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1. Statement of results

If K � R

2

is 
ompa
t, let N(K; �) be the minimal number of �

balls needed to 
over K. We de�ne the upper and lower Minkowski

dimension as

Mdim(K) = lim sup

�!0

logN(K; �)

log 1=�

;

Mdim(K) = lim inf

�!0

logN(K; �)

log 1=�

:

If the two values agree, the 
ommon value is simply 
alled the Minkowski

dimension of K and is denoted Mdim(K).

Consider a group G of M�obius transformations a
ting on the two

sphere S

2

. Su
h transformations are identi�ed elements of PSL(2; C )

in a natural way and G is 
alled Kleinian if it is dis
rete in this topology

(i.e., the identity is isolated inG). G is 
alled elementary if it 
ontains a

�nite index Abelian subgroup. In this paper we will 
onsider only non-

elementary groups. For a non-elementary group, the limit set, �(G),

is the a

umulation set (on S

2

) of the orbit of any point z

0

2 S

2

(and

is independent of the point). The 
omplement 
(G) = S

2

n� is 
alled

the ordinary set. In this paper we will always assume 
 is non-empty

and that the group is 
onjugated in PSL(2; C ) so 1 2 
.

For any Kleinian group, the quotient R = 
=G is a union of Riemann

surfa
es. We say that G is analyti
ally �nite if R = R

1

[ � � � [ R

s

is a

�nite union of �nite type surfa
es (i.e., ea
h R

j

is 
ompa
t or 
ompa
t

with a �nite number of pun
tures). The Ahlfors �niteness theorem

says that if G is �nitely generated then G is analyti
ally �nite.
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If z

0

2 
(G) then the 
riti
al exponent (or Poin
ar�e exponent) is

de�ned as

Æ(G) = inffs :

X

g2G

dist(g(z

0

);�)

s

<1g;

where distan
e is in the spheri
al metri
. It is easy to show it does

not depend on the 
hoi
e of z

0

. Usually Æ(G) is de�ned by extending

the a
tion of G on S

2

to a group of isometries of the hyperboli
 3-ball

B

3

� R

3

, and then 
onsidering the series

X

G

exp(1� jg(0)j)

s

:

However, it is easy to see that this de�nition gives the same number.

Theorem 1.1. Suppose G is an analyti
ally �nite, non-elementary

Kleinian group. If area(�(G)) = 0 then Æ(G) = Mdim(�(G)).

The assumption that G is non-elementary is needed in Theorem 1.1,

for if G is a rank 1, 
y
li
, paraboli
 group then Æ(G) = 1=2, but � is

a single point. De�ne the Hausdor� 
ontent

H

1

�

(K) = inff

X

r

�

j

: K � [

j

D(x

j

; r

j

)g;

(the in�mum is over all 
overings of K by disks ) and

dim(K) = inff� : H

1

�

(K) = 0g:

This is the Hausdor� dimension ofK and it is easy to see that dim(K) �

Mdim(K). Jones and I proved that Æ(G) � dim(�) for any non-

elementary Kleinian group (Theorem 1.1 of [4℄). Combining this result

and Theorem 1.1 we easily dedu
e
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Corollary 1.2. If G is an analyti
ally �nite Kleinian group then the

Minkowski dimension of � exists and equals the Hausdor� dimension.

Corollary 1.3. If G is an analyti
ally �nite, non-elementary Kleinian

group and �(G) has zero area then Æ(G) = dim(�).

Di�erent proofs of these results are given in [3℄ and [4℄ using esti-

mates for the heat kernel on the hyperboli
 3-manifold asso
iated to

the Kleinian group G. The proof given here does not require these

te
hniques, i.e., it is a purely \two-dimensional" argument. As su
h,

it may be easier to adapt to other settings, e.g., Julia sets of rational

mappings.

G is 
alled geometri
ally �nite if it is �nitely generated and there is

a �nite sided fundamental polyhedron for the a
tion of G on B . The

limit sets of su
h groups must have zero area [2℄, so our results apply to

them. For geometri
ally �nite groups, Corollary 1.2 was independently

established by Stratmann and Urba�nski in [11℄. Corollary 1.3 is also

well known in this 
ase, e.g., [12℄.

The se
tions of the paper are organized as follows.

Se
tion 2: We de�ne a related 
riti
al exponent Æ

Whit

and show

Æ

Whit

(K) � Mdim(K) for any 
ompa
tK, with equality if area(K) =

0.

Se
tion 3: We show Æ � Æ

Whit

for analyti
ally �nite groups with

equality if 
(G)=G is 
ompa
t.

Se
tion 4: We de�ne good and bad horoballs and prove a lemma

giving some of their properties.
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Se
tion 5: We prove the main theorem when most horoballs of G

are good.

Se
tion 6: We prove the theorem in the 
ase dim(�) = 2.

Se
tion 7: We state a lemma and �nish the proof assuming the

lemma and dim(�) < 2.

Se
tion 8: We prove the lemma.

Notation: In this paper A ' B means that A=B is bounded and

bounded away from 0. Given a square S in the plane and � > 0, �S

denotes the 
on
entri
 square with diam(�S) = �diam(S).

I thank the referee for 
arefully reading the manus
ript and supplying

many suggestions whi
h greatly improved the exposition.

2. Whitney squares and Minkowski dimension

A Whitney de
omposition of a domain 
 � R

2

is a 
olle
tion of

disjoint (ex
ept for boundaries) squares fQ

j

g su
h that 
 = [

j

Q

j

and

diam(Q) � dist(Q

j

; �
) � 4diam(Q

j

):

The existen
e of a Whitney de
omposition for any open set is a stan-

dard fa
t in real analysis (e.g., Theorem VI.1 of [10℄). One 
an simply

take a maximal 
olle
tion of dyadi
 squares in 
 su
h that dist(Q; �
) �

diam(Q).

For any 
ompa
t set K � R

2

we 
an de�ne an exponent of 
onver-

gen
e

Æ

Whit

= Æ

Whit

(K) = inffs :

X

Q

j

:dist(Q

j

;K)�1

diam(Q

j

)

s

<1g:
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The sum is taken over all squares in a Whitney de
omposition of 
 =

K




whi
h are within distan
e 1 of K (we have to drop the \far away"

squares or the series will not 
onverge). It is easy to 
he
k that this

does not depend on the parti
ular 
hoi
e of Whitney de
omposition.

Lemma 2.1. For any 
ompa
t set K, Æ

Whit

� Mdim(K). If, in addi-

tion, area(K) = 0 then Æ

Whit

= Mdim(K).

Proof. Suppose fQ

j

g is a Whitney de
omposition of 
 = R

n

n K . For

ea
h Q

j

with diam(Q

j

) � diam(K), there is a dyadi
 
ube Q

0

j

of the

same size whi
h hitsK and satis�es dist(Q

j

; Q

0

j

) � Cdiam(Q

j

). Clearly

ea
h Q

0

j

is asso
iated to only a bounded number of Whitney 
ubes.

Therefore the number of dyadi
 
ubes of size 2

�n

whi
h hitK is at least

C2

n(Æ

Whit

��)

(for n large enough, depending on �). Thus Æ

Whit

(K) �

Mdim(K).

Conversely, if K has zero area, Q is a dyadi
 square hitting K and

fQ

k

g is the 
olle
tion of Whitney squares for 
 
ontained in Q, then

X

k

diam(Q

k

)

2

= diam(Q)

2

:

Hen
e for any s � 2, (sin
e diam(Q) � 1),

X

k

diam(Q

k

)

s

� diam(Q)

s

:

Sin
e there are more than C2

n(Mdim(K)��)

su
h squares Q, the sum over

the whole Whitney 
olle
tion is greater than

C2

�ns

2

n(Mdim(K)��)

;

whi
h diverges if s < Mdim(K) � �. Thus Æ

Whit

(K) � Mdim(K), as

desired.
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We 
an have stri
t inequality if K has positive area. For example,

one 
an 
hoose a set of disjoint disks D(x

j

; r

j

) � D(0; 1), so that

K = D(0; 1) n [

j

D

j

, is nowhere dense, has positive area and r

j

! 0 as

fast as we wish. If we sum the Whitney de
omposition of a single disk

we get

X

Q

k

�D

j

diam(Q

j

)

s

' r

s

j

;

if s > 1 and equals 1 if s � 1. By taking r

j

! 0 very fast, we 
an get

Æ

Whit

(K) = 1 < 2 = Mdim(K):
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3. Whitney squares and the Poin
ar

�

e series

In this se
tion we explain the elementary relations between Æ and

Æ

Whit

.

Suppose 
 is a domain in S

2

with more than two boundary points.

Then 
 has a hyperboli
 metri
 � de�ned by the 
overing map from

the disk to 
. Let d(z) = dist(z; �
). For a general domain (e.g., [6℄,

Theorem 4.3),

(1 + o(1))jdzj

d(z) log 1=d(z)

� jd�(z)j � 2

jdzj

d(z)

: (3.1)

A set K � R

2

is 
alled uniformly perfe
t if there is a 
onstant C <1

so that

1

C

jdzj

d(z)

� jd�(z)j � 2

jdzj

d(z)

;

on ea
h 
omponent 
 of S

2

n K. (This is one of many equivalent

de�nitions; see [7℄ and [8℄.)

The limit set of any �nitely generated group is uniformly perfe
t, [9℄,

[5℄. In fa
t, the proof in Canary's paper [5℄ shows this is true under the

weaker assumption that there is an �

0

> 0 so that any 
losed geodesi


on 
=G has length � �

0

. This is 
ertainly true 
=G is a �nite union

of �nite type surfa
es, so the result is still true for analyti
ally �nite

groups.

Lemma 3.1. If G is any non-elementary Kleinian group with � 6= S

2

then Æ � Æ

Whit

. If 
(G)=G is 
ompa
t then Æ = Æ

Whit

.

Proof. Fix a point z

0

2 
(G) (not an ellipti
 �xed point). There is

a small hyperboli
 disk around z

0

(with radius r

0

depending on z

0

)
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whi
h proje
ts inje
tively to R = 
=G under the quotient map. Thus

points in G(z

0

), the orbit of z

0

under G, are separated by at least r

0

in

the hyperboli
 metri
. By (3.1) ea
h Whitney square has a uniformly

bounded hyperboli
 diameter and area. Thus ea
h Whitney square for


 = S

2

n � 
ontains at most a bounded number M (depending on z

0

and G) of points in G(z

0

). Therefore,

X

g2G

dist(g(z

0

);�)

s

� M

X

j

diam(Q

j

)

s

and hen
e Æ(G) � Æ

Whit

(�(G)).

Now suppose R = 
(G)=G = R

1

[� � �[R

s

is a �nite union of 
ompa
t

Riemann surfa
es. We 
an 
hoose points E = fz

1

; : : : ; z

s

g � 
, so

that z

j

proje
ts into R

j

, j = 1; : : : ; s under the quotient map. By


ompa
tness, any point z 2 
 is a bounded hyperboli
 distan
e from

G(E), the orbit of E under G. For ea
h square Q with dist(Q;�) �

1, 
hoose a 
losest point z

Q

2 G(E). Then z

Q

is only a bounded

hyperboli
 distan
e from Q so the uniform perfe
tness of � implies

diam(Q) � Cdist(z

Q

;�):

Furthermore, only a bounded number (say M) of the Q

j

's are asso
i-

ated to any given point of G(E). Thus

X

j

diam(Q

j

)

s

� MC

s

X

z

j

2E

X

g2G

dist(g(z

j

);�)

s

;

and therefore Æ

Whit

(�(G)) � Æ(G).

One of the main results of [3℄ is that Æ

Whit

= Æ for any non-elementary

analyti
ally �nite group. This fa
t and Lemma 2.1 imply Theorem 1.1,
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but the fa
t seems harder than the theorem. The purpose of this note is

to give a proof of the theorem that does not require proving Æ

Whit

= Æ.
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4. Good and bad horoballs

A horoball in 
(G) is a Eu
lidean ballB � 
 � S

2

whi
h is invariant

under a rank 1 paraboli
 subgroup of G. The �xed point p of the

paraboli
 element is on the boundary of the horoball and 
orresponds

to a 
usp on the surfa
e 
(G)=G. We say that B is doubly 
usped it

there is a another (disjoint) ball B

1

�xed by the same subgroup.

Suppose R = 
(G)=G is a �nite union of �nite type Riemann surfa
es

R

1

; : : : ; R

N

, i.e., ea
h is a 
ompa
t surfa
e with at most a �nite number

of pun
tures. Let fp

1

; : : : ; p

m

g be the pun
tures in R = [

N

i=1

R

i

, and for

ea
h p

i

let B

�

i

be a neighborhood of p

i

whi
h lifts to a Eu
lidean ball B

i

in 
 whi
h is invariant under some paraboli
 element of G (see Lemma

1 of [1℄). Then X = R n [

j

B

�

j

is 
ompa
t, so we 
an 
hoose a �nite

set of points E = fz

1

; : : : ; z

P

g � 
(G) whi
h proje
t to an 1-dense

subset of X (i.e., every point of X is within hyperboli
 distan
e 1 of a

point of E). For the reminder of the paper we �x a �nite 
olle
tion of

su
h horoballs B = fB

j

g, one from ea
h equivalen
e 
lass of horoballs

in 
. It will also be 
onvenient to assume that B

i

is 
ontained inside a

larger horoball

^

B

i

� 
 of twi
e the Eu
lidean diameter (we 
an always

do this by just taking smaller balls if ne
essary). If 1 2 
 then we

may also assume that1 is not 
ontained in any of the B

i

. Finally, if a

paraboli
 point is doubly 
usped, we require that B 
ontain horoballs

of equal size for both \sides" of the paraboli
 point.

For z 2 
(G) we de�ne d(z) = dist(z;�) in the Eu
lidean metri
.

Normalize the group so that 1 2 
 and �(G) has diameter 1. Now
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suppose p is a paraboli
 �xed point of G and that B � 
 is a horoball

at p. By our remarks above, B must be the image of one of our �nite


olle
tion of horoballs fB

j

g under some element g of G, i.e., B = g(B

j

).

We would like to 
all B good or bad depending on whether the

map g : B

j

! B is \
lose" to being linear. Using a linear M�obius

transformation we 
an map p to 0 and the horoball B to the disk

D(i=2; 1=2). The paraboli
 element of G �xing p is 
onjugated by the

linear map to a transformation of the form

�(z) =

z

1 + �z

:

We de�ne �(B) = j�j. Given � > 0, we say a horoball B = g(B

i

) is a

\�-bad" horoball if �(B) � �, and is �-good otherwise.

A helpful way to think about good and bad horoballs is as follows.

Suppose h is a generator of the paraboli
 subgroup �xing B. De�ne

�

0

(B) = sup

z2�B

jh(z)� zj

diam(B)

:

Then its easy to see �

0

' �. In other words, B is �-bad if the paraboli


subgroup �xing B has a generator whi
h is 
lose to the identity on B.

Alternatively, the group G looks less and less dis
rete on horoballs with

smaller and smaller �.

Lemma 4.1. Suppose G is analyti
ally �nite and normalized so that

1 2 
(G) and diam(�) = 1. Fix a �nite 
olle
tion of horoballs B as

above, and assume 1 is not in any of these horoballs. Then
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1. There is a C

1

(depending only on �) so that for any �-good horoball

B, and any w 2 �B, there is a point z 2 G(E) su
h that

C

�1

1

d(w) � d(z) � C

1

d(w);

C

�1

1

d(w) � jz � wj � C

1

d(w):

2. There is a �

2

so that if B is �

2

-bad then it is singly 
usped, i.e.,

there is not a disjoint horoball also tangent to p.

3. There is a �

3

> 0 so that if � � �

3

and B is �-bad and D(x; r) � 


with

3

2

diam(B) � dist(x;B) � diam(B)=(2�), then r � C

2

�dist(x;B)

2

,

where the 
onstant C

2

depends only on G.

4. For any Æ > 0 there is a �

4

> 0 (depending only on Æ) su
h

that if B is a �

4

-bad horoball then there is a disk D � 3B su
h

that diam(D) �

1

3

diam(B); and D n � 
ontains no balls of radius

� Ædiam(D).

5. There is �

5

> 0 so that if B

1

; B

2

are �

5

-bad horoballs with diam(B

1

) �

diam(B

2

) then dist(B

1

; B

2

) � 100diam(B

1

):

6. If B

1

; B

2

are horoballs with

diam(B

1

) � diam(B

2

) � 2diam(B

1

);

and dist(B

1

; B

2

) � Adiam(B

1

); then both B

1

and B

2

are A

�2

-good.

Proof. To prove (1), note that it is true for all the balls in B by �nite-

ness. If B is �-good then B is the image of some B

j

in our �xed, �nite


olle
tion under a map whi
h is the 
omposition of 
onformal linear

map and a map of bounded distortion (depending on �).
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To prove (2), suppose B

1

; B

2

2 B are paired horoballs at a doubly


usped paraboli
 point p with paraboli
 generator h. For i = 1; 2, let

z

i

be the point on �B

i

farthest from p and 
onsider the the 
ross ratio

of z

1

; h(z

1

); z

2

; h(z

2

). Now suppose B = g(B

1

) is some �-bad image of

B

1

, and suppose we have 
hosen g so jg(z

1

)�g(p)j is maximized among

elements mapping B

1

to B. Sin
e 
ross ratio is preserved by M�obius

transformations we 
an dedu
e that

jg(z

1

)� g(h(z

1

))j ' jg(z

1

)� g(z

2

)j ' jg(z

2

)� g(h(z

2

))j ' �diam(B):

Thus all four points are mapped within C�(B)diam(B) of g(z

1

). If � is

small enough, this is only possible if1 2 g(B

2

), 
ontrary to hypothesis.

To prove (3) note that it is enough to do it in the 
ase when p = 0,

B = D(i=2; 1=2) and the subgroup �xing p is generated by

h(z) =

z

1� �z

:

Then

jh(x)� xj = jx�

x

1� �x

j � 2�jxj

2

� C

0

�dist(x;B)

2

:

Suppose C

2

> 100C

0

and that r � C

2

�dist(x;B)

2

. Then both x and

h(x) are in the disk D(x; r) � 
 so the line segment 
onne
ting them

proje
ts to a loop on 
=G of hyperboli
 length � 10C

0

=C

2

. If C

2

is

large enough (depending only on G), this implies the loop is 
ontained

in a neighborhood of a 
usp on 
=G, thus the lift is in a horoball of 


whi
h is tangent to 0. This horoball is obviously not B sin
e B does

not 
ontain x, so there is a se
ond horoball B

0

at 0. This 
ontradi
ts

part (2),so we are done.
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The �nal three statements are all easy 
onsequen
es of part (3).

We noted in the previous se
tion that if 
(G)=G is 
ompa
t then

there is a 
lose 
onne
tion between the Poin
ar�e and Whitney sums.

When there are pun
tures in 
(G)=G we need to take a

ount of the

fa
t that horoballs 
ontain many Whitney squares, but no orbit points.

The next observation is very easy and left to the reader.

Lemma 4.2. Suppose 
 is an open set and B � 
 is a Eu
lidean ball

su
h that �B \ �
 6= ;. Let fQ

j

g be a Whitney de
omposition for 
.

Then if s > 1,

X

j:Q

j

\B 6=;

diam(Q

j

)

s

' diam(B)

s

;

where the 
onstants depend only on s.

The following will be useful later.

Lemma 4.3. Suppose G is analyti
ally �nite and E � 
 is a �nite

set with one point in ea
h equivalen
e 
lass of 
omponents. Assume

the group has been normalized so 1 2 
. Suppose fQ

j

g is a Whitney

de
omposition for 
(G), and let B be a 
hoi
e of horoballs for G as

above. Then if s > 1,

X

j:diam(Q

j

)�1

diam(Q

j

)

s

'

X

z2E

X

g2G

dist(g(z);�)

s

+

X

B2B

diam(B)

s

;

where the 
onstants depend on G; s; E;B. If � > 0 then

X

j:diam(Q

j

)�1

diam(Q

j

)

s

'

X

z2E

X

g2G

dist(g(z);�)

s

+

X

B2B;�(B)��

diam(B)

s

;

where the 
onstants depend on G; s; E;B; �.
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Proof. The �rst equation is simply the observation that Whitney squares

whi
h do not hit any horoballs 
an be asso
iated (as in the previous se
-

tion) to orbits of E, whereas the Whitney squares whi
h hit a horoball

are 
ontrolled by the previous lemma. The se
ond equation is proved

using part (1) of Lemma 4.1 to asso
iate to ea
h �-good horoball a

nearby orbit point. Thus the part of the horoball sum we are omitting

is 
ontrolled by the orbit sum.

5. Theorem 1.1 when G has many good horoballs

We now start the proof of Theorem 1.1. It is enough to prove

Theorem 5.1. If G is an analyti
ally �nite group and area(�(G)) = 0

then Æ(G) = Æ

Whit

(�(G)).

Let D = Mdim(�) = Æ

Whit

(�(G)) and d = dim(�). If G has no par-

aboli
 elements then 
(G)=G is 
ompa
t, and we have already proven

this 
ase in Lemma 3.1. Therefore we may assume G has paraboli
s.

This implies Æ(G) � 1=2. If D = 1=2, we have nothing to do, so we

may assume that D > 1=2.

Suppose � > 0 is so small that D� � > 1=2. Let E = fz

1

; : : : ; z

s

g be

a �nite 
olle
tion of points in 
, one proje
ting to ea
h 
omponent of


=G. We will show that

X

z2G(E)

d(z)

D��

=1;

and thus Æ(g) � D.

Choose an integer n

0

so that

N(�; 2

�n

0

) � 1000 � 2

n

0

(D��=2)

:
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By passing to a sub
olle
tion with at least 2

n

0

(D��=2)

elements we 
laim

that we may assume that for any two squares S

j

; S

k

we have 9S

j

\9S

k

=

;. This is easy. Just enumerate the list of squares and indu
tively

remove any square S

k

for whi
h there is a j < k with 9S

j

\ 9S

k

6= ;.

Sin
e 9S

j

\ 9S

k

6= ; implies S

k

� 15S

j

, ea
h S

j


an 
ause at most

30

2

= 900 later squares to be removed. Thus the �nal list has at least

2

n

0

(D��=2)

elements.

Let r = 3 � 2

�n

0

. Let S = fS

k

g be a 
olle
tion of 2

n

0

(D��=2)

squares

of size r so that the triples 3S

k

are pairwise disjoint and

1

3

S

k

\ � 6= ;

for ea
h k.

First we deal with the 
ase when most of the horoballs of size r are

good. Let � > 0 (to be �xed later). For ea
h �-good horoball with

diam(B) � r=3, let G

B

be the 
olle
tion of squares in S whi
h are su
h

that

1

3

S hits B. Let G be the union of all the G

B

.

The proof breaks into three 
ases:

1. #(S \ G) �

1

2

#(S) for all large enough n.

2. dim(�) = 2.

3. #(S \ G) <

1

2

#(S) for in�nitely many n and dim(�) < 2.

If � is 
hosen small enough (depending on G) then one 
an show

the last 
ase is impossible (e.g., [4℄). However, this is hard result using

heat kernel estimates on hyperboli
 3-manifolds and one of our purposes

here is to give a self-
ontained proof that uses only two dimensional

te
hniques.
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Proof of 
ase 1: By part (1) of Lemma 4.1 there is an orbit point

z 2 G(E) \ B su
h that d(z) ' diam(B): For this point,

d(z)

D��

� C

X

S2G

B

diam(S)

D��

:

If more than half the squares in S belong to G then this argument

shows

X

z2G(E)

d(z)

D��

�

1

2

C2

n

0

�=2

:

If this happens for arbitrarily large n

0

then

X

z2G(E)

d(z)

D��

=1;

so we have shown that Æ(G) � D � �, as desired. This is the end of


ase (1).
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6. Proof of 
ase (2) of Theorem 1.1

Case 2 follows easily from the following.

Lemma 6.1. Suppose G is a analyti
ally �nite Kleinian group, nor-

malized so 1 2 
(G) and diam(�(G)) = 1. If Æ

Whit

= 2 then Æ = 2.

Proof. We know the lemma if 
(G)=G is 
ompa
t (see Se
tion 2), so

we may assume that 
(G) 
ontains horoballs. Consider the sum over

all Whitney squares for 
,

X

j

diam(Q

j

)

2�2�

:

By the de�nition of Æ

Whit

, this diverges. Using Lemma 4.3 we 
an split

the sum into two pie
es; one 
orresponding to all squares Q

j

whi
h

hit some horoball and the other 
orresponding to all Whitney squares

whi
h miss every horoball, i.e.,

X

j:diam(Q

j

)�1

diam(Q

j

)

2�2�

'

X

z2E

X

g2G

dist(g(z);�)

2�2�

+

X

B2B

diam(B)

2�2�

:

If the �rst sum on the right diverges then Æ > 2 � 2� and we are

done. Thus we may assume the se
ond sum on the right diverges for

all � > 0. Thus if

B

n

= fB

j

: 2

�n�1

� diam(B

j

) < 2

�n

g;

and N

n

= #B

n

, we must have N

n

� 2

n(2�2�)

; for in�nitely many values

of n. Fix a value of n

0

where this holds and note that for at least half

the balls B in B

n

there is a se
ond ball B

0

2 B

n

su
h that

dist(B;B

0

) � 2

�n(1��)

� diam(B)2

n�

;
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otherwise we would have so many disjoint balls of radius 2

�n(1��)

that

they 
ould not all be 
ontained in a bounded neighborhood of � (re
all

that diam(�) = 1).

By part (4) of Lemma 4.1, this implies that for su
h a pair both B

and B

0

are 2

�2�n

-good horoballs. Let G

n

0

� B

n

0

be the sub
olle
tion

of 2

�2�n

-good horoballs. For any �-good horoball B let z be the point

given in part (1) of Lemma 4.1 su
h that d(z) � C�diam(B). Let H be

the paraboli
 subgroup �xing B

j

. Then an easy 
al
ulation shows that

there are at least C�

�1

orbits of z under H with distan
e � C�diam(B)

from �. Thus

X

h2H

d(h(z))

�

� Cdiam(B)

�

�

��1

;

for any 1 < � � 2 and some C depending on G and �.

Thus if z

j

is the good point in B

j

given by (1) of Lemma 4.1,

X

z2G(E)

d(z)

�

� C

X

B

j

2G

n

0

X

k2Z

d(h

k

(z

j

))

�

� C

X

B

j

2G

n

0

diam(B)

�

2

�2�n

0

(��1)

� C2

n

0

(2��)

2

�n

0

�

2

�2�n

0

(��1)

:

Taking � = 0 and solving for � we see this diverges for small enough �

if � < 2: Thus Æ � 2, as desired.

7. Theorem 1.1 when G has few good horoballs

We now do 
ase 3, i.e., we assume that fewer than half the elements

of S are in G for all large enough n

0

(i.e., we assume most horoballs

are bad) and that dim(�) < 2. We use a stopping time 
onstru
tion
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whi
h is des
ribed by the following lemma. Re
all that d = dim(�)

and D = Mdim(�).

Lemma 7.1. Suppose � > 0 and r > 0. There is a 
onstant C

0

(de-

pending only on G and �) and 
onstants �

0

> 0 and �

0

(depending on

G, � and r) su
h that the following holds: Suppose we have a square

S su
h that

1

3

S \ � 6= ; and S does not interse
t any �

0

-good horoball

with diameter � diam(S)=3: Then either

X

z2S\G(E)

d(z)

D��

� �

0

diam(S)

D��

;

or there is a 
olle
tion of subsquares C(S) = fS

j

g � S with

1. diam(S

j

) � rdiam(S) for all j,

2. f3S

j

g � S and are pairwise disjoint,

3. S

j

n � does not 
ontain a ball of radius diam(S

j

)=10,

4.

P

j

diam(S

j

)

2

� C

0

diam(S)

2

:

We shall refer to the two possibilities as alternatives one and two re-

spe
tively.

Let us assume that the lemma holds and see how to �nish the proof.

We will prove the lemma in the next se
tion.

Suppose � > 0. Let C

0

= C

0

(�; G) be as given by the lemma. Let

r = C

1=�

0

and let �

0

; �

0

be as given by the lemma.

We de�ne generations of nested squares S

0

;S

1

; : : : as follows. Let

S

0

= S, be the 
olle
tion 
onsidered in the previous se
tion; i.e., S

0

is a


olle
tion of

1

2

� 2

n

0

(D��=2)

squares of size r = 2

�n

0

whi
h have disjoint
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triples, so that

1

3

S \ � 6= ; and su
h that S does not hit any �-good

horoball of size � diam(S)=3.

Suppose S

n

has been de�ned. Let A

n

1

� S

n

be the sub
olle
tion of

squares for whi
h alternative one holds and A

n

2

be the sub
olle
tion for

whi
h alternative two holds. Then we de�ne

S

n+1

=

[

S2A

n

2

C(S):

In other words, given S

n

; we de�ne S

n+1

by throwing away all the

squares where alternative one of Lemma 7.1 holds and for ea
h square

S 2 S

n

where the se
ond alternative holds we repla
e it by the 
olle
tion

C(S) of subsquares satisfying (1)-(4) in Lemma 7.1.

To ea
h square S 2 S

1

= [

n

S

n

we asso
iate a positive number �(S)

as follows. For S 2 S

0

let

�(S) = diam(S)

D��

: (7.1)

For S 2 S

n

, n � 1, there is a unique S

0

2 S

n�1


ontaining S (i.e., S

0

is its \parent") and by de�nition alternative two holds for S

0

. Set

�(S) =

diam(S)

2

P

S

0

2C(S

0

)

diam(S

0

)

2

�(S

0

): (7.2)

Note that

P

S

0

2C(S

0

)

�(S

0

) = �(S

0

): Let �(n) =

P

S2S

n

�(S): It is 
lear

that f�(n)g

1

n=0

is non-in
reasing.

Lemma 7.2. If �(n) 6! 0 then dim(�) � 2� �. (Re
all � depends on

�.)
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Proof. Suppose �(n) 6! 0. Then the numbers f�(S)g de�ne a measure

positive measure on the set Y = \

n

[

S2S

n

S � �: We 
laim that

�(S) � Cdiam(S)

2��

;

for every square with diam(S) � r where C is a 
onstant that depends

on the 
hoi
e of n

0

, but not on S.

We �rst verify this by indu
tion for squares in S

1

. If S 2 S

0

, the


laim is true by de�nition with C = A

0

= 2

n

0

(2�D)

.

If S 2 S

n

is 
ontained in S

0

2 S

n�1

, then part (4) of Lemma 7.1

implies

�(S) =

diam(S)

2

P

S

0

2C(S

0

)

diam(S

0

)

2

�(S

0

) � A

0

diam(S)

2

C

0

diam(S

0

)

2

diam(S

0

)

2��

and hen
e

�(S) � A

0

C

�1

0

diam(S)

2

diam(S

0

)

��

� A

0

C

�1

0

r

��

diam(S)

2��

� A

0

diam(S)

2��

;

as desired. Also note (for future use) that this proves the weaker esti-

mate

�(S) � diam(S)

D��

: (7.3)
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Now 
onsider a general square S � S

0

2 S

0

. Let S

1

be the smallest

square in S

1


ontaining S. Suppose S

1

2 S

n�1

. Then by (7.2),

�(S) =

P

S

0

2S

n

;S

0

�S

diam(S

0

)

2

P

S

0

2S

n

;S

0

�S

1

diam(S

0

)

2

�(S

1

)

� A

0

diam(S)

2

C

0

diam(S

1

)

2

diam(S

1

)

2��

� A

0

C

�1

0

diam(S)

2

diam(S

1

)

��

� A

0

C

�1

0

diam(S)

2��

(

diam(S

1

)

diam(S)

)

��

� A

0

C

�1

0

diam(S)

2��

:

Thus the inequality holds for general squares with the 
onstant C =

A

0

C

�1

0

.

Thus if fS

j

g was any 
overing of � we would have

0 < �(�) �

X

j

�(S

j

) � C

X

j

diam(S

j

)

2��

:

Therefore, dim(�) � 2� �; as desired.

By the previous lemma if � < 2�dim(�), then we must have �(n)!

0. Assume this is the 
ase.

Re
all that A

n

1

is the 
olle
tion of all squares in S

n

where alternative

one held (i.e., the 
onstru
tion above stopped) and A

n

2

are the remain-

ing squares where alternative two held. Note that [

n

A

n

1

is a union

of disjoint squares. For S 2 A

n�1

2

, let A

1

(S) be the 
olle
tion of all

squares in C(S) � S

n

where alternative one holds and let A

2

(S) be the

squares where alternative two holds. For S

0

2 A

1

(S) 2 A

n

1

, de�ne

�(S

0

) =

X

z2S

0

\G(E)

d(z)

D��

:
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Sin
e alternative one of Lemma 7.1 holds for S

0

, �(S

0

) � �

0

diam(S

0

)

D��

;

so by (7.3) �(S

0

) � �

0

�(S

0

); (�(S

0

) must be de�ned be
ause alternative

two holds for its parent). Thus,

X

S

0

2A

1

(S)

�(S

0

) � �

0

X

S

0

2A

1

(S)

�(S

0

) = �

0

[�(S)�

X

S

0

2A

2

(S)

�(S

0

)℄:

Therefore,

X

S

0

2A

n

1

�(S

0

) � �

0

[

X

S

0

2A

n�1

2

�(S

0

)�

X

S

00

2A

n

2

�(S

00

)℄

= �

0

[�(n� 1)� �(n)℄:

Hen
e, sin
e �(n)! 0, a teles
oping series argument gives

1

X

n=0

X

S

0

2A

n

1

�(S

0

) � �

0

1

X

n=0

(�(n� 1)� �(n)) = �

0

�(0):

Thus by (7.1),

1

X

n=0

X

S

0

2A

n

1

�(S

0

) � �

0

X

S2S

0

diam(S)

D��

� �

0

#(S

0

)2

�n

0

(D��)

= �

0

2

n

0

(D��=2)

2

�n

0

(D��)

= �

0

2

n

0

�=2

Thus, sin
e the squares in [

n

A

n

1

are all disjoint

X

z2G(E)

d(z)

D��

�

X

n

X

S2A

n

1

�(S) � �

0

2

n

0

�=2

:

Taking n

0

! 1 proves Æ(G) � D � �. Taking � ! 0 shows Æ(G) �

D = Mdim(�); as desired.
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8. Proof of Lemma 7.1

The idea of the proof is that the two alternatives for S in the lemma

simply depend on whether S 
ontains many bad horoballs or not. If it

does not then the �rst alternative holds, but if it does then the se
ond

is true.

Let �

0

> 0 (we will show the lemma is 
orre
t if �

0

is small enough,

depending only on G, � and r). Let H

g

be the union of the �

0

-good

horoballs and let H

b

be the union of all the �

0

-bad horoballs. Let

U = 
 n (H

b

[H

g

) (this is part of 
(G) that proje
ts to the \
ompa
t

part" of 
(G)=G). The proof divides into three 
ases depending on the

relative sizes of S \ H

b

, S \ H

g

and S \ U . Fix � > 0 and let E � 


be a �nite set so that points in G(E) are at least hyperboli
 distan
e

� apart, but so that every point of U is within 10� of some point of

G(E).

Case A: First suppose that \a lot" of S 
orresponds to the 
ompa
t

part of 
(G)=G. More pre
isely, let U

S

=

1

3

S \ U and assume

area(U

S

) �

1

2000

area(S):

We will show that the �rst alternative holds for S. If � in the de�nition

of E is small enough (depending only of the uniformly perfe
t 
onstant

of �), then for ea
h point w 2 U there is a point z 2 G(E) su
h

that jz � wj � d(z). Moreover, ea
h z 2 G(E) is the 
enter of a disk

D

z

= D(z;

�

100

d(z)). These disks are all disjoint, but they 
over a �xed

fra
tion of the area of U . This is be
ause given any point of U we 
an

move hyperboli
 distan
e � 10� and rea
h one of the �-disks. Moreover,



26 CHRISTOPHER J. BISHOP

sin
e �\

1

3

S 6= ;, moving hyperboli
 distan
e 10� does not allow leaving

S from starting inside

1

3

S (if � is small enough).

Hen
e,

X

z2G(E)\U

S

area(D

z

) � A area(U

S

) �

A

2000

area(S):

Thus,

X

z2G(E)\

1

3

S

d(z)

2

� Cdiam(S)

2

:

Then sin
e d(z) � diam(S) for all z 2 G(E) \ S,

X

z2G(E)\

1

3

S

d(z)

D��

� Cdiam(S)

D��

;

and we are done.

Case B: Now we assume \a lot" of S lies in H

g

. Let V

S

=

1

3

S \H

g

,

and suppose

area(V

S

) �

1

2000

area(S);

(i.e., the part of S in good horoballs has large area). By hypothesis,

the only �

0

-good horoballs hitting

1

3

S have diameter �

1

3

S, and so we


an asso
iate to ea
h su
h horoball B a point z 2 G(E) \ CS so that

d(z) ' �diam(B): Thus, as above,

X

z2G(E)\CS

d(z)

2

� C

X

good horoballs in S

diam(B)

2

� Cdiam(S)

D��

' area(S):

Sin
e D � � < 2, this and bounded overlaps of the squares CS imply

X

z2G(E)\CS

d(z)

D��

� Cdiam(S)

D��

:

Thus alternative one holds in this 
ase also.

Case C: Now assume

area(U

S

) + area(V

S

) �

1

1000

area(S):



MINKOWSKI DIMENSION AND THE POINCAR

�

E EXPONENT 27

Sin
e � has zero area, the \bad" part of S must have large area, i.e.,

area(

1

3

S \H

b

) �

99

100

area(S):

Next we want to show that we may assume that

1

3

S does not hit any

bad horoball of 
omparable size.

Suppose that

1

3

S hits a �

0

-bad horoball with diam(B) �

1

10

diam(S).

If �

0

is small enough then part (3) of Lemma 4.1 implies that B 
an be

the only �

0

-bad horoball hitting

1

3

S with diameter �

1

50

diam(S). Thus

we 
an �nd another square S

0

� S with diam(S

0

) =

1

3

(S) whi
h only

hits small horoballs. More pre
isely, we 
an 
hoose S

0

� S so that

area(S

0

\H

b

) �

1

100

area(S

0

);

and su
h that S

0

does not hit any �

0

-bad horoballs with diameter �

1

10

diam(S

0

).

So by repla
ing S by S

0

if ne
essary, we may now assume that S is

a square su
h that

area(S \W

g

) �

1

100

area(S);

and su
h that S does not hit any �

0

-bad horoballs with diameter �

1

10

diam(S

0

). Let fB

j

g be the 
olle
tion of bad horoballs whi
h hit

1

3

S.

Sin
e they all have diameter � diam(S)=10, they are 
ontained in S

and their areas sum to be at least Carea(

1

3

S).

The horoballs are all disjoint, so by the simple Vitali 
overing lemma

(e.g., Lemma 7.4 of [13℄) there is a sub
olle
tion of these balls f

^

B

j

g

whi
h have disjoint triples and whose areas sums to be more that

C

0

area(S).
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By part (2) of Lemma 4.1, to ea
h of these balls we 
an asso
iate a

square S

j

� 3

^

B

j

su
h that

diam(S

j

) =

1

2

diam(

^

B

j

);

and so that S

j

n� 
ontains no balls of radius Ædiam(S

j

). Here Æ may be

as small as we wish, assuming we take �

0

small enough. Choose �

0

so

small that Æ < r=1000 (where r is the number given in the statement

of Lemma 7.1). Inside S

j


hoose a 
olle
tion fS

jk

g of r

�2

squares of

diameter r=100 whi
h have disjoint triples. Then [

j

[

k

S

jk

obviously

has all the desired properties.
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