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Dimensions of sets – revision: 1

f is a transcendental entire function.

Proposition 1

dimHF (f ) ∈ {0,2}.

Proposition 2

dimH J(f ) ∈ [1,2].



Dimensions of sets – revision: 2

Theorem 1 (Stallard, 1997, 2000)

For each p ∈ (1,2] there is a transcendental entire function f
such that dimH J(f ) = p.

Theorem 2 (Stallard, 1996)

If f ∈ B, then dimH J(f ) > 1.

Theorem 3 (Stallard, 1994)

dimH K (f ) > 0.



What about dimension equal to one?

Theorem 4 (Bishop, 2012)

There is a transcendental entire function f such that:
1 dimH J(f ) = dimH J(f ) ∩ A(f ) = 1.
2 dimH(I(f )\A(f )) = 0.
3 Given α > 0, f can be constructed such that

dimH K (f ) = dimH(J(f )\A(f )) < α.

4 ** dimP J(f ) = 1.
5 ** J(f ) has locally finite 1-dimensional Hausdorff measure.
6 ** f can be constructed to have arbitrarily slow growth.

‘In our example, J(f ), J(f )\A(f ) and (J(f ) ∩ I(f ))\A(f ) are each as small as is possible for a transcendental entire

function; in some sense, our example is the "least chaotic" or "most normal" transcendental entire function’.



This talk

In this talk we sketch the construction and proof of Bishop’s
result (excluding asterised items).
All errors and omissions are mine; in particular I may have
omitted important elements of the proof in my attempt to
present only the basic structure.
We write f ≈ g to indicate that, in some domain, the
functions f and g are very close to being equal, in a way
which is intuitively obvious and can be made precise. We
will only worry about the intuition.
Since the construction involves a multiply connected Fatou
component, we will consider first a simpler example of
Baker.



A multiply connected wandering domain
Baker 1963, 1976

Define a transcendental entire function g by

g(z) = cz2
∞∏

k=1

(
1 +

z
ak

)
.

Here c > 0 is small, a1 > 0 is large, and we set

an+1 = ca2
n

n∏
k=1

(
1 +

an

ak

)
.

Note that, for large n, we have an+1 ≈ g(an).



Behaviour near the origin

If |z| is small then g(z) ≈ cz2.
Hence g has an attracting Fatou component near the origin.



Behaviour far from the origin

Set An = {z :
√

an ≤ |z| ≤ a2
n}.

Set Bn = {z : a2
n < |z| <

√
an+1}.

If n is sufficiently large ....
In An we have g(z) ≈ const · zn+1

(
1 + z

an

)
.

In Bn we have g(z) ≈ const · zn+2.
If |z| =

√
an, then |g(z)| < √an+1.

If |z| = a2
n, then |g(z)| > a2

n+1.
Hence g(An) ⊃ An+1 and g(Bn) ⊂ Bn+1.
Hence Bn ⊂ F (g), and Bn must be contained in a multiply
connected Fatou component.



Bishop’s approach

Bishop modifies Baker’s function so that:

There is no ‘gap’ between small modulus behaviour and
large modulus behaviour.
The ‘error’ between the function and its approximation is
very small.
The Julia set can be partitioned into three subsets, the size
of each of which can be controlled:

Points whose orbit – eventually – stays near the origin.
Points whose orbit – eventually – always ‘jumps’ up an
annulus.
Points which ‘jump’ down annuli infinitely often.



Near the origin: the dynamics of T2

Define a function T2(z) = 2z2 − 1.
The following diagram commutes:

Hence J(T2) = [−1,1], and all other points iterate to
infinity.



Near the origin: the dynamics of pλ

Define a function pλ(z) = λT2(z), for λ > 1.
pλ maps two small intervals to [−1,1]; all other points
iterate to infinity.
p◦kλ maps 2k small intervals to [−1,1].
A simple calculation based on the size and number of
these intervals shows that dimH J(pλ)→ 0 as λ→∞.



The definition of the function

Choose λ > 1 arbitrarily large, so that dimH J(pλ) < α.
Choose R1 > 0 large and K0 ∈ N large.
Define a sequence of (large, increasing) integers (mk )
(which depend on K0) – to be specified later.
Define a transcendental entire function f by

f (z) = pλ(z)◦K0

∞∏
k=1

(
1− 1

2

(
z

Rk

)mk
)
.

Here we set

Rn+1 = pλ(2Rn)◦K0

n∏
k=1

(
1− 1

2

(
2Rn

Rk

)mk
)
,

so that Rn+1 ≈ f (2Rn).



To get an idea ....

Choose K0 = R1 = 10.
Then m1 ≈ 103, m2 ≈ 21000, R2 ≈ 10300.

f (z) ≈ pλ(z)◦10
(

1− 1
2

( z
10

)1000
)(

1− 1
2

( z
10300

)21000)
. . . .



Approximating the function: 1

If |z| < R1/2, then f (z) ≈ pλ(z)◦K0 .
Hence there is a Cantor repeller E ⊂ {z : |z| ≤ R1/2} with
dimH E < α.



Approximating the function: 2

If n ∈ N and Rn/2 ≤ |z| ≤ Rn+1/2, then

f (z) ≈ pλ(z)◦K0

n∏
k=1

(
1− 1

2

(
z

Rk

)mk
)

(1)

≈ const · z2K0+
∑n−1

k=1 mk

(
1− 1

2

(
z

Rn

)mn
)

(2)

= const ·
(

z
Rn

)mn
(

2−
(

z
Rn

)mn
)
. (3)

Note that the (mn) are chosen to give equality in (3).
If n ∈ N and 3Rn/2 ≤ |z| ≤ Rn+1/2, then

f (z) ≈ const · z2mn . (4)



The geometry of T2: part 1

Recall T2(z) = 2z2 − 1.

Image (part): Bishop (2012)



The geometry of T2: part 2

Define a function Hn(z) = zn(2− zn) = −T2

(
zn−1√

2

)
.

Image (part): Bishop (2012)

Hn is conformal in the ‘petals’.
Hn is 2n-1 elsewhere.
These facts will be used later when counting preimages.



The geometry of T2: part 3

Note that we have shown that f (z) ≈ const · Hn(z/Rn),
where the constant is comparable to Rn+1.
Indeed, this fact motivated our choice of the (mk ) and the
structure of the polynomials in f .

Image (part): Bishop (2012)

Hence we have good control on the behaviour of f .



Behaviour far from the origin, i.e. |z| ≥ R1/2

Set An = {z : 1/2Rn ≤ |z| ≤ 4Rn} (includes petals).
Set A′n = {z : 3/2Rn ≤ |z| ≤ 5/2Rn} (outside petals).
Set Bn = {z : 4Rn ≤ |z| ≤ 1/2Rn+1} (far from petals).
From the previous approximations, it is straightforward to
show that f (A′n) ⊃ An+1 and hence f (Bn) ⊂ Bn+1.
Hence Bn ⊂ F (f ), and Bn must be in a multiply connected
Fatou component.



F (f ) and J(f )



Partition the Julia set

For k ≤ 0, set Ak = {z : |z| ≤ R1/2, f k+1(z) ∈ A1}.
Set A =

⋃∞
k=−∞ Ak .

Set B =
⋃∞

k=1 Bk .
The orbit of a point z must eventually:

Land in B in which case z ∈ F (f ) ∩ A(f ). We have no
further interest in these points.
Land in E . Let the set of these points be E ′, and note that
E ′ ⊂ J(f ) ∩ K (f ).
Always lie in A, i.e. z ∈ X := ∩∞n=1f−n(A). We further
partition this set as follows:

Z ⊂ X consists of those points whose orbit, eventually
always ‘goes up’ an annulus. Note that Z = J(f ) ∩ A(f ).
Y ⊂ X consists of those points whose orbit, fails to ‘goes up’
an annulus infinitely often. Note that Y ⊂ J(f )\A(f ).



The result follows from the following.

Lemma 5

If S ⊂ C, then dimH f−1(S) = dimH f (S) = dimH S.

Lemma 6

dimH E ′ = dimH E < α.

Lemma 7

dimH Z = 1.

Lemma 8

dimH Y ∩ Am ≤ α, for m ∈ Z.
Moreover, for z ∈ Y, let m(z) = min{m : ∃n s.t. f n(z) ∈ Am}.
Then dimH{z ∈ Y : m(z) ≥ m} → 0, as m→∞.



If S ⊂ C, then dimH f−1(S) = dimH f (S) = dimH S.

This follows from standard properties of Hausdorff dimension
for any non-constant entire function.



dimH E ′ = dimH E < α.

This follows from the previous lemma, and the size of E .



dimH Z = 1.

By the earlier lemma, we only need to estimate, for each
m ∈ N, the dimension of {z ∈ Z : f n(z) ∈ Am+n, for n ≥ 0}.
For n ≥ 0, consider the nested topological annuli

Γm,n = {z ∈ Am : f j(z) ∈ Am+j , for j = 1, . . . ,n}.

Recall that f is very closed to a monomial in each A′n.
It can be deduced that the widths of the Γm,n decrease to
zero uniformly in n, and these sets limit on a smooth
Jordan curve.



Penultimate slide, final lemma.

Lemma 9

dimH Y ∩ Am ≤ α, for m ∈ Z.
Moreover, for z ∈ Y, let m(z) = min{m : ∃n s.t. f n(z) ∈ Am}.
Then dimH{z ∈ Y : m(z) ≥ m} → 0, as m→∞.

We cover Y ∩ Am with nested collections of sets W , where
W is such that f n−1(W ) ⊂ Ak ′ and f n(W ) = Ak , where
k < k ′.
We can count the number of such preimages using the
previous comments on the multiplicity of Hn.
We can estimate the diameters of these preimages using
the scaling properties of Hn.
Both parts of the lemma can be derived from these facts.



Thanks

Thanks to Chris Bishop for his assistance with the preparation
of these slides.


