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Dimensions of sets — revision: 1

f is a transcendental entire function.

Proposition 1
dimyF(f) € {0,2}.

Proposition 2
dimy J(f) € [1,2].




Dimensions of sets — revision: 2

Theorem 1 (Stallard, 1997, 2000)

For each p € (1,2] there is a transcendental entire function f
such that dimy J(f) = p.

Theorem 2 (Stallard, 1996)
Iff € B, thendimy J(f) > 1.

Theorem 3 (Stallard, 1994)
dimy K(f) > 0.



What about dimension equal to one?

Theorem 4 (Bishop, 2012)

There is a transcendental entire function f such that:
dimy J(f) = dimy J(f) N A(f) = 1.
dimp(/()\A(f)) = 0.

Given o« > 0, f can be constructed such that
dimy K(f) = dimy(J(F)\A(f)) < a.

“*dimp J(f) = 1.
**J(f) has locally finite 1-dimensional Hausdorff measure.
A **f can be constructed to have arbitrarily slow growth.

‘In our example, J(f), J(f)\ A(f) and (J(f) N I(f))\ A(f) are each as small as is possible for a transcendental entire

function; in some sense, our example is the "least chaotic" or "most normal" transcendental entire function’.



This talk

m In this talk we sketch the construction and proof of Bishop’s
result (excluding asterised items).

m All errors and omissions are mine; in particular | may have
omitted important elements of the proof in my attempt to
present only the basic structure.

m We write f =~ g to indicate that, in some domain, the
functions f and g are very close to being equal, in a way
which is intuitively obvious and can be made precise. We
will only worry about the intuition.

m Since the construction involves a multiply connected Fatou
component, we will consider first a simpler example of
Baker.



A multiply connected wandering domain

Baker 1963, 1976

Define a transcendental entire function g by

9(z) = szklj (1 + azk) :

Here ¢ > 0 is small, a; > 0 is large, and we set

n

_ A2 an
aniq = ca,,k1:[1 (1 + a}() .

Note that, for large n, we have a, 1 ~ g(an).



Behaviour near the origin

If |z| is small then g(z) ~ cz°.
Hence g has an attracting Fatou component near the origin.



Behaviour far from the origin

m Set A, ={z:a, <|z| < &}.

mSetB,={z:8<|z| <@}
m If nis sufficiently large ....

m In A, we have g(z) ~ const - z*" (1 + ai)
In B, we have g(z) ~ const - z"2,

If |2| = /@, then [g(2)| < \/@nr1.
If |z| = &2, then |g(2)| > &_,.

Hence g(An) D Any1 and g(By) C Bpys.

Hence B, C F(g), and B, must be contained in a multiply

connected Fatou component.



Bishop’s approach

Bishop modifies Baker’s function so that:

m There is no ‘gap’ between small modulus behaviour and
large modulus behaviour.

m The ‘error’ between the function and its approximation is
very small.

m The Julia set can be partitioned into three subsets, the size
of each of which can be controlled:

m Points whose orbit — eventually — stays near the origin.

m Points whose orbit — eventually — always ‘jumps’ up an
annulus.

m Points which jump’ down annuli infinitely often.



Near the origin: the dynamics of T,

m Define a function Ty(z) = 222 — 1.
m The following diagram commutes:

z— 222 —1
Cc\[-1,1] ——— C\[-1,1]

zr—>%(z+%) z»—>%(z+%)

(zilz] > 1) ————— (o 2] > 1}
z > 22

m Hence J(Tz) = [—1, 1], and all other points iterate to
infinity.



Near the origin: the dynamics of p,

m Define a function py(z) = AT(2), for A > 1.

m p, maps two small intervals to [—1, 1]; all other points
iterate to infinity.

m p5k maps 2% small intervals to [-1,1].

m A simple calculation based on the size and number of
these intervals shows that dimy J(py) — 0 as A — oc.



The definition of the function

m Choose \ > 1 arbitrarily large, so that dimy J(p)) < «.
m Choose Ry > 0 large and Ky € N large.

m Define a sequence of (large, increasing) integers (my)
(which depend on Kj) — to be specified later.

m Define a transcendental entire function f by
ad 1/ z\™
_ oKy L i
1@-p@ I (1-5 (7))
k=1
m Here we set

n m,
1 /2R k
Aot = a2 T] (1-5 (7))

k=1

m sothat R,.1 ~ f(2Rp).



To get an idea ....

m Choose Ky = Ry = 10.
m Then my =~ 103, my ~ 21000 R, ~ 10300,
n

1@ =m@(1-3(5)) (1-3 Gga) )



Approximating the function: 1

m If |z| < Ry/2, then f(z) ~ py(z)°Fe.
m Hence there is a Cantor repeller E C {z: |z| < Ry/2} with
dimy E < a.



Approximating the function: 2

mlfneNand R,/2 < |z| < Ry1/2, then

e (T I

k=1

~const - 205 m (11 (Z\")
2 \ R,

= const - <szn> m,, (2 — (;n) m,,> : (3)

m Note that the (m;) are chosen to give equality in (3).
m IfneNand3R,/2 < |z| < Rp:1/2, then

f(z) ~ const - z2™, (4)



The geometry of T,: part 1

Recall T(z) = 222 — 1.

Image (part): Bishop (2012)



The geometry of T,: part 2

m Define a function H,(2) = z"(2 - z") = - T (z:/;)'

[Hio(2)] =1

Image (part): Bishop (2012)
m H, is conformal in the ‘petals’.

m H,is 2n-1 elsewhere.

m These facts will be used later when counting preimages.



The geometry of T,: part 3

m Note that we have shown that f(z) ~ const - H,(z/Rn),
where the constant is comparable to R, 1.

m Indeed, this fact motivated our choice of the (my) and the
structure of the polynomials in f.

[Hio(2)] =1

Image (part): Bishop (2012)

m Hence we have good control on the behaviour of f.



Behaviour far from the origin, i.e. |z| > R;/2

m Set A, ={z:1/2R, < |z| < 4Ry} (includes petals).

m Set A, ={z:3/2R, < |z| <5/2R,} (outside petals).

m Set B, ={z:4R, <|z| <1/2R, 1} (far from petals).

m From the previous approximations, it is straightforward to
show that f(A},) D An+1 and hence f(B,) C Bpy1.

m Hence B, C F(f), and B, must be in a multiply connected
Fatou component.



Components of f=1(A4,),7 <n
‘Type 1T’ Fatou

Components of f72(A;),j <n+1

B, Ant1 > Bnia

Component of f=2(A,2)

Component of f~!(An41) Component of f=1(A4,,42)
‘Type I’



Partition the Julia set

m Fork <0,set Ay ={z:|z| < Ry/2,fk1(2) € Ay}.
m Set A= Uﬁ—oo Ak.
m The orbit of a point z must eventually:
m Land in B in which case z € F(f) N A(f). We have no
further interest in these points.
m Land in E. Let the set of these points be E’, and note that
E' C J(f) N K(f).
m Always liein A, i.e. z € X := N2, f~"(A). We further
partition this set as follows:
B Z C X consists of those points whose orbit, eventually
always ‘goes up’ an annulus. Note that Z = J(f) N A(f).

B Y C X consists of those points whose orbit, fails to ‘goes up’
an annulus infinitely often. Note that Y C J(f)\A(f).



The result follows from the following.

Lemma 5

If S C C, thendimy f~1(S) = dimy f(S) = dimy S.

Lemma 6

dimy E' = dimy E < a.

Lemma 7
dimyZ = 1.

Lemma 8

dmy YN An < a, formeZ.
Moreover, forz € Y, let m(z) = min{m : 3n s.t. f"(z) € Am}.
Thendimy{z € Y :m(z) > m} — 0, as m — oc.




If S c C, then dimy, f~(S) = dimy £(S) = dimy S.

This follows from standard properties of Hausdorff dimension
for any non-constant entire function.



dimy E' = dimy E < «.

This follows from the previous lemma, and the size of E.



m By the earlier lemma, we only need to estimate, for each
m € N, the dimension of {z € Z : f"(z) € Am4n,for n> 0}.

m For n > 0, consider the nested topological annuli
Cmn={Z€An:F(2) € Any, forj=1,...,n}.

m Recall that f is very closed to a monomial in each A,

m It can be deduced that the widths of the I'p, , decrease to
zero uniformly in n, and these sets limit on a smooth
Jordan curve.



Penultimate slide, final lemma.

dimy YNAn < «, forme Z.
Moreover, forz € Y, let m(z) = min{m : 3n s.t. f"(z) € Am}.
Thendimy{z € Y :m(z) > m} — 0, as m — oc.

m We cover Y N A, with nested collections of sets W, where
W is such that "~ (W) c Ax and (W) = Ak, where
k<K.

m We can count the number of such preimages using the
previous comments on the multiplicity of Hp.

m We can estimate the diameters of these preimages using
the scaling properties of Hj,.

m Both parts of the lemma can be derived from these facts.



Thanks to Chris Bishop for his assistance with the preparation
of these slides.



