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1. STATEMENT OF RESULTS

If K C R” is compact, let N(K,¢) be the minimal number of ¢
balls needed to cover K. We define the upper and lower Minkowski

dimension as

___ log N(K
Mdim(K) = lim sup 082, ¢) (K, )
0 log1/e
log N(K
Mdim () = lim inf 228 VU9
=0  logl/e

If the two values agree, the common value is simply called the Minkowski
dimension of K and is denoted Mdim(K).

Consider a group G' of Mobius transformations acting on the two
sphere S?. Such transformations are identified elements of PSL(2, C)
in a natural way and G is called Kleinian if it is discrete in this topology
(i.e., the identity is isolated in G). G is called elementary if it contains a
finite index Abelian subgroup. In this paper we will consider only non-
elementary groups. For a non-elementary group, the limit set, A(G),
is the accumulation set (on S?) of the orbit of any point z, € S? (and
is independent of the point). The complement Q(G) = S?\ A is called
the ordinary set. In this paper we will always assume (2 is non-empty
and that the group is conjugated in PSL(2,C) so oo € (.

For any Kleinian group, the quotient R = €)/G is a union of Riemann
surfaces. We say that G is analytically finite if R= R, U---U R, is a
finite union of finite type surfaces (i.e., each R; is compact or compact
with a finite number of punctures). The Ahlfors finiteness theorem

says that if GG is finitely generated then G is analytically finite.
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If zp € Q(G) then the critical exponent (or Poincaré exponent) is

defined as

6(G) = inf{s: > dist(g(20), A)* < o0},

geG

where distance is in the spherical metric. It is easy to show it does
not depend on the choice of z;. Usually §(G) is defined by extending
the action of G on S? to a group of isometries of the hyperbolic 3-ball

B* C R, and then considering the series

EG:eXp(l — 19(0)])*.

However, it is easy to see that this definition gives the same number.

Theorem 1.1. Suppose G is an analytically finite, non-elementary

Kleinian group. If area(A(G)) = 0 then §(G) = Mdim(A(G)).

The assumption that G is non-elementary is needed in Theorem 1.1,
for if G is a rank 1, cyclic, parabolic group then §(G) = 1/2, but A is

a single point. Define the Hausdorff content
HY(K)=if{) r{: K CU;D(z;,r;)},
(the infimum is over all coverings of K by disks ) and
dim(K) = inf{a : H(K) = 0}.

This is the Hausdorff dimension of K and it is easy to see that dim(K) <
Mdim(K). Jones and I proved that 6(G) < dim(A) for any non-
elementary Kleinian group (Theorem 1.1 of [4]). Combining this result

and Theorem 1.1 we easily deduce



MINKOWSKI DIMENSION AND THE POINCARE EXPONENT 3

Corollary 1.2. If G is an analytically finite Kleinian group then the

Minkowski dimension of A exists and equals the Hausdorff dimension.

Corollary 1.3. If G is an analytically finite, non-elementary Kleinian

group and A(G) has zero area then 6(G) = dim(A).

Different proofs of these results are given in [3] and [4] using esti-
mates for the heat kernel on the hyperbolic 3-manifold associated to
the Kleinian group G. The proof given here does not require these
techniques, i.e., it is a purely “two-dimensional” argument. As such,
it may be easier to adapt to other settings, e.g., Julia sets of rational
mappings.

G is called geometrically finite if it is finitely generated and there is
a finite sided fundamental polyhedron for the action of G on B. The
limit sets of such groups must have zero area [2], so our results apply to
them. For geometrically finite groups, Corollary 1.2 was independently
established by Stratmann and Urbanski in [11]. Corollary 1.3 is also
well known in this case, e.g., [12].

The sections of the paper are organized as follows.

Section 2: We define a related critical exponent dwpiy and show
Swhit (K) < Mdim(K) for any compact K, with equality if area(K)
0.

Section 3: We show 6 < dwye for analytically finite groups with
equality if Q(G)/G is compact.

Section 4: We define good and bad horoballs and prove a lemma,

giving some of their properties.



4 CHRISTOPHER J. BISHOP
Section 5: We prove the main theorem when most horoballs of GG
are good.
Section 6: We prove the theorem in the case dim(A) = 2.
Section 7: We state a lemma and finish the proof assuming the
lemma and dim(A) < 2.

Section 8: We prove the lemma.

Notation: In this paper A ~ B means that A/B is bounded and
bounded away from 0. Given a square S in the plane and A > 0, AS
denotes the concentric square with diam(\S) = Adiam(S).

I thank the referee for carefully reading the manuscript and supplying

many suggestions which greatly improved the exposition.

2. WHITNEY SQUARES AND MINKOWSKI DIMENSION

A Whitney decomposition of a domain Q C R is a collection of

disjoint (except for boundaries) squares {Q,} such that = U;Q; and
diam(Q) < dist(Q;,09) < 4diam(Q);).

The existence of a Whitney decomposition for any open set is a stan-
dard fact in real analysis (e.g., Theorem VI.1 of [10]). One can simply
take a maximal collection of dyadic squares in €2 such that dist(Q), 0€2) <
diam(Q).

For any compact set K C R* we can define an exponent of conver-
gence

Ownit = Ownit (K) = inf{s : > diam(Q;)* < oo}
Qj:dist(Q;,K)<1
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The sum is taken over all squares in a Whitney decomposition of 2 =
K¢ which are within distance 1 of K (we have to drop the “far away”
squares or the series will not converge). It is easy to check that this

does not depend on the particular choice of Whitney decomposition.

Lemma 2.1. For any compact set K, Sypyy < Mdim(K). If, in addi-

tion, area(K) =0 then dwpy = Mdim(K).

Proof. Suppose {Q,} is a Whitney decomposition of Q2 = R* \ K. For
each @; with diam(Q;) < diam(K), there is a dyadic cube @ of the
same size which hits K and satisfies dist(Q;, Q) < Cdiam(Q);). Clearly
each @) is associated to only a bounded number of Whitney cubes.
Therefore the number of dyadic cubes of size 27" which hit K is at least
C2r0wit=9) (for n large enough, depending on €). Thus Sy (K) <
Mdim(K).

Conversely, if K has zero area, () is a dyadic square hitting K and

{Qx} is the collection of Whitney squares for {2 contained in @), then
> diam(Qy)* = diam(Q)*.
k

Hence for any s < 2, (since diam(Q) < 1),

> diam(Qy)® > diam(Q)°.
k

Mdim(K)

Since there are more than C'2™( ~9) such squares @, the sum over

the whole Whitney collection is greater than

2" 2n(Mdim(K) —e€)

which diverges if s < Mdim(K') — e. Thus dwpnit(K) > Mdim(K), as

desired. m
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We can have strict inequality if K has positive area. For example,
one can choose a set of disjoint disks D(x;,r;) C D(0,1), so that
K = D(0,1) \ U; Dy, is nowhere dense, has positive area and r; — 0 as
fast as we wish. If we sum the Whitney decomposition of a single disk
we get

Z diam(Q);)* ~ T,
QrCDj
if s > 1 and equals oo if s < 1. By taking r; — 0 very fast, we can get
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3. WHITNEY SQUARES AND THE POINCARE SERIES

In this section we explain the elementary relations between § and
OWhit -

Suppose € is a domain in S? with more than two boundary points.
Then Q has a hyperbolic metric p defined by the covering map from
the disk to Q. Let d(z) = dist(z, 092). For a general domain (e.g., [6],
Theorem 4.3),

(14 o(1))|dz| |dz|
< |d <2——. 1
I Tog1/d(z) = PR = 250 (3:1)
A set K C R is called uniformly perfect if there is a constant C' < oo
so that
1 |dz| |dz|
——<d <2——
Cdz) = |dp(2)| < i)

on each component 2 of S?\ K. (This is one of many equivalent
definitions; see [7] and [8].)

The limit set of any finitely generated group is uniformly perfect, [9],
[5]. In fact, the proof in Canary’s paper [5] shows this is true under the
weaker assumption that there is an ¢y > 0 so that any closed geodesic
on €2/G has length > €. This is certainly true {2/G is a finite union
of finite type surfaces, so the result is still true for analytically finite

groups.

Lemma 3.1. If G is any non-elementary Kleinian group with A # S?
then & < dwnie. If QG)/G is compact then 6 = Swhpi.

Proof. Fix a point zy € Q(G) (not an elliptic fixed point). There is

a small hyperbolic disk around z, (with radius ry depending on z)
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which projects injectively to R = /G under the quotient map. Thus
points in G(zp), the orbit of zy under G, are separated by at least 7y in
the hyperbolic metric. By (3.1) each Whitney square has a uniformly
bounded hyperbolic diameter and area. Thus each Whitney square for
Q2 = S?\ A contains at most a bounded number M (depending on zg
and G) of points in G(zp). Therefore,

> dist(g(z0),A)" < M} diam(Q;)*

9eG
and hence 6(G) < dwnit(A(G)).

Now suppose R = Q(G)/G = R,U- - -UR; is a finite union of compact
Riemann surfaces. We can choose points E = {z1,...,2,} C Q, so
that z; projects into R;, 7 = 1,...,s under the quotient map. By
compactness, any point z € () is a bounded hyperbolic distance from
G(E), the orbit of E under G. For each square @ with dist(Q,A) <
1, choose a closest point zg € G(E). Then zq is only a bounded

hyperbolic distance from @ so the uniform perfectness of A implies
diam(Q) < Cdist(zg, A).

Furthermore, only a bounded number (say M) of the @);’s are associ-

ated to any given point of G(F). Thus

Zdiam(Qj)s < MC* YD Y dist(g(z), A)?,

2;€E geG

and therefore dywnit(A(G)) < 0(G). O

One of the main results of [3] is that dwpi; = J for any non-elementary

analytically finite group. This fact and Lemma 2.1 imply Theorem 1.1,
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but the fact seems harder than the theorem. The purpose of this note is

to give a proof of the theorem that does not require proving dwpnis = 0.
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4. GOOD AND BAD HOROBALLS

A horoball in Q(G) is a Euclidean ball B C 2 C §? which is invariant
under a rank 1 parabolic subgroup of G. The fixed point p of the
parabolic element is on the boundary of the horoball and corresponds
to a cusp on the surface Q(G)/G. We say that B is doubly cusped it
there is a another (disjoint) ball B; fixed by the same subgroup.

Suppose R = Q(G)/G is a finite union of finite type Riemann surfaces
Ry,...,Ry,i.e., each is a compact surface with at most a finite number
of punctures. Let {p1,...,pn} be the punctures in R = UY | R;, and for
each p; let B be a neighborhood of p; which lifts to a Euclidean ball B;
in Q which is invariant under some parabolic element of G' (see Lemma
1L of [1]). Then X = R\ U;B; is compact, so we can choose a finite
set of points B = {z1,...,2p} C Q(G) which project to an 1-dense
subset of X (i.e., every point of X is within hyperbolic distance 1 of a
point of E). For the reminder of the paper we fix a finite collection of
such horoballs B = {B|}, one from each equivalence class of horoballs
in Q. It will also be convenient to assume that B; is contained inside a
larger horoball B; C Q of twice the Euclidean diameter (we can always
do this by just taking smaller balls if necessary). If oo € Q then we
may also assume that oo is not contained in any of the B;. Finally, if a
parabolic point is doubly cusped, we require that B contain horoballs
of equal size for both “sides” of the parabolic point.

For z € Q(G) we define d(z) = dist(z,A) in the Euclidean metric.

Normalize the group so that co € 2 and A(G) has diameter 1. Now
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suppose p is a parabolic fixed point of G and that B C €2 is a horoball
at p. By our remarks above, B must be the image of one of our finite
collection of horoballs { B;} under some element g of G, i.e., B = ¢(B;).

We would like to call B good or bad depending on whether the
map g : B; — B is “close” to being linear. Using a linear Mobius
transformation we can map p to 0 and the horoball B to the disk
D(i/2,1/2). The parabolic element of G fixing p is conjugated by the

linear map to a transformation of the form

We define n(B) = |n|. Given n > 0, we say a horoball B = ¢g(B;) is a
“n-bad” horoball if n(B) < 7, and is n-good otherwise.
A helpful way to think about good and bad horoballs is as follows.

Suppose h is a generator of the parabolic subgroup fixing B. Define

n'(B) = ke 4 |§i{:111(_32)| '

Then its easy to see n ~ 1. In other words, B is n-bad if the parabolic
subgroup fixing B has a generator which is close to the identity on B.
Alternatively, the group G looks less and less discrete on horoballs with

smaller and smaller 7.

Lemma 4.1. Suppose G is analytically finite and normalized so that
oo € Q(G) and diam(A) = 1. Fiz a finite collection of horoballs B as

above, and assume oo is not in any of these horoballs. Then
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1. Thereis a Cy (depending only onn) so that for any n-good horoball

B, and any w € 0B, there is a point z € G(E) such that

Crld(w) < d(z) < Crd(w),

Crld(w) < |z — w| < Cid(w).

2. There is a 1y so that if B is ny-bad then it is singly cusped, i.e.,
there is not a disjoint horoball also tangent to p.

3. Thereis ans > 0 so that if n < n3 and B is n-bad and D(z,r) C Q
with 2 diam(B) < dist(x, B) < diam(B)/(2n), then r < Condist(z, B)?,
where the constant Cy depends only on G.

4. For any 0 > 0 there is a ny > 0 (depending only on &) such
that of B s a ny-bad horoball then there is a disk D C 3B such
that diam(D) > zdiam(B), and D\ A contains no balls of radius
> ddiam(D).

5. There isns > 0 so that if By, By are ns-bad horoballs with diam(B;) <
diam(By) then dist(B,, Bs) > 100diam(By).

6. If By, By are horoballs with

diam(By) < diam(Bs) < 2diam(By),

and dist(By, By) < Adiam(By), then both By and By are A=*-good.

Proof. To prove (1), note that it is true for all the balls in B by finite-
ness. If B is n-good then B is the image of some B, in our fixed, finite
collection under a map which is the composition of conformal linear

map and a map of bounded distortion (depending on 7).
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To prove (2), suppose Bj, By € B are paired horoballs at a doubly
cusped parabolic point p with parabolic generator h. For : = 1,2, let
z; be the point on 0B; farthest from p and consider the the cross ratio
of z1,h(z1), 22, h(22). Now suppose B = ¢(By) is some n-bad image of
By, and suppose we have chosen ¢ so |g(2z1) — ¢g(p)| is maximized among
elements mapping B; to B. Since cross ratio is preserved by Mobius

transformations we can deduce that

19(21) = g(h(21))] = [9(21) = g(22)[ = |g(22) = g(h(22))] = ndiam(B).

Thus all four points are mapped within C'n(B)diam(B) of g(z;). If n is
small enough, this is only possible if co € g(Bs), contrary to hypothesis.

To prove (3) note that it is enough to do it in the case when p = 0,
B = D(i/2,1/2) and the subgroup fixing p is generated by

z

M=) = 1+nz

Then

x
+nx
Suppose Cy > 100C, and that r > Cyndist(z, B)?. Then both z and

|h(z) —z| = |z — ; | < 2n)z|? < Condist(z, B)*.

h(x) are in the disk D(z,r) C € so the line segment connecting them
projects to a loop on /G of hyperbolic length < 10Cy/Cs. If Cy is
large enough (depending only on G, this implies the loop is contained
in a neighborhood of a cusp on /G, thus the lift is in a horoball of €2
which is tangent to 0. This horoball is obviously not B since B does
not contain x, so there is a second horoball B" at 0. This contradicts

part (2),s0 we are done.
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The final three statements are all easy consequences of part (3). O

We noted in the previous section that if Q(G)/G is compact then
there is a close connection between the Poincaré and Whitney sums.
When there are punctures in 2(G)/G we need to take account of the
fact that horoballs contain many Whitney squares, but no orbit points.

The next observation is very easy and left to the reader.

Lemma 4.2. Suppose 2 is an open set and B C 2 is a Fuclidean ball
such that 0B N0 # 0. Let {Q;} be a Whitney decomposition for Q.
Then if s > 1,

> diam(Q;)° ~ diam(B)®,
J:QiNB#D
where the constants depend only on s.

The following will be useful later.

Lemma 4.3. Suppose G 1is analytically finite and E C € is a finite
set with one point in each equivalence class of components. Assume
the group has been normalized so oo € Q. Suppose {Q;} is a Whitney
decomposition for Q(G), and let B be a choice of horoballs for G as
above. Then if s > 1,

S diam(Q;)° = Y Y dist(g(z),A)* + Y diam(B)°,

Jrdiam(Q;)<1 z€E geG BeB
where the constants depend on G, s, E,B. If n > 0 then
oo diam(Qy)° ~ > Y dist(g *+ Y diam(B)’,
Jrdiam(Q;)<1 2€E geG BeBn(B)<n

where the constants depend on G, s, E, B, n.
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Proof. The first equation is simply the observation that Whitney squares
which do not hit any horoballs can be associated (as in the previous sec-
tion) to orbits of E, whereas the Whitney squares which hit a horoball
are controlled by the previous lemma. The second equation is proved
using part (1) of Lemma 4.1 to associate to each n-good horoball a
nearby orbit point. Thus the part of the horoball sum we are omitting

is controlled by the orbit sum. O

5. THEOREM 1.1 WHEN (G HAS MANY GOOD HOROBALLS
We now start the proof of Theorem 1.1. It is enough to prove

Theorem 5.1. If G is an analytically finite group and area(A(G)) = 0
then §(G) = dwnit(A(G)).

Let D = Mdim(A) = dwpit(A(G)) and d = dim(A). If G has no par-
abolic elements then 2(G)/G is compact, and we have already proven
this case in Lemma 3.1. Therefore we may assume G has parabolics.
This implies 6(G) > 1/2. If D = 1/2, we have nothing to do, so we
may assume that D > 1/2.

Suppose € > 0 is so small that D —e > 1/2. Let E = {zy,..., 25} be
a finite collection of points in €2, one projecting to each component of

2/G. We will show that

and thus §(g) > D.

Choose an integer ng so that

N(A,27™) > 1000 - 2moP=</?),
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D=¢/2) glements we claim

By passing to a subcollection with at least 27
that we may assume that for any two squares S;, Si, we have 95,195, =
(). This is easy. Just enumerate the list of squares and inductively
remove any square Sy for which there is a j < & with 95; N 9S;, # 0.
Since 95; N 9S, # 0 implies Sy C 15S;, each S; can cause at most
302 = 900 later squares to be removed. Thus the final list has at least
2m0(D=¢/2) elements.

Let r = 3-2™. Let S = {§} be a collection of 2"0(P~</2) squares
of size r so that the triples 35, are pairwise disjoint and %Sk NA#£D
for each k.

First we deal with the case when most of the horoballs of size r are
good. Let n > 0 (to be fixed later). For each n-good horoball with
diam(B) > r/3, let Gs be the collection of squares in S which are such

that %S hits B. Let G be the union of all the Gg.

The proof breaks into three cases:

L. #(8NG) > 2#(S) for all large enough n.

2. dim(A) = 2.

3. #(SNG) < 2#(S) for infinitely many n and dim(A) < 2,

If 7 is chosen small enough (depending on G) then one can show
the last case is impossible (e.g., [4]). However, this is hard result using
heat kernel estimates on hyperbolic 3-manifolds and one of our purposes

here is to give a self-contained proof that uses only two dimensional

techniques.
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Proof of case 1: By part (1) of Lemma 4.1 there is an orbit point
z € G(F) N B such that d(z) ~ diam(B). For this point,
d(z)?~¢>C Y diam(S)P

Segn

If more than half the squares in S belong to G then this argument

shows
1
Z d(Z)D—e > _C’2TLO€/2'
2€G(E) 2
If this happens for arbitrarily large ny then
> d(z)P~¢ = oo,
2€G(E)

so we have shown that 6(G) > D — ¢, as desired. This is the end of

case (1).
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6. PROOF OF CASE (2) OF THEOREM 1.1

Case 2 follows easily from the following.

Lemma 6.1. Suppose G is a analytically finite Kleinian group, nor-

malized so oo € Q(G) and diam(A(G)) = 1. If Swpir = 2 then 6 = 2.

Proof. We know the lemma if Q(G)/G is compact (see Section 2), so
we may assume that (G) contains horoballs. Consider the sum over

all Whitney squares for €2,

Z diam(Q;)*~*.

J
By the definition of dwni, this diverges. Using Lemma 4.3 we can split
the sum into two pieces; one corresponding to all squares (); which
hit some horoball and the other corresponding to all Whitney squares
which miss every horoball, i.e.,

> diam(Qy)*7 = > > dist(g(2),A)* > + > diam(B)**.

J:diam(Q;)<1 z€E geG BeB

If the first sum on the right diverges then § > 2 — 2¢ and we are
done. Thus we may assume the second sum on the right diverges for
all e > 0. Thus if

B, = {B: €"\">® < diam(B)) < €7},

and N,, = #B,, we must have N,, > 2"2~29 for infinitely many values
of n. Fix a value of ny where this holds and note that for at least half

the balls B in B\ there is a second ball B' e B, such that

dist(B, B') < 27179 < diam(B)2",
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otherwise we would have so many disjoint balls of radius 27"~ that
they could not all be contained in a bounded neighborhood of A (recall
that diam(A) = 1).

By part (4) of Lemma 4.1, this implies that for such a pair both B
and B’ are 2**-good horoballs. Let G\, C B, be the subcollection
of 272"_good horoballs. For any n-good horoball B let z be the point
given in part (1) of Lemma 4.1 such that d(z) > Cndiam(B). Let H be
the parabolic subgroup fixing B;. Then an easy calculation shows that
there are at least C'p~" orbits of z under H with distance > Cndiam(B)

from A. Thus

> d(h(2))* > Cdiam(B)"n" ",

heH

for any 1 < a < 2 and some C depending on G and «.
Thus if z; is the good point in B; given by (1) of Lemma 4.1,

> A=) > C 3 Y d(hf(z)°

2€G(E) B;€G\, kEZ
> C Y diam(B)*27%mole=l)
Bjeqy,
> 02710(275)27n0a2725n0(a71).
Taking € = 0 and solving for o we see this diverges for small enough €

if a < 2. Thus § > 2, as desired. O

7. THEOREM 1.1 WHEN (G HAS FEW GOOD HOROBALLS

We now do case 3, i.e., we assume that fewer than half the elements
of § are in G for all large enough ny (i.e., we assume most horoballs

are bad) and that dim(A) < 2. We use a stopping time construction
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which is described by the following lemma. Recall that d = dim(A)
and D = Mdim(A).

Lemma 7.1. Suppose € > 0 and r > 0. There is a constant Cy (de-
pending only on G and €) and constants ny > 0 and vy (depending on
G, € and r) such that the following holds: Suppose we have a square
S such that %S NA#( and S does not intersect any ny-good horoball
with diameter > diam(S)/3. Then either
> d(2)PC > wydiam(S)P
2€SNG(E)

or there is a collection of subsquares C(S) = {8} C S with

1. diam(S;) < rdiam(S) for all j,

2. {35} C S and are pairwise disjoint,

3. S\ A does not contain a ball of radius diam(S;)/10,
4. 32 diam(S;)* > Codiam(S)?.

We shall refer to the two possibilities as alternatives one and two re-

spectively.

Let us assume that the lemma holds and see how to finish the proof.
We will prove the lemma in the next section.

Suppose € > 0. Let Cyp = Cy(e,G) be as given by the lemma. Let
r = Oy and let 9, o be as given by the lemma.

We define generations of nested squares S;, Sy, ... as follows. Let
S, = 8, be the collection considered in the previous section; i.e., S, is a

collection of £ - 270(P=</2) squares of size r = 27" which have disjoint
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triples, so that %S N A # () and such that S does not hit any n-good
horoball of size > diam(S)/3.

Suppose S, has been defined. Let Al C S\ be the subcollection of
squares for which alternative one holds and Aé be the subcollection for

which alternative two holds. Then we define

S = U C(S).
ScAl

In other words, given S\, we define S\ by throwing away all the
squares where alternative one of Lemma 7.1 holds and for each square
S € &, where the second alternative holds we replace it by the collection
C(S) of subsquares satisfying (1)-(4) in Lemma 7.1.

To each square S € S, = U\S\ we associate a positive number j(S)

as follows. For S € S, let
w(S) = diam(S)P . (7.1)

For S € 8, n > 1, there is a unique Sy € S\_o containing S (i.e., Sp

is its “parent”) and by definition alternative two holds for Sp. Set

u(S) = diam(S)?

= T ocers diam(52" (%) (7.2)

Note that Y grces) #(S") = p(So). Let pu(n) = Fges pu(S). 1t is clear

that {u(n)}5°, is non-increasing.

Lemma 7.2. If u(n) /4 0 then dim(A) > 2 — €. (Recall v depends on
€.)
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Proof. Suppose pi(n) # 0. Then the numbers {u(S)} define a measure

positive measure on the set Y =N, Uses, S C A. We claim that

u(S) < Cdiam(S)? €,

for every square with diam(S) < r where C is a constant that depends
on the choice of ny, but not on S.

We first verify this by induction for squares in So,. If S € §,, the
claim is true by definition with C = A, = 2m02-D),

If S € S is contained in Sy € S\_«, then part (4) of Lemma 7.1

implies
flam (S diam(S)? . o
= < Ag— 77 €
1(S) Ysrec(s) diam(S")2 1(So) < OCOdiam(So)2dlam(SO)
and hence

w(S) < AyCytdiam(S)*diam(Sy)
< ApCytr“diam(S)* €

< Agdiam(S)Qfe,

as desired. Also note (for future use) that this proves the weaker esti-

mate

w(S) < diam(S)P~. (7.3)
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Now consider a general square S C Sy € S,. Let S| be the smallest

square in Sy, containing S. Suppose S} € S\_s. Then by (7.2),

ZS’ S\,S Sdiam(S,)2
uS) = o e (S
S'€8\,8'CSoo iam(5’)

diam(S)? . o
0 ngiam(51)2 dlam(SI)

AyCy tdiam(S)*diam(S;) €
dlam(SI) )75
diam(S)

IN - IA

VAN

AyCy tdiam(S)?(

VAN

AoCy tdiam(S)? €.

Thus the inequality holds for general squares with the constant C' =
AyCyt.

Thus if {S;} was any covering of A we would have

0 < p(A) <D u(S;) <O diam(S;)>
J J
Therefore, dim(A) > 2 — ¢, as desired. O

By the previous lemma if € < 2—dim(A), then we must have u(n) —
0. Assume this is the case.

Recall that A\, is the collection of all squares in S\ where alternative
one held (i.e., the construction above stopped) and Aé are the remain-
ing squares where alternative two held. Note that U,.A) is a union
of disjoint squares. For § € AX™, let A(S) be the collection of all
squares in C(S) C S\ where alternative one holds and let A (S) be the

squares where alternative two holds. For S’ € A, (S) € A\, define

v(Sh)= > dz)"

2€5'NG(E)
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Since alternative one of Lemma 7.1 holds for S’, v(S’) > vydiam(S")P~
so by (7.3) v(S") > vou(S’), (1(S") must be defined because alternative
two holds for its parent). Thus,
S ouS)zw X uS) =ws) - Y ()]
S'€Ax(S) S'eAx(S) S'eAc(S)

Therefore,

]
=
2l
v

> mlS) = X S

S'eA, S'eAy > S"EAY
= wlu(n =1) = p(n)].

Hence, since p(n) — 0, a telescoping series argument gives
Z ov(s) > Z (n—1) — u(n)) = vyp(0).
n=0grcA),

Thus by (7.1),

io: > v(S) > 1) diam(S)P°

n=0 SIEAéo SesS
> n#(S)e VP

— V02n0(D—6/2)2—n0(D—6)

_ V02n05/2

Thus, since the squares in Un.AC\>o are all disjoint
> d(z > 33 w(S) > pp2m/2,
2€G(E) n SEA;O

Taking ny — oo proves §(G) > D — e. Taking € — 0 shows §(G) >
D = Mdim(A), as desired.
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8. PROOF OF LEMMA 7.1

The idea of the proof is that the two alternatives for S in the lemma
simply depend on whether S contains many bad horoballs or not. If it
does not then the first alternative holds, but if it does then the second
is true.

Let 79 > 0 (we will show the lemma is correct if 7y is small enough,
depending only on G, € and r). Let H, be the union of the 7y-good
horoballs and let H, be the union of all the ny-bad horoballs. Let
U=Q\(Hy,UH,) (this is part of Q(G) that projects to the “compact
part” of Q(G)/G). The proof divides into three cases depending on the
relative sizes of SN Hy, SN Hy and SNU. Fix € > 0 and let £ C )
be a finite set so that points in G(£) are at least hyperbolic distance
€ apart, but so that every point of U is within 10e of some point of
G(E).

Case A: First suppose that “a lot” of S corresponds to the compact

part of Q(G)/G. More precisely, let Ug = %S N U and assume

1
>
area(Ug) > 5000

area(S).

We will show that the first alternative holds for S. If € in the definition
of F is small enough (depending only of the uniformly perfect constant
of A), then for each point w € U there is a point z € G(E) such
that |z — w| < d(2). Moreover, each z € G(F) is the center of a disk
D, = D(z, 153d(2)). These disks are all disjoint, but they cover a fixed

fraction of the area of U. This is because given any point of U we can

move hyperbolic distance < 10e and reach one of the e-disks. Moreover,
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since Aﬁ%S # (), moving hyperbolic distance 10e does not allow leaving

S from starting inside £S5 (if € is small enough).

Hence,
A
> area(D,) > Aarea(Us) > ———area(S).
2€G(E)NUs 2000
Thus,
d(z)? > Cdiam(S)>.
2€G(E)NSS

Then since d(z) < diam(S) for all z € G(E)N S,

> d(z)P > Cdiam(S)P,

and we are done.
Case B: Now we assume “a lot” of S lies in H,. Let Vg = %S NH,,
and suppose

1
>
area(Vs) > 2000area(S),

(i.e., the part of S in good horoballs has large area). By hypothesis,

1

the only n9-good horoballs hitting 3

S have diameter < %S, and so we
can associate to each such horoball B a point z € G(E) N CS so that

d(z) ~ ediam(B). Thus, as above,

Y dx?>C > diam(B)? > Cdiam(S)” ¢ ~ area(9).

z€G(E)NCS good horoballs in S

Since D — e < 2, this and bounded overlaps of the squares C'S imply

S d(z)P¢ > Cdiam(S)P
2€G(E)NCS

Thus alternative one holds in this case also.

Case C: Now assume

area(Ug) + area(Vy) <

10Ooarea(S).
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Since A has zero area, the “bad” part of S must have large area, i.e.,
1 99
area(=S N Hy) > ——area(S).
3 100

Next we want to show that we may assume that %S does not hit any
bad horoball of comparable size.

Suppose that S hits a 7o-bad horoball with diam(B) > & diam(S).
If o is small enough then part (3) of Lemma 4.1 implies that B can be
the only 79-bad horoball hitting S with diameter > &diam(S). Thus

1

we can find another square S" C S with diam(S’) = 3(S) which only

hits small horoballs. More precisely, we can choose S’ C S so that
area(S' N H,) > Larea(S')
"= 100 ’

and such that S’ does not hit any 7y-bad horoballs with diameter >
#=diam(S").
So by replacing S by S’ if necessary, we may now assume that S is

a square such that

1
> -
area(S NW,) > 100area(S),

and such that S does not hit any ny-bad horoballs with diameter >
s5diam(S"). Let {B;} be the collection of bad horoballs which hit 3S.
Since they all have diameter < diam(S)/10, they are contained in S
and their areas sum to be at least Carea(35).

The horoballs are all disjoint, so by the simple Vitali covering lemma
(e.g., Lemma 7.4 of [13]) there is a subcollection of these balls {B;}
which have disjoint triples and whose areas sums to be more that

C'area(S).
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By part (2) of Lemma 4.1, to each of these balls we can associate a

square S; C SB]- such that
. L. ~
diam(S;) = §d1am(Bj),

and so that S;\ A contains no balls of radius ddiam(S;). Here § may be
as small as we wish, assuming we take 79 small enough. Choose 79 so

small that § < /1000 (where r is the number given in the statement

2

of Lemma 7.1). Inside S; choose a collection {Sj;} of % squares of

diameter /100 which have disjoint triples. Then U; Uy S, obviously

has all the desired properties. [
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