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Abstract
We show that any polygon � has an acute triangulation T where every angle lies in
the interval [30◦, 75◦], except for triangles that contain a vertex v of � where � has an
interior angle θv < 30◦; such triangles are isosceles with angles θv , and 90◦ − θv/2.

Keywords Acute triangulation · Optimal meshing · Steiner points · Conformal
maps · Schwarz–Christoffel formula

Mathematics Subject Classification 68U05 · 52B55 · 68Q25

1 Introduction

A polygon is a Jordan curve P in the plane consisting of a finite number of distinct
vertices V = {z1, . . . , zn} and open segments {(z1, z2), . . . , (zn−1, zn), (zn, z1)} that
are pairwise disjoint. The bounded connected component of R2 \ P is called the inte-
rior of P and is denoted Int(P); for brevity we will often call this open domain �.
The domain’s closure is Int(P) = Int(P)∪ P; this will be called the polygonal region
associated to P . A polygon with three vertices is a triangle, and when the meaning is
clear from context, we will abuse notation and refer to both the curve and the closed
triangular region it bounds as “triangles”.

A triangulation of a polygon P is a finite collection {Tk} of triangular regions
contained in Int(P) such that: (1) the union covers Int(P), (2) the triangles have
disjoint interiors, and (3) the triangles have the simplex property: any two triangles are
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either disjoint, intersect in a single point which is a vertex of each triangle, or intersect
in a segment that is an edge of each triangle. The triangles may have vertices other than
those of P , and these “extra” vertices are called the Steiner points of the triangulation.
Given a polygon P , finding triangulations (with or without Steiner points) with few
elements and/or nice geometric properties is a fundamental problem of computation
geometry. In this paper, we are concerned with the geometric question: if we allow
any number of elements, what is the smallest angle θ such that every polygon P has a
triangulationwith almost every angle≤ θ? (Themeaning of “almost”will be explained
below.) If we insist on bounding every angle of the triangulation, then θ = 90◦ is the
best we can hope for. It is known that every polygon has an acute triangulation (all
angles < 90◦) e.g., see [1, 11, 30, 35]. If P has a vertex v with small interior angle θv ,
then any triangulation of P has a triangle T containing v and this triangle must have
an angle ≤ θv , and hence another angle ≥ 90◦ − θv/2. Thus no uniform angle bound
strictly less than 90◦ can hold. However, such a bound holds if we simply ignore one
triangle for each “small” vertex, i.e., θv < 30◦.

Theorem 1.1 Every polygon P has a triangulation T such that every triangle T in T
has its angles in the interval [30◦, 75◦], unless T contains a vertex v of P with interior
angle θv < 30◦; then T is isosceles with angles θv and 90◦ − θv/2.

A triangulation using only angles≤ φ is called a φ-triangulation. A φ-triangulation
is called non-obtuse if φ = 90◦ and is called acute if φ < 90◦. Theorem 1.1 implies
every polygon has a φ-triangulation with φ = 90◦ − min(30◦, θmin)/2, where θmin
is the minimum interior angle of P . A stronger bound is possible: [8] proves that
every polygon has a φ-triangulation with φ = 90◦ − min(36◦, θmin)/2, and that
this bound is sharp. The bound is a consequence of a more general result in [8] that
computes �(P) = inf {φ : P has a φ-triangulation} for any given polygon. However,
Theorem 1.1 is not a corollary of this result because the construction given in [8] can
create multiple triangles with angles outside [36◦, 72◦] for each angle of P that is less
than 36◦, whereas Theorem 1.1 creates just one triangle with angles outside [30◦, 75◦]
for each vertex with angle < 30◦.

To explain the distinctionmore carefully, Iwill (very) briefly review the construction
in [8]. It divides the interior of P into a finite number of pieces, and on each piece
the triangulation is defined as the image of a nearly equilateral triangulation of a
corresponding “model region” under a conformalmap. Each vertex v ∈ P is associated
to a piece that is a small truncated sector with vertex v and angle θv , the interior angle
of P at v. The corresponding model region is another sector whose angle ψv is an
appropriate integer multiple of 60◦, and such a sector has a natural triangulation
by equilateral triangles. The conformal map between the sectors is a power map
z �→ a+bzα with α = θv/ψv . Angles of triangles touching v are distorted by a factor
of α, but the distortion diminishes as the distance to v increases; see Corollary 3.3.
Far enough from v the image triangles are nearly nearly equilateral, and can easily be
merged with the triangulation of an adjacent piece of the polygon. Thus several angles
> 72◦ may occur near v; numerical experiments indicate six exceptional triangles can
occur as θv ↘ 0. Theorem 1.1 reduces this to just one exceptional triangle per small
vertex by increasing the angle bound from 72◦ to 75◦.
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Remark 1 Theorem 1.1 is the triangular analog of a result for quadrilateral meshes in
[6]: every polygon P has a quadrilateral mesh with all angles in [60◦, 120◦], except
for quadrilaterals that contain a vertex v of P where the interior angle is θv ≤ 60◦.
The exceptional quadrilaterals are kites with opposite angles θv and 120◦, and the
remaining pair of opposite angles are both equal to 120◦ − θv/2.

Remark 2 Theorem 1.1 is also the polygonal version of a result for planar straight
line graphs (PSLGs) given in [9]. That paper proves that there is a θ0 > 0 such that
every PSLG � has a conforming triangulation with all angles in [θ0, 90◦ − θ0/2],
except for triangles containing a vertex v of � with interior angle smaller than θ0.
Such triangles are isosceles with angles in [θv, 90◦ − θv] where θv is the minimum
interior angle of � at v (a PSLG may have more than one angle at a vertex). In
particular, a PSLG with minimum angle θmin has a conforming triangulation with all
angles ≤ 90◦ −min(θ0, θmin)/2. The argument for PSLGs in [9] is significantly more
involved than the proof for polygons given here. It depends on compactness, so it does
not give an explicit value for θ0 (the optimal value remains unknown). One purpose
of this paper is to show that the argument simplifies in the special case of polygons,
and that we can obtain the explicit value θ0 = 30◦.

Remark 3 Finding acute triangulations of polygons and PSLGs has a long history
and many applications, e.g., see [7] or [41] for lists of algorithms that work better
with acute or non-obtuse triangulations. Very briefly, in 1960 Burago and Zalgaller
[11] showed that any polyhedral surface has an acute triangulation. See also [12]. In
1984 Gerver [19] used the Riemann mapping theorem to show that if a polygon’s
angles all exceed 36◦, then there exists a dissection of it into triangles with maximum
angle 72◦ (a dissection satisfies conditions (1) and (2) of a triangulation, as defined
earlier, but not (3)). He conjectured an optimal angle bound for dissections of arbitrary
polygons, and this was later proven in [8]. In 1988 Baker et al. [1] rediscovered (a
weaker form of) the Burago–Zalgaller theorem, by proving that any polygon has a
nonobtuse triangulation, and their construction also gave a lower angle bound in some
cases. In 2002Maehara [30] showed that any nonobtuse triangulation with N triangles
can be refined to an acute triangulation with O(N ) elements. Thus finding an acute
triangulation (angles < 90◦) reduces to finding a nonobtuse one (angles ≤ 90◦). A
different proof of this was given by Yuan in [37], and also by Saraf [35]. Besides the
papers cited earlier, a few other highlights and surveys of the theory include [2–5, 7, 16,
18, 20, 27, 32, 34]. The problem of acutely triangulating particular polygons has arisen
in recreational mathematics, e.g., finding the smallest acute triangulation of a square
(it uses eight triangles) is considered by Lindgren [28] and Cassidy and Lord [13].
Eppstein [17] discusses optimal angle bounds for triangulating a square, a question of
John Tromp from a 1996 sci.math post. Eppstein mentions that Gerver proved 72◦
is optimal for dissections, but Gerver also proved it is optimal for triangulations (see
[19, Fig. 4]). (Surprisingly, the optimal bounds for dissections and triangulations are
the same for any polygon; see [8, Cor. 1.3].) Acute triangulations of other shapes and
surfaces are considered in [21–24, 29, 31, 38–40]. Higher dimensional analogs are
extremely interesting but much more difficult, e.g., the best known acute triangulation
of the 3-cube has thousands of tetrahedron. See [10, 25, 26].
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Fig. 1 A model domain is a subset of an infinite strip that has several closed regions removed. Each closed
region is bounded by an unbounded Jordan curve consisting of two horizontal infinite rays and two finite
segments and has three angles of 120◦. In this figure, the model domain has an equilateral triangulation,
although most model domains only have nearly equilateral triangulations (see Lemma 2.1). In this picture
there are six infinite ends: three go left, three go right, and there are two ends each of thicknesses 1, 2, and 3

I thank the two anonymous referees for their detailed and thoughtful reports, which
provided numerous concrete suggestions for improving the exposition of the paper.

2 Model Domains

As noted in the introduction, the general idea used in this paper is the same as in [8]:
given a polygon P we construct another polygon P ′ and a conformal map between
their interiors. The model polygon P ′ is chosen so that its interior has an nearly
equilateral triangulation (defined below). Away from the vertices of P , the conformal
map between P ′ and P nearly preserves the shape of these triangles, and this gives a
nearly equilateral triangulation of P away from its vertices; a separate construction is
needed in a neighborhood of each vertex.

Unlike the construction in [8], where P ′ is chosen to be a finite polygon, the P ′ we
use in this paper is unbounded, and thus not a polygon at all, in the sense of the first
paragraph of this paper. The interior of P ′ is of the form

�′ = Int(P ′) = (R × [0, 1]) \
n⋃

k=1

Uk,

where the {Uk} are pairwise disjoint, closed, unbounded subsets of S = R × [0, 1].
Each Uk is bounded by an unbounded Jordan arc (a homeomorphic, proper image of
R → R

2) containing two infinite horizontal rays, whose finite endpoints are joined by
a polygonal arc consisting of two finite line segments, so that all three interior angles
of Uk are 120◦. See Fig. 1.

Given a polygon P with n vertices, the model P ′ will be chosen to have n infinite
ends and so that there is a conformal map f sending each infinite end of P ′ to a
vertex of P: more precisely, this means that as z → ∞ through one of the ends of �′,
f (z) tends to a vertex of P . This condition imposes restrictions on how P ′ can be
chosen, since a conformalmap between general simply connected domains only allows
three boundary points to have specified images; requiring n boundary points match up
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Fig. 2 We use the conformal map to transfer a nearly equilateral triangulation from a compact region of the
model domain (shaded) to the interior of P minus neighborhoods of each vertex.We then have to triangulate
the neighborhoods and make the meshes match up

requires a very special choice of P ′. Fortunately, such a P ′ can be constructed using
the Schwarz–Christoffel formula, as discussed in Sect. 3.

The model domain in Fig. 1 is shown with an equilateral triangulation. In general,
not every model domain has an equilateral triangulation; it is easy to see that only
countably many model domains can have one. However, every model domain has
a nearly equilateral triangulation. This means that for any ε > 0 we can choose a
triangulation with all angles in [60◦ − ε, 60◦ + ε], and so that only finitely many
triangles are not equilateral (so for our model domains, the triangulation becomes
equilateral far enough down each infinite end). The following simple fact is left to the
reader (a very similar result is proven in [8, Sect. 5]).

Lemma 2.1 Every model domain has nearly equilateral triangulations.

Given a nearly equilateral triangulation of a model domain, the “thickness” of an
infinite end is the number of triangles needed to connect the top and bottom sides of the
end, i.e., the number of horizontal rows of triangles in the end. By sub-diving triangles,
we can clearly make these thicknesses as large as we wish. For our construction, we
need to specify the thickness of each end independently of the other ends, and in Sect. 4
we will see how to do this.

When we conformally map the model P ′ to the given domain P , the images of the
nearly equilateral triangulation will give a triangulation of P , except near the vertices
of P . Since the triangulation of P ′ has an infinite number of triangles in each infinite
end, we will only transfer the part of the triangulation inside a bounded subset of the
model defined by cutting each end with a vertical line segment S far enough out the
end that the triangulation near S is equilateral. The cut-off half-strip maps to a sector
at the corresponding vertex of P . See Fig. 2. The vertical segment at the end of the
half-strip is not covered by edges of the triangulation, so we will have to “fill in” a
triangulation between the equilateral triangulation the end and the vertical segment.
This is also explained in Sect. 4. After that, we give an explicit construction that
extends the image triangulation into these sectors at each each vertex v, being careful
that no angles > 75◦ are used, except for one triangle that touches v (and only then if
the angle at v is< 30◦). This construction depends heavily on numerical computations
of angles for explicit families of triangulations.

We will use several “well-known” lemmas about the distortion of angles under
conformal maps and, in particular, the distortion of triangles pushed forward by a
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conformal map. Since these facts were recorded and explained in [8], in the context
of constructing triangulations, we give specific citations to that paper, although the
relevant facts about conformal maps could be found elsewhere.

3 Conformal Maps

We start with the following simple lemma.

Lemma 3.1 Suppose P is a polygon and � = Int(P). Then there is a model domain
�′ with boundary P ′, and a conformal map f : � → �′ which gives a bijection
between the vertices of P and the infinite ends of �′.

Proof This is a fairly standard fact and it follows from the Riemann mapping theorem
and the Schwarz–Christoffel formula. Suppose φ : D → � is conformal (such a map
exists by the Riemannmapping theorem) and z = {z1, . . . , zn} ⊂ T are the pre-images
of the vertices of P . Suppose the interior angles of P are απ = {α1π, . . . , αnπ}. Then
the Schwarz–Christoffel formula says that φ is given by

φ(z) = A + C
∫ z n∏

k=1

(
1 − w

zk

)αk−1

dw, (3.1)

for some choice of constants A,C . See e.g. [15, 33, 36].
Let I = {Ik} be the connected components of T \ z. Choose two non-adjacent

Ik’s, and then choose three points near the center of each of the other n − 2 elements
of I. Set α = 4/3 at these points. For each zk choose two points z±k on either side
zk and set α = 1/2 at these points. Then apply the Schwarz–Christoffel formula to
get a polygon, as shown on the top of in Fig. 3. Take the limit as z±k → zk ; the finite
polygonal domains converge to the unbounded domain described in the lemma and
illustrated in Fig. 3. The desired map � → �′ is just the composition of φ−1 with this
limit of Schwarz–Christoffel maps. �

Given a triangulation in�′ we transfer it to a triangulation in P bymapping the ver-
tices of each triangle and then connecting the images by line segments. The following
shows that angles are not distorted very much (this is [8, Lem. 3.2]).

Lemma 3.2 If 0 < δ < 1/2, f is a conformal map on a disk D(z, r) and T = �ABC
is a triangle inside D(z, δr), then the triangle f ∗T = � f (A) f (B) f (C) has angles
that are within O(δ) of the corresponding angles of T .

Corollary 3.3 Suppose f : � → �′ is a conformal map between the interiors of two
domains. Suppose that T ⊂ � is a triangle of diameter ε > 0, and that for some
z ∈ T , D(z, d) ∩ ∂� is empty or consists of a single line segment S such that f (S)

is a line segment in ∂�′. Then f maps the vertices of T to the vertices of a triangle
T ′ ⊂ �′ whose angles are within 1 + O(ε/d) of the corresponding angles of T .

Proof If the intersection is empty, then Lemma 3.2 applies directly to D(z, d). If the
intersection is a line segment S as described, then f can be extended from D(z, d)∩�

to all of D(z, d) by Schwarz reflection, and then Lemma 3.2 is applied. �
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gf

gf

Fig. 3 Using the Schwarz–Christoffel formula, one can map the interior of any simple polygon to a subset
of a strip as shown on top. By taking the preimages z±k of the 90◦ corners to converge to zk , we get a
conformal map onto an unbounded model domain, as shown on the bottom

In particular, this corollary applies to the conformal map between a polygon and
its model domain. Fix a large M < ∞. Suppose the nearly equilateral triangles in �′
have diameter ε > 0, and that ε is so small that each infinite end of P ′ has thickness
≥ M . Applying Corollary 3.3 with d = Mε shows that for any triangle T ′ in �′ that
is distance ≥ Mε from every vertex of P ′, the corresponding triangle in T has angles
within a factor of 1+O(1/M) of those of T , and hence it will also be nearly equilateral,
if M is large enough. Therefore, we can transfer a nearly equilateral triangulation of
the model domain to�. The image triangles are all close to equilateral by Lemma 3.2,
except those near the 240◦-vertices, but by choosing the triangulation fine enough we
may assume the angles of these triangles are bounded by 67.5◦ + ε for any ε > 0.
The 67.5◦ arises because near a 240◦ vertex v ∈ P ′ in the boundary, the conformal
map acts like z3/4, sending the 240◦ angle on P ′ to 180◦ on P . The 60◦ angles that
touch v are mapped to (3/4) · 60◦ = 45◦; the image triangle under the power map is
isosceles, so each of the other two angles is (180◦–45◦)/2 = 67.5◦. See Fig. 4. The
conformal map �′ → � is not equal to the power map, so the 67.5◦ may be slightly
exceeded. However, taking a fine enough triangulation ensures all the image angles
are less than 75◦.

As noted above, the model domain can be written as a compact polygon plus a
finite number of infinite ends that are each half-strips. Inside these half-strips the
triangulation is equilateral but infinite. Also, in the half-strips the conformal map to
� approximates an exponential map. In particular, a vertical segment connecting the
horizontal sides of an end maps to a close approximation of a circular arc connecting,
and orthogonal to, the two sides of P adjacent to the corresponding vertex of P . See
Fig. 2. The infinite half-strip beyond the vertical segment maps to an approximate
truncated sector in the region �. We inscribe a polygonal arc γ with M evenly spaced
points on γ . This defines a polygonal sector. We will triangulate this sector with the
desired angle bound, without adding any vertices to γ . This is described in Sects. 6
and 7.
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Fig. 4 Mapping an equilateral triangulation of a 240◦. sector by z �→ z3/4 gives a 67.5◦-triangulation. The
maximum occurs in the four triangles touching the origin

Remark 4 The methods of [8] can be used attain the 67.5◦ angle bound near the image
of the 240◦ degree corner, not just approximate it. See [8, Lem. 6.3] for a precise
statement describing of how this works. With more work, using the “420◦-trick” from
[8], the 67.5◦ bound can be further lowered to (5/7) · 90◦ ≈ 64.2857◦, but we do not
need the better estimate here. However, we will need to use the related “120◦-trick”
in the next section.

4 Interpolation Between Triangulations in a Strip

An infinite strip has several natural equilateral triangulations Tn determined by the
number n of horizontal rows of triangles. See Fig. 5 where parts of T6 and T12 are
illustrated. This figure also illustrates the two interpolation problems described in the
paragraphs following Lemma 2.1.

First, the triangulations Tn do not contain vertical segments, and we will have to
construct an explicit triangulation that “fills the gap” between part ofTn and the vertical
end of a half-strip, i.e., fill in the left blank region in Fig. 5. This is easy to do, as shown
in Fig. 6 (in our construction, we are free to choose the “width” of this region). Thus
when we truncate the infinite ends of P ′ by vertical segments, the region between the
equilateral triangulation and the segment can be triangulated with angles ≤ 72◦ as
promised in Sect. 2. Corollary 3.3 applies, so the triangulation can be transferred from
P ′ to P with all angles remaining below 75◦.

The second problem illustrated in Fig. 5 is to interpolate between Tn and Tm for
n �= m. This ismore difficult to dealwith, and the problemwill arise in our construction
because each infinite end of the model domain has an equilateral triangulation that
is determined by its “thickness”, i.e., the number of horizontal rows triangles. When
choosing the nearly equilateral triangulation of the model domain, the thickness of
each end can be made as large as we wish by subdividing the triangulation, but we
can’t choose the thickness of each end independently. By interpolating between two
different equilateral triangulations of a strip, we will be able to change the thickness
of each end, independently of what happens in the other ends.
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??

Fig. 5 Two problems involved with merging the triangulations. On the left we have to complete the trian-
gulation between an equilateral triangulation and the end of a half-strip. On right we have to interpolate
between two equilateral triangulations of different sizes. In our applications, we are free to choose the
widths of the intermediate regions to be meshed
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Fig. 6 On the left is a triangulation of an indented rectangle. Note that every angle is ≤ 72◦. On the right
we show how it “fills in” between a partial equilateral triangulation of strip and the end of a half-strip

Lemma 4.1 Given N < ∞ there is an A < ∞ such that if n,m ≥ N then there is a
72◦-triangulation Tn,m of S = R × [0, 1] that equals Tn on S ∩ {x < −A} and that
equals Tm on S ∩ {x > A}.
Proof Construct a “funnel strip”, as illustrated on the top of Fig. 7, that has a equilateral
triangulation that is n triangles thick in one direction andm triangles thick in the other
direction.Map this to a strip as shown on the bottom of Fig. 7. If n,m are large enough,
then the triangles in the image are all close to equilateral, except near the images of the
corners. Near the image of the 240◦ interior corner, the image triangulation has angles
bounded by 67.5◦; the argument is the same as described in Sect. 3 for the behavior
near the 240◦ angles in P ′ (recall Fig. 4). Near the 120◦ corner, a more complicated
construction is needed.

Near the 120◦ corner, the conformal map acts like a power map z �→ z3/2. This
is made precise by [8, Lem. 6.2 and 6.3]. The image of the equilateral triangulation
under this power map is shown in Fig. 8. Because only two triangles touch the corner
in the funnel, the images of these triangles have 90◦ angles at the image of the corner.
This is too large for our purposes. Near the image of the 120◦ angle in the funnel,
the image triangulation must be replaced by another triangulation using only angles
≤ 72◦. This is accomplished by the “120◦-trick” from [8]. See Fig. 9. The trick is
made precise using the following result [8, Lem. 7.1].

Lemma 4.2 Suppose f : P ′ → P is a conformal map between polygons that maps
vertices to vertices. Suppose f (v′) = v where v′ is a vertex of P ′ and v is a vertex
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Fig. 7 We use a conformal map to transfer equilateral triangulation from a “funnel strip” to a true strip.
Enlargements of the behavior near the 120◦ and 240◦ corners are illustrated on Figs. 4 and 8. These figures
were produced with Driscoll’s SC-Toolbox [14]

Fig. 8 Near the 120◦ corner, the conformal map acts like a power map z �→ z3/2. The image triangulation
contains two 90◦ angles

of P, with angles 120◦ and 180◦ respectively. Suppose T is a nearly equilateral
triangulation of P ′ and f ∗T the image triangulation. If T is fine enough, then there
is a neighborhood U of v and a triangulation S of P that equals f ∗T outside U and
every triangle of S touching U has all angles ≤ 72◦.

Moreover, we can choose A so that the pushed forward triangulation in the strip
is as close as we wish to Tn and Tm in the two components of S \ [−A, A] × [0, 1].
Thus the pushed forward triangulation can be replaced with these in the components
while keeping all angles, except those near the corners, close to 60◦. This completes
the proof of Lemma 4.1. �
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Fig. 9 The “120◦-trick” from [8] creates a triangulation of a half-plane with maximum angle 72◦ (right
side) by taking the conformal image of an equilateral triangulation of a 120◦-sector with some triangles
removed (left side). Two boundary arcs on the modified sector are identified as one internal arc γ in the
new triangulation, and an interior vertex of degree 5 is created. The arc γ appears straight, but is actually
slightly curved to ensure the image vertices on either side of γ match up (that this is possible is proved
in [8]). The conformal map approximates z3/2 near infinity, hence the new triangulation approximates the
z3/2-triangulation from Fig. 8 near infinity

L

θ

Fig. 10 On the left is a general polygonal sector. On the right is a truncated polygonal sector; in this case a
pentagon, the case of greatest interest to us. We want to triangulate such pentagons with good angle bounds
without adding any vertices to the “inner” and “outer” sides

5 Polygonal Sectors

A polygonal sector is a polygon with one vertex at the origin and the others inscribed
on, and evenly spaced along, a circular arc centered at the origin.A truncated polygonal
sector is the difference of two such regions corresponding to the same angular arc on
two different radius circles. See Fig. 10.

We are most interested in sectors that are pentagons with one segment inscribed on
the smaller circle and two on the larger circle. These pentagons are symmetric with
respect to the angle bisector of the corresponding sector; we shall call these shapes
“sector pentagons”. See the right-hand side of Fig. 10. The side of the pentagon closest
to the origin is the “inner” edge, the two farthest edges are the “outer” edges. The two
other sides are the “radial” edges (they lie on rays through the origin). The “length”
L of such a pentagon is the length of the radial edges. Note that in Fig. 10 we have
defined θ to be half the angle of the sector; this is convenient for some formulas in
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Fig. 11 A mesh of a polygonal sector into one triangle and several pentagons

later sections, and we will call θ the “sector angle”. The rest of the paper is devoted to
finding upper angle bounds for acute triangulations of symmetric pentagons that only
place boundary vertices on the radial edges.

The importance of these pentagons is illustrated in Fig. 11, which shows how to
mesh a polygonal sector with 2n outer edges by a single isosceles triangle and 2n+1−2
pentagons. If each pentagon has a 75◦-triangulation, and the vertices match up along
common boundaries, then we obtain a triangulation of the whole polygonal sector.
This will happen if the pentagon triangulations have no extra vertices on the inner or
outer edges of the pentagon; if the triangulation is symmetric, then vertices on the
radial edges match up automatically, and otherwise we can use reflected versions in
alternate pentagons (note that pentagons in the same layer have the same shape).

Suppose v is a vertex of P where P has interior angle θv > 60◦.We divide the angle
into equal sub-angles that are each in (30◦, 60◦] and use the mesh in Fig. 11 to each
of the corresponding sub-sectors. There are at most six triangles touching v, and each
is isosceles with maximum angle ≤ 75◦. If θv ≤ 60◦, then we do not subdivide the
angle and we use a single copy of the mesh in Fig. 11. The isosceles triangle touching
v will have two angles equal to 90◦ − θv/2, which will be > 75◦ if θv < 30◦. For
example, if P has angle 40◦ at v, the corresponding value of θ is 20◦; if P has angle
100◦, we will subdivide it into two sectors of angle 50◦ and apply the lemma twice
with θ = 25◦.

There are at most six triangles touching any vertex v, and each is isosceles with
maximum angle ≤ 75◦. Thus the sector mesh at a vertex v of P will be bounded by
k · 2 j segments along its outermost edge, where k ∈ {1, . . . , 6} and j is as large as we
wish. By Lemma 4.1 we can arrange for the triangulation in the corresponding end of
P ′ to have exactly this thickness, so the conformal image of the triangulation in the
end can be joined to the triangulation of the sector. Thus to prove Theorem 1.1, is only
remains to verify the following result.
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Fig. 12 The triangulation T (θ) of a polygonal sector. The precise definition is given in the text. We assume
0 ≤ θ ≤ 30◦

Lemma 5.1 For each 0 < θ ≤ 30◦ there is a choice of length L such that the corre-
sponding symmetric sector pentagon has a 75◦-triangulation, with no vertices on the
inner or outer edges. The triangulation is symmetric with respect to the pentagon’s
axis of symmetry.

The proof is given in the next two sections. Both sections make use of a particular
triangulation of a sector pentagon. See Fig. 12 for the abstract graph. The points labeled
A, B,C, D, E, F are defined in terms of positive parameters r , s, t, x, y, z as follows
(using complex notation):

A = is, B = x, C = x + y + i t,

E = x + r + i [s + (x + r) tan θ ],
F = x + y + z + i [s + (x + y + z) tan θ ],

and D on the real line is defined by the condition that ∠EFD = 90◦ − θ/2; this
makes �AFD isosceles. If the figure were translated so that the line containing AF
hit the real axis at the origin O , then this angle condition would be equivalent to
|DO| = |FO|; we don’t state it this way to include the case θ = 0 where AF is
parallel to the real axis. Here XY denotes the segment with endpoints X and Y , and
|XY | is its length. The triangulation is symmetric with respect to the real line, and for
X in the plane, X denotes its complex conjugate (its reflection over the x-axis).

Asmotivation forwhat follows,wefixavalue of θ , set s = 1 and thenuse a computer
to search for values of r , t, x, y, z that are close to minimizing the maximum angle.
A graph of the maximum angle found for each value of θ is shown in Fig. 13. The
graph appears to have a piecewise linear structure, but we do not investigate this here.
More importantly, the plot indicates that the maximum angle is bounded above by
75◦, attained at the right-hand endpoint 30◦.

To actually prove the 75◦ upper bound, it is convenient to break the proof into
two ranges: θ ∈ [0, 18◦] and θ ∈ [18◦, 30◦]. For the latter range, we will define the
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Fig. 13 The maximum angle used in the triangulation T (θ) for 0 ≤ θ ≤ 30◦ based on a computerized
search for parameters. This indicates the estimate ≤ 75◦ is true with the maximum attained at 30◦

triangulation by specifying certain angles in terms of θ . From these, the values of
several other angles can be deduced by elementary geometry. All these angles are
easily verified to be ≤ 75◦ for all θ in the given range. However, there are four angles
with values that do not have simple formulas in terms of θ . These angles we can
compute numerically for a finite set of θs between 18◦ and 30◦, and to estimate their
values between these points we have to bound the derivative of these angles with
respect to θ . We then choose the gaps between the evaluations to be so small that the
maximum over the discrete evaluations is within .1◦ of the maximum over the whole
interval (and the discrete maximum will be ≤ 74.5).

A similar numerical strategywill be used in Sect. 7 to deal with the interval [0, 18◦],
but there monotonicity will be used instead of a derivative bound.

6 Lemma 5.1: 18◦ ≤ � ≤ 30◦

We start by specifying the triangulation in terms of the sector angle θ . For 18◦ ≤ θ ≤
30◦, set δ = 30◦ − θ . Note that 0 ≤ δ ≤ 12◦. Recall ∠EFD = 90◦ − θ/2. We set:

67.5◦ ≤ ∠DCC = ∠DCF = ∠FCE = 75◦ − δ

4
= 67.5◦ + θ

4
≤ 75◦,

72◦ ≤ ∠BCE = 72◦ + δ

4
≤ 75◦, ∠ABA = 72◦.

These values, and the symmetric ones in the lower half-plane, determine the triangu-
lation completely. Several other angles can be computed easily from these using the
fact that the angles of triangle sum to 180◦. For example,

∠CDC = 180◦ − 2∠DCC = 180◦ − 2

(
67.5◦ + θ

4

)
= 45◦ − θ

2
,
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so

30◦ ≤ ∠CDC = 30◦ + δ

2
= 45◦ − θ

2
≤ 45◦.

The following estimates are proven by similar arguments and left to the reader:

60◦ ≤ ∠CDF = 60◦ + δ

4
= 67.5◦ − θ

4
≤ 63◦,

63◦ ≤ ∠BCC = 63◦ + δ

2
= 78◦ − θ

2
≤ 69◦,

∠CFD = 45◦,

30◦ ≤ ∠EFC = 30◦ + δ

2
= 45◦ − θ

2
≤ 46◦,

67.5◦ ≤ ∠CEF = 75◦ − δ

4
= 67.5◦ + θ

4
≤ 75◦,

42◦ ≤ ∠CBC = 54◦ − δ = 24◦ + θ ≤ 54◦,
54◦ ≤ ∠BAE = 36◦ + θ ≤ 66◦.

Of the angles given above, the maximum is 75◦ − δ/4 for 24◦ ≤ θ ≤ 30◦, and
72◦ + δ/4 for 18◦ ≤ θ ≤ 24◦. In either case, the maximum angle is less than 75◦ for
θ ∈ [18◦, 30◦]. Note that since ∠CEF = 75◦ − δ/4 = ∠FCE , the triangle �FEC
is isosceles and hence |EF | = |CF |. Also note that all the angles listed above depend
linearly on θ , and the derivative of the angle with respect to θ is always has value in
{0,±1/4,±1/2,±1}. In particular, the absolute value of the derivative is always ≤ 1.

There are only four other angles to consider:∠ABE ,∠AEB,∠EBC , and∠BEC .
These are not easily solvable in terms of θ , but they do satisfy the equations

∠ABE + ∠EBC = 180◦ − 36◦ − ∠CBC

2
= 120◦ − θ

2
,

∠AEB + ∠BEC = 180◦ − ∠CEF = 112.5◦ − θ

4
,

∠AEB + ∠ABE = 180◦ − ∠BAE = 150◦ − θ,

so that knowing any one of these four angles tells us the other three. We can compute
these numerically for a finite number of θs, but in order to control the values between
the evaluated points we have estimate the derivative of these angles in terms of θ . The
sum formulas above easily imply the absolute values of the derivatives (with respect
to θ ) of any two of these angles differ by at most 2, e.g. d

dθ
∠AEB = − d

dθ
∠ABE = 1.

Hence it is enough to bound one of these derivatives; we will focus on ∠BEC .
Since angles are preserved by similarities, we can normalize the triangulation as θ

varies so that the vertex F if fixed, and the segment FC has length 1. Then C remains
on the unit circle around F and the angle between CF and the horizontal direction is
θ + ∠EFC = 45◦ + θ/2. Thus C moves at most at rate 1/2 in θ . (All derivatives of
trig functions are computed in radians, despite our using degrees to specify angles.)
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The segment EF makes an angle θ with the horizontal and the length of this segment
can be computed using the Law of Sines:

|EF | = |EC | · sin∠ECF

sin∠EFC
= sin (82.5◦ − θ/4)

sin (45◦ − θ/2)
.

If we compute the derivative using the quotient rule, the denominator will be larger
than sin(30◦)2 = 1/4 and the denominator is a sum of two terms, each of which
is a product of three terms that are less than 1 in absolute value (two trigonometric
functions and the derivative of the angle with respect to θ ). Thus the derivative of |EF |
is bounded by 2/(1/4) = 8 in absolute value. Hence E can move with rate at most√
1 + 82 < 9.
The segment BC makes angle 12◦ + θ/2 with the horizontal, and since |EC | = 1,

|BC | can be computed by applying the Law of Sines three times as

|BC | = sin∠BCC

sin∠CBC
· sin∠CDC

sin∠CCD
· sin∠CDF

sin∠CFD
.

Differentiating using the product rule and quotient rules, gives us a sum of three terms.
Each term has two of the factors left alone and the third differentiated. As above, the
numerator of the differentiated term has absolute value at most 2. Thus the derivative
of |BC | is bounded by

2 · sin∠CDC · sin∠CDF

(sin∠CBC)2 · sin∠CCD · sin∠CFD
+ 2 · sin∠BCC · sin∠CDF

sin∠CBC · (sin∠CCD)2 · sin∠CFD

+ 2 · sin∠BCC · sin∠CDC

sin∠CBC · sin∠CCD · (sin∠CFD)2
≤ 3.7474 + 3.6786 + 3.9265 < 12,

where we have used the lower bounds

∠CCD ≥ 72◦, ∠CBC ≥ 45◦, ∠CFD ≥ 45◦,

and the upper bounds

∠BCC ≤ 69◦, ∠CDC ≤ 45◦, ∠CDF ≤ 63◦,

that we computed earlier from our assumption that 18◦ ≤ θ ≤ 30◦. Thus the vector
C − B changes at a rate of bounded by

√
1 + 122 ≤ 13. Since C changes at most at

rate 1/2, this implies B changes at rate at most 14. Finally, note that

|EC | = |EF | · sin∠EFC

sin∠CEF
≥ sin∠EFC ≥ sin 30◦ ≥ 1

2

and

|EB| ≥ Im(E) ≥ |EC | · sin (∠BCE + ∠BCC − 90◦)
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Fig. 14 Plots of the four angles ∠ABE , ∠AEB, ∠EBC , and ∠BED evaluated at intervals of .001◦. The
maximum is 74.2977◦. The variation of these angles within the gaps is ≤ .1◦

≥ |EC | · sin
(
45◦ + 3

4
δ

)
≥ |EC | · 1√

2
>

1

3
.

Thus theC−E and B−E eachmove at rate at most 20 and the lengths of these vectors
are both at least 1/3. Therefore the size of ∠BEC changes at a rate ≤ 3(20 + 20) =
120, and so the other three angles each change at rate ≤ 122.

Note that 1/100 degrees is π/180000 < 1/5000 radians. Thus each of our angles
changes by less than .1 radians over such an interval, and hence by less than .1 degrees.
Figure14 plots the four angles in question for θ between 18◦ and 30◦ with gaps of
(1/1000)◦. The maximum is ≈ 74.2977 attained by ∠ABE at θ = 18◦, so the
four special angles being considered are all ≤ 74.4◦. Thus all the angles are ≤ 75◦,
completing the proof of Lemma 5.1 for θ ∈ [18◦, 30◦].

7 Lemma 5.1: 0◦ ≤ � ≤ 18◦

We now turn to triangulating polygonal sectors with angles smaller than 18◦. We
will use a monotonicity argument to show that the maximum angle needed for all
0 ≤ θ ≤ 18◦ can be bounded by the maximum angles needed for a certain finite set of
triangulations corresponding to a finite set of values θ ∈ [0, 18◦]. Thus the argument
reduces to another “brute force” computation.

We use the same combinatorial triangulation as in the last section; see Fig. 12 and
the definitions of A, B, . . . , F at the end of Sect. 5. For each fixed angle θ , each choice
of x, y, z, r , t determines a triangulation. By plugging in and evaluating the angles,
we get an upper angle bound for triangulating the corresponding truncated θ -sector.
We do not claim the bounds we obtain are optimal, although they are probably close
to optimal for the given combinatorics (although other combinatorial triangulations
may give better bounds).
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F
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E

E

Fig. 15 The first variation. We move the vertices E, E, F, F in Fig. 12 vertically so that they lie on a
new line making a larger angle with the horizontal. The other points are not moved. Every angle changes
monotonely. Since D is not moved, the new figure is not quite a polygonal sector. This is fixed in Fig. 16

We will do this explicit calculation for a finite number of angles 0 = θ0 < . . . <

θn = 18◦. To obtain bounds that are valid for all angles, we will give a 1-parameter
family of triangulations of polygonal sectors between angles θk and θk+1. For each such
interval we use a computer search to find a good set of parameters x, y, z, r , t to define
the starting triangulation Tk with sector angle θk . For each sector angle θk ≤ τ ≤ θk+1
we describe how to move Tk in two steps (the first moves vertices E and F , and the
second moves vertex D). We obtain a triangulation of a truncated sector with angle τ ,
and then use similar moves to change this to a triangulation of a sector with angle θk+1.
We will show with a monotonicity argument that every angle for the triangulation at
τ can be bounded above by some angle in one of four associated triangulations. Thus
the angle bound for any τ ∈ [0, 18◦] is bounded by the maximum angle from a finite
set of triangulations, all of which we compute.

The first family of perturbed triangulations is shown in Fig. 15. We draw the lines
through A and A that makes an angle τ > θ with the horizontal. The points E, F, E, F
are moved vertically to lie on this line. The new positions are denoted E ′, F ′, E ′

, F
′
.

All other points are left fixed. Triangles involving only the vertices A, A, B,C,C, D
are not changed. The angles ∠BAE , ∠CBE , ∠BCE , ∠DCE , and ∠DCF increase
with τ . By symmetry, so do the corresponding angles in the lower half-plane. The
remaining angles decrease with τ . However, this is not a triangulation of a polygonal
sector of angle τ , since D is in the wrong place.

In Fig. 16,we showhow tomove D to D′, in away thatmakes the region a polygonal
sector. This motion affects three triangles, hence nine angles. For an angle that is not
effected, the final value is the same as the value after the first step. Since angles change
monotonely in the first step, the final values for any τ ∈ [θk, θk+1] is bounded by the
angle values at one of the endpoints after the first step.
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Fig. 16 This is the same as Fig. 15, except that D has been moved to the right, so the region becomes a
polygonal sector. Only the angles of triangles containing D are changed, and all change monotonely

Similarly, no angle in the triangleCDD changes in the first step, and they all change
monotonely in the second step, so their final values for any τ are bounded between
their values when τ ∈ {θk, θk+1}.

The only angles that require some thought are those that change in opposite direc-
tions in the first and second steps. For example, consider angle∠CDF . This increases
in the first step and decreases in the second. Thus its final value is less than its value
between the two steps, and since the first step is increasing in τ , this intermediate value
is less than the value we would get by setting τ = θk+1. In symbols,

∠CD′F ′(τ ) ≤ ∠CDF ′(τ ) ≤ ∠CDF ′(θk+1).

Similarly,

∠D′CF ′(τ ) ≤ ∠DCF ′(τ ) ≤ ∠DCF ′(θk+1).

The angle ∠CFD is slightly different: since the second step increases this angle, we
can’t bound it above by its intermediate value. Instead, we observe that we can get to
the final configuration by a different path: move D first, then move E, F, E, F . The
intermediate triangulation is shown in Fig. 17. The first step of this alternate motion
increases ∠CFD, and the second step decreases it. Thus

∠CF ′D′(τ ) ≤ ∠CFD′(τ ) ≤ ∠CFD′(θk+1).

We have only dealt with angles in the upper half-plane, but by symmetry the same
bounds hold in the lower half-plane.

We have now shown that every polygonal sector of angle τ ∈ [θk, θk+1] can be
triangulated with an upper angle bound that is bounded by the maximum angle of one
of four triangulations:
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Fig. 17 This is the second variation: we move D but not E or F . As we move D, all the angles of triangles
containing D change monotonely. To make this a polygonal sector, we then have to move E, F and their
conjugates vertically

Table 1 This gives the maximum angle used on the four different meshes corresponding to the intervals
[θ, θ + 1] for θ = 0, 1, . . . , 17)

θ max angle x y z t r

0 74.774 1.376 0.812 0.611 0.248 0.306

1 74.572 1.411 0.826 0.636 0.254 0.298

2 74.358 1.409 0.839 0.662 0.261 0.289

3 74.185 1.488 0.854 0.691 0.268 0.281

4 74.007 1.541 0.870 0.721 0.275 0.271

5 73.791 1.500 0.880 0.747 0.281 0.260

6 73.595 1.498 0.891 0.775 0.286 0.248

7 73.400 1.472 0.899 0.802 0.291 0.234

8 73.305 1.405 0.931 0.830 0.303 0.255

9 73.315 1.478 0.997 0.877 0.324 0.301

10 73.314 1.518 1.066 0.924 0.346 0.352

11 73.290 1.465 1.123 0.962 0.365 0.399

12 73.255 1.376 1.181 0.996 0.384 0.451

13 73.317 1.378 1.215 1.036 0.403 0.464

14 73.373 1.372 1.251 1.077 0.422 0.482

15 73.437 1.370 1.288 1.119 0.443 0.498

16 73.502 1.368 1.325 1.163 0.465 0.515

17 73.573 1.366 1.364 1.209 0.488 0.533

All these numbers are less than 75◦ and therefore Lemma 5.1 holds in this interval range. We have used
intervals of length 1 to save space; using shorter intervals would give smaller angle bounds, closer to
the graph in Fig. 13. The other columns give the parameter values that define A, B, . . . , F , so that the
calculations can be recreated (the values have been normalized so s = 1)
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• Tk ,
• Tk with only E, F, E, F moved,
• Tk with only D moved,
• Tk with all five points moved.

Moving the points in this particular way is not optimal, but does give an easy-to-
analyze family of triangulations whose maximum angles can be bounded by a finite,
computable list of numbers. We can get better bounds by making the gaps between
the θk smaller; this means we only make small perturbations from configurations we
think are close to optimal. For this paper, I took the gap to be 1◦. Table 1 shows the
maximal angles used in each of the four triangulations, giving an upper bound that is
valid for all sector angles θ ∈ [k◦, (k + 1)◦], k = 0, . . . , 17. The maximum angle is
≈ 74.4774◦ < 75◦, so the lemma is proven, and hence so is Theorem 1.1.
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