremal length is given

in [3], but for our purposes here, it suffices to consider a simpler sufficient condition.

A simple polygon P will be ǫ-thick, if given any two non-adjacent edges e, f of P , we
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have

dist(e, f) ≥ ǫ ·min(diam(e), diam(f)).(5.1)

As before, dist(e, f) = inf{|x− y| : x ∈ e, y ∈ f}. An edge e is called ǫ-thick if

dist(e, f) ≥ ǫ · diam(e)(5.2)

for every edge f not adjacent to e. Clearly if each edge of a PSLG is ǫ-thick, then

every boundary edge of every face of the PSLG is ǫ-thick.

Lemma 5.1. We can add vertices to the edges of Γ2 to create a PSLG Γ3 so that

every face is a 1

2
-thick polygon.

Proof. All the vertices of Γ2 are either vertices of Γ1 or vertices of the protecting

arcs. By construction, all the edges of the protecting faces are 1

2
-thick: triangles are

trivially 1

2
-thick (since there are no non-adjacent edges), and we proved the trapezoids

are 1

2
-thick in the previous section.

Each remaining edge e of Γ2 connects vertices of inscribed arcs around different

vertices of Γ1. Cut this edge into segments with length between L and L/2, where L

is the minimal length of a protecting edge adjacent to e. See Figure 5. Then each of

the new edges is 1

2
-thick, and (5.1) is satisfied by all pairs of edges. �

Figure 5. We add vertices to the edges outside the protected faces
to make all the faces 1

2
-thick.

6. Step 3: Nice quad-meshes of thick polygons

As noted earlier, Theorem 1.1 of [6] says that any polygon with all interior angles

≥ 60◦ has a nice quadrilateral mesh (i.e., all angles in [60◦, 120◦]). That result

gives a linear bound on the number of mesh elements, but this bound forces some
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quadrilaterals to have large eccentricity. However, all the large eccentricity elements

occur inside the hyperbolic thin parts of P . If we assume there are no such thin

parts, there will be no high eccentricity quadrilaterals. We make this precise as

follows. (Recall that parameterized quantities A,B are comparable with constant M

if 1/M ≤ B/A ≤M for all parameters values.)

Lemma 6.1. Suppose ǫ > 0. Every ǫ-thick polygon with all angles larger than 60◦

has a nice quad-mesh whose elements have uniformly bounded eccentricity. Moreover,

if a quadrilateral Q in the mesh has a side s lying on an edge e of P , then s and e

have comparable lengths (with a constant that may depend on ǫ, but not on s, e, Q,

or P ).

Proof. The existence of a quad-mesh with the given angle bounds is the statement of

Theorem 14.1 of [6]. The uniform bound on eccentricity follows from the proof of that

theorem. The proof divides the interior of P into three types of regions: thick parts,

parabolic thin parts and hyperbolic thin parts. By assumption, no hyperbolic thin

parts occur in our case. All the quadrilaterals used in the thick parts have uniformly

bounded eccentricity. The only quadrilaterals used to mesh the parabolic thin parts

that do not have uniformly bounded eccentricity are the kite shaped elements that

meet a vertex v of the polygon. If the interior angle of P is small, this kite has

large eccentricity, but we have assumed that all interior angles of P are ≥ 60◦, so

this does not occur. Thus for thick polygons with angles ≥ 60◦, all elements of the

corresponding nice quad-mesh have bounded eccentricity.

The proof of Theorem 14.1 from [6] also shows that each boundary segment of P

is covered by at most N = O(1) mesh elements (N may depend on ǫ). Since each

element has uniformly bounded eccentricity ≤ M , side lengths of adjacent quadri-

laterals differ by at most M2 and, by induction, two quadrilaterals that meet the

same edge of P have diameters differing by at most MN . Since each edge e of P is

covered by a bounded number of quadrilateral sides that all have comparable length,

each of these sides must have length comparable to the length of e. This proves the

lemma. �
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The proof in [6] shows that the number of quadrilaterals used in Lemma 6.1 is

O(n), where n is the number of vertices of P and the multiplicative constant depends

only on ǫ. This will be used in the proof of Theorem 1.2.

Let Γ4 be the refinement of Γ3 obtained by nicely quad-meshing each of the un-

protected faces of Γ3. Since Γ3 and Γ2 have the same faces, this also gives a nice

quad-mesh of the unprotected faces of Γ2.

7. Step 4: Perturbing the quadrilaterals

We now have a PSLG Γ4 that gives a 30◦-nice, bounded eccentricity quad-mesh of

each face of Γ3, but the mesh need not be consistent between different faces. Refining

a quad-mesh of faces to be consistent between faces is a difficult problem; this is dealt

with in [6]. However, here we only need a much weaker form of consistency: we want

any edge e of our PSLG to have length that is comparable to the diameter of any

quad-shaped face Q that contains e in its boundary. In other words, we want to

perturb Γ4 (if necessary) to be a (θ, E, δ)-quad-dissection of the faces of Γ2.

Lemma 7.1. For each θ > 30◦ there is an δ > 0 so that the following holds. We can

slide the vertices of Γ4 that lie in the interior of edges of Γ3 along those edges to get

a new PSLG Γ5 that is combinatorially the same as Γ4 (i.e., the underlying abstract

graphs are the same) but is a (θ, 2E, δ)-quad-dissection.

Proof. We know that Γ4 is a refinement of Γ3, that every edge e of Γ4 lies on some

edge f of Γ3, and that e and f have comparable lengths, say within a factor M <∞.

Let ℓ(e) denote the Euclidean length of an edge e. Choose δ ≪ 1/M and divide f

into segments of length between δℓ(f) and 2δℓ(f). Call the resulting set of endpoints

V ′. Take each boundary vertex of Γ4 and move it to the closest element of V ′. Note

that vertices of Γ3 are not moved since these points are already in V ′, and that any

other vertex of a mesh element Q is moved by less than O(δ · diam(Q)). Hence the

interior angles of Q are changed by less than θ if δ is small enough, depending only

on θ. Similarly, the eccentricity of any quadrilateral changes by a small amount if δ

is small enough. �

Fix some value of θ > 30◦, say θ = 10◦, apply the previous lemma to our PSLG Γ4

and let Γ5 be the new PSLG. Note that Γ5 is a refinement of Γ3 (but not necessarily
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Figure 6. Here Γ3 is shown in thick solid lines, Γ4 with the thinner
solid lines, and Γ5 using the dashed lines. By sliding vertices of Γ4

along edges of Γ3 we get the new PSLG Γ5 whose vertices on Γ3 are
well separated, i.e., two distinct vertices on the same edge f of Γ3

are at least δℓ(f) apart. Γ5 is combinatorially the same as Γ4 and
corresponding angles change by only a small amount. The white dots
represent the set V ′ in the proof of Lemma 7.1.

of Γ4; we have may have replaced edges of Γ4 that are incident on interior points of

edges of Γ3).

8. Step 5: Gabriel coverings and nonobtuse triangulation

Although our quad-mesh Γ5 of the faces of Γ2 is not consistent between different

faces, we will show that we can triangulate each quadrilateral so that the triangula-

tions are consistent within and between all the unprotected faces of Γ2, i.e. we get a

U -consistent triangulation of Γ2 (recall that U was our collection of unprotected faces,

and U -consistent means that intersecting triangles in or between such faces meet in

a vertex or full edge of each). In this section, we use an idea of Bern, Mitchell and

Ruppert to create consistent nonobtuse triangulations (all angles ≤ 90◦), and in the

next section we use an idea of Yuan to make the triangulation acute.

Given a point set V and two points v, w ∈ V , the segment vw is called a Gabriel

edge if it is the diameter of an open disk containing no points of V (see [12]). This

is special case of a Delaunay edge, that needs only be the chord of a disk missing V .
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A Gabriel cover of a PSLG Γ is a finite collection D of disks centered at points of Γ

so that

(1) the interiors of the disks are disjoint,

(2) the closures cover Γ,

(3) each vertex v of Γ is the center of some disk,

(4) if D ∈ D is not centered at a vertex v of Γ then D ∩ Γ is a single segment.

In particular, D ∩ Γ is always either a union of segments, all of the same length,

meeting a vertex of Γ, or it is a diameter of D contained in a single edge of Γ. See

Figure 7. We say a Gabriel cover is M -Gabriel if for any disk D in the cover that

hits an edge e of Γ, we have diam(D) ≤ diam(e) ≤ Mdiam(D). In other words,

the cover divides edges into subsegments of comparable lengths. Because faces of Γ5

are uniformly θ-nice, have bounded eccentricity, and adjacent edges have comparable

diameters and edge lengths, it is easy to check that Γ5 has an M -Gabriel cover for

someM <∞, and that only a uniformly bounded number of points need to be added

to each edge.

Figure 7. A Gabriel cover of a PSLG.

Given a Gabriel cover of Γ5, add the centers of all disks and the tangent points

between all pairs of adjacent disks to Γ5 to obtain a refinement Γ′

5. In [1] Bern,

Mitchell and Ruppert proved that there is a triangulation of each quadrilateral face

Q of Γ5 whose boundary vertices are exactly the vertices of Γ′

5 that lie on ∂Q. Taking

these triangulations of each face gives a PSLG Γ6 that is a U -consistent non-obtuse
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triangulation of the faces of Γ2, i.e., it is consistent between all the unprotected faces.

We need a slight strengthening of their result, so we will describe their construction

in detail, first recalling a few definitions from [1].

Suppose we start with a Gabriel cover of a quadrilateral, e.g., the light gray disks

in Figure 8. For each pair for adjacent disks in the cover, we add a small disk tangent

to both of them; see the white gray disks in Figure 8. These disks are taken to be

disjoint. We then add more disks (dark gray in Figure 8) until the remaining regions

are all bounded by either three or four circular arcs. These are called 3-gaps and

4-gaps respectively. That this can be done is proven in [1]: given a region bounded

by k > 4 arcs, they show we can remove a disk so the remaining regions are all

bounded by at most k − 1 arcs. They prove (Lemma 1 of [1]) that the total number

of disks used is linear in the number of Gabriel disks covering the boundary of the

quadrilateral. This observation will be used in the proof of Theorem 1.2.

Figure 8. Given a Gabriel cover of a quadrilateral (light gray),
we add disjoint disks that are tangent to adjacent pairs of the cover
(white disks). These guarantee that the boundary of the quadrilateral
is covered by the augmented regions of 3-gaps. This will later ensure
that the boundary of the quadrilateral is covered by hypotenuses of
right triangles in our triangulation. We then add more tangent disks
(dark gray) as in [1] until only 3-gaps and 4-gaps remain.

Given a 3-gap or 4-gap region R we define the associated augmented region R+

by joining the centers of the tangent disks defining the gap. See Figure 9. These
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form triangles and quadrilaterals that mesh the original quadrilateral. Using a case-

by-case analysis Bern, Mitchell and Ruppert show that each augmented region can

be nonobtusely triangulated so that the only boundary vertices are at corners of the

augmented region or at the tangent points between disks. Thus the triangulation

of different augmented regions are consistent and give a non-obtuse triangulation of

the original quadrilateral Q, and the boundary vertices of this triangulation on ∂Q

are exactly the set V ∩ ∂Q. Hence the triangulations of adjacent quadrilaterals are

consistent and we get a nonobtuse triangulation of the unprotected faces of Γ2.

Figure 9. Augmented regions for a 3-gap and 4-gap are shown in
gray (the gap region is dark gray). A lemma in [1] says the four tangent
points of a 4-gap all lie on a circle (dashed in the picture).

In order to convert this nonobtuse triangulation into an acute triangulation, we are

going to need a little more information about the triangulations of the augmented

regions than is given in [1]. The original version of their result, and the modifications

we need are as follows.

Theorem 8.1 (Bern-Mitchell-Ruppert, [1]). Suppose R is a 3-gap or 4-gap and let

R+ be the corresponding augmented region. Then R+ can be triangulated by at most 28

right triangles so that no new vertices are added to the boundary of R+. Alternatively,

we can use nonobtuse triangles that satisfy

(1) Any two right triangles that share an edge, must share an edge of the same

type (either leg-leg or hypotenuse-hypotenuse). When two triangles share a

leg, the same vertex of that segment is the 90◦ angle of both triangles.
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(2) Any right triangle that has a side on ∂R+ has only one side on ∂R+ and that

side is its hypotenuse.

(3) The boundary of an augmented 3-gap is covered by hypotenuses of right tri-

angles in the triangulation.

Proof. The first part is proven in [1]. The alternative conclusions (1)-(3) will be

needed in Section 9 when we want to refine our nonobtuse triangulation to an acute

triangulation, and they require only a few minor changes (we will add a few extra

right triangles and convert a few right triangles to acute triangles). We sketch these

alterations below.

The first difference is in triangulating 3-gaps. In [1], the center of the inscribed

circle of R+ is connected to the centers of the circles and to the points of tangencies

between the circles. This gives six right triangles whose legs lie on the boundary of

R+. However (2) and (3) do not hold. To fix this, we add the three chords connecting

the points of tangency, and get twelve right triangles so that only hypotenuses lie on

∂R+. Now Conditions (1)-(3) of the lemma hold. See Figure 10.

Figure 10. The triangulation of 3-gaps in [1] uses six right triangles,
but has legs on ∂R+. This is shown on the left. We modify this by
adding the dashed triangle (as shown on the right) to form twelve right
triangles with only hypotenuses on ∂R+.

Before triangulating the 4-gaps, recall that the four vertices all lie on a single circle,

denoted C∗. This is Lemma 3 of [1]. See Figure 9. That lemma also states that the

angle measure of the four boundary arcs sums to 2π (the angles correspond to the
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interior angles of the augmented quadrilateral). Thus at most one of the arcs can be

reflex, i.e., have angle measure > π.

In [1] the 4-gaps are split into three cases. The first case occurs when:

(1) R is centered, that is, the center of the circle C∗ passing through the four

points of tangency is inside the convex hull of these points and,

(2) none of the arcs in ∂R is reflex.

If both these conditions hold, then the triangulation given in [1] has the desired

properties: R+ is divided into kites by connecting the center of C∗ to the four tangent

points. A kite is a strictly convex quadrilateral that is symmetric with respect to at

least one of its diagonals. Any kite is divided into four right triangles by adding its

diagonals and all four hypotenuses are on the boundary of the kite. See Figure 11.

Figure 11. If R is centered and every arc is non-reflex, then R+ is
a union of sixteen right triangles with the desired properties.

The second case occurs when:

(1) R is not centered, that is, the center of the circle C∗ passing through the four

points of tangency is outside the convex hull of these points and,

(2) none of the arcs in ∂R is reflex.

The authors of [1] show that a fifth disk can be added, tangent to two opposite circles,

creating two new centered 4-gaps (one possibly self-intersecting) and such that the

union W of the two augmented regions can be written as a union of seven kites, and

each is triangulated by its diagonals. This causes the boundary of W to contain only
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hypotenuses and for all adjacencies to be of matching type. Thus no changes to the

argument in [1] are needed in this case. See Figure 12.

Figure 12. A non-centered 4-gap is split into two centered 4-gaps
by the shaded disk. It is proven in [1] that such a disk exists and we
use the same triangulation as given there.

The third case is when

(1) one of the four arcs of the 4-gap is reflex.

Suppose C2 is the circle with the reflex arc and it is opposite C4. The authors of [1]

insert a new disk C5 centered on the segment connecting the centers of C2 and C4

and tangent to both. This creates two new 4-gaps, neither with a reflex arc, since

they both contain an arc of measure π. However, the new disk may intersect one of

the other two. See Figure 13. Note that C5 is smaller than either C1 or C3. The

fact that the new disk is on the segment connecting the centers of C2 and C4 means

that if it intersects, say, C3, then the common chord of C5 and C3 separates the

centers of C5 and C3. The proof of this is left to the reader. Similarly if it intersects

C1. This chord-separated property implies the associated augmented region can be

triangulated by sixteen right triangles as in Figure 14.

Some of the right triangles in Figure 14 have legs on ∂R+. We will fix this by making

these triangles acute. Suppose the circles are C2, C3, C4, C5 with C3, C5 intersecting,

and let p2, p3, p4, p5 denote their centers. The tangent line between C2 and C3, the

tangent line between C2 and C5 and the line through the two intersection points of



UNIFORMLY ACUTE TRIANGULATIONS OF PSLGS 23

C1
C3

C2

C

C5

4

p p

p

1

2

3

C3

C5

C4

p

p

p
5

2

3

C1

C2

Figure 13. Case 3. If R reflex, then add an extra disk (shaded)
centered on the segment connecting the non-reflex circle to its opposite.
If this disk intersects one of the two other disks bounding the 4-gap
(as shown on the right), the line containing the common chord must
separate the centers of the overlapping circles.
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Figure 14. Case 3 continued. A non-reflex but overlapping 4-gap.
This triangulation with 16 right triangles is given in [1]. However, four
triangles have legs on the boundary of the augmented region. We fix
this by moving some interior vertices, as in Figure 15.

C3 and C5 all intersect in one point x, one of the white dots of degree six in Figure

14. Let y be the corresponding point for circles C3, C4, C5.

Both x, y lie on the same side as p3 of the line through p2, p4. Slide x by a small

amount ǫ > 0 on the ray from p2 through x away from p2. This gives a new point

x′. See Figure 15. Similarly, slide y along the ray from c4 through y, keeping the line
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Figure 15. Case 3 completed. This shows an enlargement and
slight alteration of Figure 14. The dashed lines indicate the previous
triangulation and the solid lines (and shaded triangles) show the new
one. We move the white points x, y to the gray points x′, y′: x′ is on
the line through p2 and x, y′ is on the line through p4 and y, and the
line x′y′ is parallel to xy. Any small enough motion makes four of the
right triangles acute and the remaining twelve right triangles satisfy
Conditions (1) and (2) of Theorem 8.1.

through x′, y′ parallel to the line through x, y. For small ǫ > 0 this makes the four

right triangles with legs on ∂R+ acute and leaves all the remaining triangles right.

Thus (1) and (2) of the lemma are now satisfied. �

9. Step 6: From nonobtuse to acute triangulation

The argument so far produces a nonobtuse triangulation of each quadrilateral. We

next convert it to an acute triangulation using an idea of Yuan from [16]. The quarter

points of a segment refer to the midpoint of the segment and the midpoints of each

resulting half of the segment. If T is a right triangle, the two vertices with angles

< 90◦ will be called the acute vertices of T .

Theorem 9.1. Let T be a right triangle. Form a 12-gon P by adding the quarter

points of each edge. This polygon has a triangulation by 24 triangles using exactly

these boundary vertices. There are 22 acute and 2 right triangles. The two right

triangles T1, T2 contain the two acute angles of T and their hypotenuses lie on the

hypotenuse of T . For any small enough ǫ > 0, the entire triangulation can be made

acute by sliding the vertices of T1, T2 that lie on the legs of T by ǫ away from the
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acute vertices of T . In particular, the boundary vertices of this acute triangulation

lying on the hypotenuse of T are exactly the quarter points of the hypotenuse.

Proof. The proof is basically a series of pictures; see Figure 16. Divide T into a

rectangle and two right triangles by connecting the midpoint of the hypotenuse to

the midpoints of the legs. Then repeat this in the two triangles. Acutely triangulate

the large rectangle as shown. Then move the marked interior vertices as shown in

Figure 16. This makes all the triangles acute except for the two containing the acute

angles of T . These are T1, T2 and they can be made acute by sliding the two vertices

as described in the theorem (see Figure 16). �

Figure 16. The proof of Yuan’s theorem. The shaded triangles
in each picture are acute. Moving the white dots in the indicated
directions makes some of the incident right triangles acute; a small
enough move keeps all acute triangles acute. We only move two points
on the boundary (last step). Both are on legs of the original right
triangle T and both move towards the right angle of T .

In the final step of the proof we could also slide the two vertices of T1, T2 that lie

on the hypotenuse of T by ǫ towards the acute vertices of T . However, to maintain

consistency of our mesh between quadrilaterals, we want to leave vertices on the

hypotenuse of T fixed. This is why we have stated Yuan’s theorem as we have.

Corollary 9.2. Suppose we have a nonobtuse triangulation of a quadrilateral Q so

that
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(1) adjacent right triangles only share edges of the same type (leg or hypotenuse),

(2) when adjacent right triangles share a leg, the same endpoint is the right corner

of each triangle,

(3) ∂Q is covered by hypotenuses of right triangles of the triangulation.

Then the triangulation has an acute refinement with 24 times as many triangles. The

segments of the original triangulation on ∂Q are twice bisected by the segments of the

new triangulation.

Proof. First subdivide every triangle by connecting the midpoints of each side. Sub-

triangles of right triangles are right and sub-triangles of acute triangles are acute.

Then repeat the midpoint subdivision on each resulting triangle. This gives a nonob-

tuse refinement of the original nonobtuse triangulation. To make it an acute trian-

gulation we “fix” all the right triangles by sliding vertices as described in Theorem

9.1. If the edge where we slide is shared with an acute triangle, choose ǫ so small

that it remains acute. If the edge is shared with another right triangle, the shared

edge must be of the same form (leg or hypotenuse), so sliding in one direction fixes

both triangles at once. No points on ∂Q are moved since only hypotenuses occur on

∂Q. �

A similar statement can be made for general simple polygons, not just quadrilat-

erals. Combining this with Lemma 8.1 gives the following.

Lemma 9.3. Suppose Q is a quadrilateral with a Gabriel cover of its boundary. Then

there is an acute triangulation of Q whose boundary segments are obtained by twice

bisecting the boundary segments of the nonobtuse triangulation given in Lemma 8.1.

We have now proven that there is an acute refinement Γ7 of Γ6 that is a triangular

dissection of Γ2 and is consistent for all the unprotected faces of Γ2.

10. Step 7: Compactness gives uniformly acute triangulations

By the construction so far, each unprotected face of Γ5 is quadrilateral shaped

and is acutely triangulated to give Γ7, and the triangulations are consistent between

different faces. In this section, we want to observe that the angles used in these

triangulations can be taken to be bounded strictly below 90◦, independent of Γ. This

is essentially because the quadrilateral faces of Γ5 and the triangulation vertices on
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boundaries of these quadrilaterals come from a compact family of possibilities. We

explain this more carefully below.

First recall that each quadrilateral shaped face of Γ5 is θ-nice for some fixed θ,

say θ = 40◦ (i.e., the angles at the corners are bounded between 50◦ = 90◦ − θ and

130◦ = 90◦ + θ). Each such quadrilateral also has bounded eccentricity, say less than

E <∞. For the rest of this section, we assume all the quadrilaterals we refer to have

these angle and eccentricity bounds. If we also normalize such quadrilaterals to have

diameter 1 and to contain the origin, then clearly they form compact family, i.e., the

limit of any sequence of such normalized quadrilaterals is another such quadrilateral.

To define the topology on quadrilaterals more precisely, we can think of a quadrilateral

as defined by the location of its four corners, and hence as a point of R8; thus the set

of normalized quadrilaterals described is a closed, bounded set in R
8.

The boundaries of the quadrilateral shaped faces of Γ5 may contain other vertices

of Γ5 beside their corners, but these vertices are δ-separated, i.e., there is a uniform

δ > 0 so that any two vertices of the boundary of a face Q are at least δdiam(Q) apart.

Thus each face forms a quadrilateral with a bounded number of δ-separated marked

points on its boundary. Since the number of marked points on each quadrilateral

is uniformly bounded by N = ⌊4 · diam(Q)/δ⌋, we can think of the collection of

marked quadrilaterals with 4 ≤ m ≤ N vertices as a subset of R2m. Again, it is

easy to see that, normalized as above, these marked quadrilaterals form a compact

family with respect to the topology on R
2m, since a limit of δ-separated points will

also be δ-separated. Since there are only a finite number of possible values of m, the

collections of all marked quadrilaterals we are considering is also compact.

The next step of the construction added more points to the edges of Γ5 to obtain

Γ′

5, and we triangulated the quad-shaped faces using these boundary points to get

Γ6. These new points were the centers and tangencies of a M -Gabriel cover by disks.

Because M was bounded in terms of θ, E and δ, the new points were again well

separated, possibly with δ replaced by smaller constant δ′. These points formed the

boundary vertices of a non-obtuse triangulation of each face. The final step was to

divide each of the edges of Γ6 into four equal subsegments, and we proved that each

quadrilateral face could be acutely triangulated using exactly these vertices on its

boundary. The equal subdivision means the quadrilateral faces are still marked with
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(δ′/4)-separated points. Just as above, these marked quadrilaterals, normalized to

have diameter 1 and contain the origin, form a compact family.

Given an acute triangulation of a marked quadrilateral, the same abstract graph

still gives an acute triangulation if we move the triangulation boundary vertices by a

small enough distance. Thus if a particular marked quadrilateral Q can be triangu-

lated with maximum angle 90◦ − η, there is a neighborhood of Q in the collection of

marked quadrilaterals that can be triangulated with all angles < 90◦− η/2. Since we

have shown that every marked quadrilateral can be acutely triangulated, such open

neighborhoods cover the whole set of normalized marked quadrilaterals. Since the

space of marked triangles is compact, it is covered by a finite number of such neigh-

borhoods. Taking the maximum of a finite set of numbers each strictly less than 90◦

gives a number strictly less than 90◦, so we have proved the following.

Lemma 10.1. Suppose 0 ≤ θ < 90◦, E < ∞ and δ > 0 are fixed. Suppose Q is

a θ-nice quadrilateral and with eccentricity ≤ E and the edges of Q are divided into

edges that each have length at least δdiam(Q). Also assume that these points are

the quarter points of a sub-division of ∂Q into segments corresponding to a Gabriel

cover of ∂Q. Then Q has an acute triangulation with exactly the marked points as

the boundary vertices of the triangulation, and so that every angle is ≤ 90◦− η where

η > 0 depends only on θ, E and δ.

Let Γ8 be the resulting PSLG (the compactness argument above might replace the

triangulation of some faces of Γ7 by perturbed versions of approximating faces). This

completes the proof that the unprotected faces of Γ2 can all be triangulated with a

maximum angle that is strictly below 90◦ and is independent of the PSLG. In the

final two steps, we triangulate the protected faces, where we know that some angles

arbitrarily close to 90◦ may be needed (depending on the angles of the original PSLG

at the protected vertices).

11. Step 8: Meshing the protected trapezoids

We wish to extend the triangulation of the unprotected faces of Γ1 into the pro-

tected faces. Recall from Step 1 that the region between ∂Dv and (1 − sv)∂Dv is

meshed by isosceles trapezoids Q that each have angle θQ satisfying θv ≤ θQ ≤ 2θv.

The shorter edge of such a trapezoid Q has length hQ = 2(1 − sv)rv sin(θQ/2). We
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place a disk of radius hv = 2

3
(1 − sv)rv sin(θv/2) centered at each endpoint of the

shorter base edge of Q. These disks are dark gray in Figure 17. Since the radius

depends on v but not on Q, choices for adjacent trapezoids agree. Around the mid-

point of the shorter base of Q we put a disk of radius 1

2
(hQ − 2hv), that covers the

remaining segment. These disks are light gray in Figure 17.

v

rv

v

Qθ

r

Q

s

Figure 17. The boundary arc between the protected and unpro-
tected faces is the union of the longer bases of the protected isosceles
trapezoids (thick line). The Gabriel cover of Γ5 previously constructed
restricts to a Gabriel cover of these arcs (white disks). We cover the
two opposite corners by disks of same size (dark gray disks), and place
one disk between each adjacent pair of these corner disks and complete
the Gabriel cover of the radial edges using O(1) disks (light gray).

Note that since θv ≤ θQ ≤ 2θv and using the fact that sin(x/2) ≥ sin(x)/2 for

small enough x (recall sin(x) is concave down on [0, 90◦]), we have

hv =
2

3
svrv sin(θv/2) ≤

2

3
svrv sin(θQ/2) ≤

1

3
hQ

and

hv =
2

3
svrv sin(θv/2) ≥

2

3
svrv sin(θQ/4) ≥

2

6
svrv sin(θQ/2) =

1

6
hQ.
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We then add disjoint disks to the non-base sides of each Q to form anM -separated

Gabriel cover of the whole quadrilateral mesh; M <∞ can be taken independent of

Q if Q satisfies the conditions above. These are also light gray in Figure 17. Since Q

has bounded eccentricity, the triangulation of Q can be done with a uniform bound

strictly below 90◦.

We now have the desired acute triangulation Γ9 that is a refinement of Γ8 and is

a uniformly acute triangulation of all the unprotected faces of Γ2 and the protected

trapezoidal regions of Γ2. The final step will be to extend it into the protected

triangular faces of Γ2. This reduces to triangulating an isosceles triangle with vertex

angle between θv and 2θv so that there are three mesh vertices on the base side that

divide that side into four subsegments each with length between 1

6
and 1

3
of the total

edge length. Vertices may be added to the radial sides adjacent to v, but the distances

of these points to v must be independent of θ, so that triangulations of different faces

will “mesh”.

12. Step 9: Meshing the protected triangles

To extend the triangulation into the protecting triangles containing v, it suffices to

prove the following result. Recall from Section 2 that a (L,H, θ)-isosceles trapezoid

has shorter base length L, height H (the distance between base sides) and angles

equal to 90◦ ± θ. The radial sides have length H sec(θ), so a (L,H cos(θ), θ)-isosceles

trapezoid has radial sides of fixed length H as θ varies.

Lemma 12.1. There is an H1 > 0 and θ1 > 0 so that the following holds. If
1

6
≤ a ≤ 1

3
, and 1 ≤ L ≤ 2, and 0 ≤ θ ≤ θ1 then any (L,H1 cos(θ), θ)-isosceles

trapezoid has an acute triangulation so that

(1) there are no boundary vertices on the shorter base side e,

(2) boundary vertices on the radial sides are symmetrically placed and their dis-

tances from e are independent of L and θ,

(3) the mesh divides the other base side of length L′ = s+ 2H1 sin(θ/2) into four

subsegments of lengths (top to bottom) aL′, (1
2
− a)L′, (1

2
− a)L′, aL′.

The upper angle bound is strictly less than 90◦ and is independent of a, L and θ

within the given ranges.
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Figure 18 illustrates the basic idea: we break the proof into two steps. Each

isosceles triangle with vertex v will be divided into a smaller isosceles triangle and

two isosceles trapezoids. On the first trapezoid (the one adjacent to the triangle),

we interpolate between a single segment on the shorter base edge and four equally

sized segments on the other base edge. On the second trapezoid, the triangulation

interpolates between the three evenly spaced points on the shorter base and the three

points given in Lemma 12.1 on the other base. The idea is to do this explicitly for

rectangles (the case θ = 0) and then use the stability of acute triangulations to

deduce the case when θ > 0 is sufficiently small. In order to join the triangulations

of the trapezoids to be a triangulation of their union, we need them to have the same

boundary points on the radial sides; hence condition (2) in the lemma.

Figure 18. The proof of Lemma 12.1 comes in two steps: acutely
triangulating a trapezoid to interpolate between an undivided base and
a base divided into four equal pieces and then interpolating between
this and an edge symmetrically, but unevenly divided.

We will deal with each sub-problem separately. We first show we can solve it for

rectangles (θ = 0) and then use the stability of acute triangulations under small

perturbations to solve it for sufficiently small θ.

Lemma 12.2. There is a 0 < H2 < ∞ so that for every s ∈ [1, 4], the rectangle

R2(s) = [0, H2]× [−s, s] can be acutely triangulated so that the only boundary vertices

of the mesh are the four corners of R2, the midpoint of the right side and symmetri-

cally placed points on the top and bottom sides; the first coordinates of these points

do not depend on s. Every mesh has the same abstract underlying graph and the
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vertices move continuously with s, so by compactness, the maximum angle used is

strictly below 90◦ with a bound independent of s.

Proof. The proof is simply a picture (Figure 19) and a calculation: we draw the

triangulation and compute all the angles. The figure is symmetric with respect to

the real axis and the vertices in the upper half-plane are given by (using complex

notation)

A = is, B = x, C = x+ y + it, D = x+ y + z, E = x+ r + is, F = D + is.

0

A

A
F

DB C

C

E

x y z

t

s

r

F

Figure 19. The abstract graph of our acute triangulation in Lemma
12.2. This figure does not have accurate angles or side lengths, but
is drawn to show the labels more clearly; the actual mesh is drawn
in Figure 20. The six marked angles might become obtuse for some
parameter values, so need to be checked by computation.

There are 11 triangles in the mesh, hence 33 interior angles to check. By symmetry,

fifteen of these in the lower half-plane are equal to angles in the upper half-plane.

Thus there are really only eighteen distinct angle values. Eight of the remaining

ones, like ∠BAE,∠BAA,∠AEB, are clearly proper sub-angles of 90◦ angles and

hence they each have an upper bound that is strictly below 90◦, if the parameters

vary over a compact set. In particular, if we fix values of r, t, x, y, z and restrict s to

the interval [1, 4], we obtain such bounds.

The angles ∠CBC and ∠CDC are fixed independently of s and are acute if t <

min(y, z), which will be the case for our choices below.
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This leaves only six “ambiguous” angles that might possibly be ≥ 90◦ for some

parameter values. Each of these is easily computed in terms of the given parameters

r, s, t, x, y, z as follows:

∠ABA = 2arctan(
s

x
),

∠ECB = 180◦ − arctan(
y

t
)− arctan(

y − r

s− t
),

∠FCD = 180− arctan(
z

t
)− arctan(

z

s− t
).

∠ABE = 180◦ − arctan(
s

x
)− arctan(

s

r
),

∠BEC = 180◦ − arctan(
s− t

y − r
)− arctan(

s

r
)

∠ECF = 180− arctan(
s− t

z
)− arctan(

s− t

y − r
).

We are interested in finding fixed values of r, t, x, y, z so that all these angles are

< 90◦ for all values of 1 ≤ s ≤ 4. After testing various values of r, t, x, y, z, I settled

on using

r = .18906, t = .065824, x = 4.1945309, y = 1.3035010, z = .675759.

I do not claim that these values minimize the maximum angle used, only that all

thirty-three of the corresponding angles are strictly less than 90◦, for r, t, x, y, z fixed

as above and for all s ∈ [1, 4]. See Figure 20 for the shape of the mesh for three

values of s. Once the values of r, t, x, y, z are fixed, it is easy to check that the

first three angles listed above are increasing as functions of s, and the last three are

decreasing. Thus we only need to check angles when s ∈ {1, 4}. Calculating the

angles for s = 1 shows the largest is ∠ABE ≈ 87.2933◦, and for s = 4 the largest

is ∠ABA ≈ 87.2952◦. Indeed, checking all 33 angles in the configuration gives the

same maximum. Thus the lemma holds with H2 = x+ y + z ≈ 6.1738. �

Figure 20. The abstract triangulation from Figure 19 but drawn
with the parameter values r, t, x, y, z given in the text and s = 1, 2, 4.
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For the reader’s convenience, plots of the six ambiguous angles for 1 ≤ s ≤ 4 are

shown in Figure 21, as are plots of all the angles in the triangulation.
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Figure 21. On the left are the six possibly-not-acute angles in Figure
19 plotted for 1 ≤ s ≤ 4 and with the fixed values of r, t, x, y, z given in
the text. On the right, all 18 distinct angles are plotted. The maximum
in both plots is ≈ 87.2952 taken by ∠ABA at s = 4.

Corollary 12.3. If H3 = 3

2
H2, then for every s ∈ [1, 4], the rectangle R3(s) =

[0, H3] × [−s, s] can be acutely triangulated so that the only boundary vertices of the

mesh are the four corners of R3, three evenly spaced on the right side, and three

symmetrically placed points on the each of top and bottom sides (the first coordinates

of these points are independent of s).

Proof. Shrink the rectangle R1 (and the triangulation from Lemma 12.2) by a factor

of 2 and add two copies of this to the right side of R1, as illustrated in Figure 22. �

Corollary 12.4. If H4 = 2H2, then for every s ∈ [1, 4], the rectangle R4(s) =

[0, H4] × [−s, s] can be acutely triangulated so that the only boundary vertices of the

mesh are the four corners of R and three symmetrically placed points on each of the

top and bottom sides, whose first coordinates do not depend on s. The left and right

sides of R4 are not subdivided by the triangulation.

Proof. Just reflect the rectangle and triangulation in Lemma 12.2 over the right-hand

edge of the rectangle. See Figure 22. �
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Figure 22. Proof of Corollaries 12.3 and 12.4. R2 consists of three
copies of R1 (left) and R3 is two copies of R1 (right). Drawn with s = 2.

Corollary 12.5. If s ∈ [1, 2] and θ > 0 is small enough, then every (2s,H4, θ)-

trapezoid (not necessarily isosceles) has an acute triangulation with ten boundary

vertices: the four corners of the trapezoid and three points on each radial side. The

latter points are symmetric with respect to the axis and their first coordinates are

independent of s and θ.

Proof. We just proved this for rectangles (the case θ = 0), in Corollary 12.4. Since

acute triangulations are stable under small enough perturbations it also holds for

trapezoids with angles close enough to 90◦. More precisely, If we normalize so one

base edge of the trapezoid Q is the vertical segment [−s, s] on the y-axis, and the

other base edge lies on the vertical line x = H4, then Q is the perturbation of the

rectangle R4 = [0, H4]× [−s, s] by the map

(x, y) → (x, y + xy tanψ1), y > 0,

(x, y) → (x, y − xy tanψ2), y < 0,

if the top and bottom edges of Q make angles ψ1, ψ2 ≤ θ with the horizontal, respec-

tively. If θ is small enough (depending on the upper angle bound in Lemma 12.2),

then the perturbed triangulation vertices will form an acute triangulation of Q, with

an angle bound that tends to the angle bound in Lemma 12.2 as θ tends to zero. �

The fact that the first coordinates of the mesh points on the top and bottom

sides of the trapezoid are independent of the parameters s and θ means that these

trapezoids can be “stacked” to form a consistent triangulation. This will be used in

the next, and final, step of the proof. Consider Figure 23. We will assume 1

3
≤ a ≤ 2

3
.

If the number of columns in this quadrilateral mesh of the rectangle is large enough,

then the quadrilateral mesh elements are themselves close to rectangles. So if we

apply Corollary 12.5, we can place an acute triangulation inside each quadrilateral
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a s

(1−a) s

(1−a) s

a ss/2

s/2

s/2

s/2

Figure 23. This is a quadrilateral mesh of the rectangle R5(s). The
left side is subdivided into four equal length segments. The right side
is subdivided into segments of length a, 1− a, 1− a, a with 1

3
≤ a ≤ 2

3
.

and obtain a triangulation of the whole rectangle. The following makes this idea

precise.

Corollary 12.6. There is an H5 > 0 so that for every s ∈ [1, 2], and every 1

3
≤ a ≤ 2

3
,

the rectangle R5(s) = [0, H5] × [−s, s] can be acutely triangulated so that the only

boundary vertices of the mesh are:

(1) the four corners of R5,

(2) a finite number of symmetrically placed points on the top and bottom sides of

R5 that do not depend on s or a, and

(3) three points on the right side of R5 that include the midpoint of that side and

points that cut each of remaining two segments of length s into subsegments

of length as and (1− a)s, as shown in Figure 23.

Proof. We assume H5 = mH4/3 for some positive integer m. Draw vertical segments

in R5 at the points cutting [0, H5] into m equal intervals of length H4/3, with end-

points xk = k
3m
H5 for k = 0, . . . ,m. Connect the three points on the left side of

R5 by line segments to the corresponding three points on the right side of R5. If m

is large enough, then these lines are as close to horizontal as we wish. Thus R5 is

decomposed into 4m quadrilaterals that are each θ-trapezoids, for θ as small as we

wish.

Suppose Q is one of these quadrilaterals, with left vertical side length t. Then Q

us a perturbation of a H4/3× t rectangle, which is clearly similar (by a dilation) to

a H4 × 3t rectangle. Since 1

3
≤ a ≤ 2

3
, t is bounded between s

3
and 23

s
. Using this,

and the fact that 1 ≤ s ≤ 2, we deduce that

1 ≤ 3(s/3) ≤ 3t ≤ 3(2s/3) ≤ 4.
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Therefore, by Corollary 12.5, Q has an acute triangulation with no subdivision of

either the left or right sides. Moreover, the mesh vertices on the top and bottom

edges have been chosen independent of t and the angles of the quadrilaterals. This

implies the triangulations of adjacent quadrilaterals match up. Therefore R5(s) has

an acute triangulation for each 1 ≤ s ≤ 2. �

Proof of Lemma 12.1. We have already done this for rectangles, e.g., θ = 0 with

H1 = H2+H5. By the stability of acute triangulations it also holds for small enough

perturbations. More precisely, if we perturb the rectangle R1(s) = [0, H1]× [−s, s]

(x, y) → (x cos(θ), y + x
y

s
sin(θ)),

then R1(s) is mapped to a θ-isosceles trapezoid and the map is isometric on the top

and bottom edges, so that the triangulation vertices on these edges preserve their

distance from the left side. This proves the lemma for θ1 small enough. �

Thus if θ0 ≤ min(η, θ1), where η is from Lemma 10.1 and θ1 is form Lemma 12.1,

then Theorem 1.1 holds.

13. Proof of Theorem 1.2

In the introduction we mentioned that [10] makes use of a consequence of Theorem

1.2. The precise statement is the following.

Lemma 13.1. In Theorem 1.2, T2 can be chosen to satisfy the following additional

condition. For each triangle T = ∆ABC in T1 and each vertex D of T2 in the interior

of T the angle ∠DAB is greater than θ1 > 0, where θ1 depends only on θ.

Proof. Suppose T is an element of T1 and T
′ ⊂ T is an element of T2. By Theorem 1.2

every triangle in T2 has all angles bounded strictly below 90◦ (depending on θ) and

hence every angle of T ′ is also bounded uniformly away from zero (also depending

only on θ). The Law of Sines implies that all three edges of T ′ have comparable

lengths, and these lengths are each comparable to the diameter of T ′. Similarly, the

distance of each vertex of T ′ to the opposite side of T ′ is comparable to the diameter

of T ′. Thus it suffices to show diam(T ′) ≃ diam(T ).

Our remarks above imply that triangles in T2 that share an edge must have com-

parable diameters. Since only a bounded number (at most 2π/θ) of the triangles can
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hit the same vertex, this implies that all triangles of T2 that share a common vertex

also have comparable diameters. Hence triangles of T2 that are connected by a chain

of k triangles in T2 also have comparable diameters (with constant depending on θ

and k). Thus the condition in the lemma holds iff the number of elements of T2 inside

T is uniformly bounded, depending only on θ. This is the second part of Theorem

1.2 (to be proven next). �

Finally, we come to the proof of Theorem 1.2.

Proof of Theorem 1.2. The first claim follows immediately from Theorem 1.1. The

second claim comes from examining the proof of Theorem 1.1: we will show that if we

start with a triangulation, then each face is replaced by a bounded number of faces

(depending on the minimum angle θ) in each of the nine steps of the construction.

We will briefly review each of the steps. Unless otherwise stated, “comparability”

below will mean with a constant depending only on θ.

Since we start with a triangulation Γ1, every face is already a simple polygon, so

Lemma 2.1 need not be applied. In Step 1, we are assuming Γ1 is a triangulation

with minimal angle θ > 0, so the argument in the proof of Lemma 13.1 shows that

adjacent edges of Γ1 have comparable lengths. Thus any vertex v has comparable

distance to each adjacent vertex. This means that we can take the disk Dv in Step

1 to have diameter that is comparable to the distance from v to any of the adjacent

vertices. This choice of Dv is the only change we make to the previous proof. The

number of protecting triangles and trapezoids at each vertex is bounded by O(1/θ)

since each subtends an angle ≥ θv ≥ θ from v. (Alternatively, in Section 4 one could

have chosen to subdivide the angle ψ into ⌊ψ/θv⌋ equal sub-angles).

In Step 2, the number of vertices we need to add to each unprotected face is

bounded in terms of θ. This holds because after removing the disks Dv the distance

between the remaining segments on the boundary of a triangle is comparable to the

diameter of the triangle, so only a bounded number of points need to be added to make

the face 1

4
-thick. In Step 3, we quad-mesh each unprotected face by quadrilaterals,

and each face uses at most O(1) quadrilaterals, where the constant is linear in the

number of boundary segments of the face, and we just saw that this is bounded in

terms of θ. Step 4 only perturbs the quadrilaterals and does not increase the number

inside any original unprotected face. Step 5 adds only O(1) Gabriel points to each
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edge of Γ5 (this constant is independent of θ). The construction of Bern, Mitchell and

Ruppert produces a number of triangles that is comparable to the number of Gabriel

points on the boundary of each quadrilateral, and Yuan’s construction in Step 6 only

increases this by a bounded factor. The compactness argument in Step 7 does not

increase the number of components; at worst it replaces the number of triangles in

one quadrilateral by the number found in a different one, and this has been bounded

by the argument so far.

The final two steps, 8 and 9, extend the triangulation into the protected triangles

and trapezoids by an explicit construction, and it follows directly from the construc-

tion that the number of sub-triangles created inside Dv is bounded in terms of a

lower bound for θv, i.e., it is bounded by a constant that depends only on θ. This

completes the proof. �
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