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 Harmonic measure and arclength

 By CHRISTOPHER J. BISHOP* AND PETER W. JONES**

 1. Introduction

 The purpose of this paper is to prove the following results.

 THEOREM 1. Suppose that fl is a simply connected plane domain and that F

 is a rectifiable curve in the plane. If E c a9f n F has positive harmonic measure
 in fl then it has positive length.

 THEOREM 2. Suppose fl, F and E are as above and z E fl satisfies
 dist(z, E) ? 1. Let w denote harmonic measure on fl with respect to the point z

 and let / denote one-dimensional Hausdorff measure. Then for every A < 00 and
 E > 0 there exists a 8 > 0 such that () < A and /(E) < 8 imply w(E) < E.

 THEOREM 3. Suppose F is connected. There is a constant Cr < 0o such that

 /(4D- l(F n f)) < Cr

 for every simply connected domain fl and Riemann mapping (D: D -* fl if and
 only if F is Ahlfors regular; i.e., there is an M > 0 such that /(F n D(x, r)) <
 Mr for every disk D(x, r).

 Theorem 2 is just a quantitative version of Theorem 1, and Theorem 3 turns

 out to be an easy consequence of Theorem 2. Before describing the proofs of

 these results, we discuss some of their history. In 1916, F. and M. Riesz proved

 their famous theorem that a univalent mapping onto a rectifiable domain

 preserves sets of zero length. More precisely, suppose D is the unit disk, fl is a

 simply connected domain bounded by a rectifiable curve and (F is a Riemann
 mapping from D to fQ. Then if E C Alt, 1(E) = 0 if and only if w(E) = 0. One
 direction corresponds to the fact that (E' E H' (the Hardy space) and the other

 to the observation that since logI(F'j is subharmonic, (F' cannot vanish on a set of
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 positive length. In 1936, Lavrentiev observed that by combining the F. and M.
 Riesz theorem with Jensen's inequality one obtains (with the normalization
 dist(CO), E) ? 1)

 C log /(an)
 (1.1) co(E) H log 1(E)I + 1

 Here C is an absolute constant. Later examples (e.g., [26], [33]) show that this
 estimate is sharp for rectifiable domains. However, if Al has infinite length then
 the Riesz theorem need not hold; Lavrentiev constructed a domain fl and a set
 E C Al such that E has zero length, but @(E) > 0. This example was later
 simplified and strengthened by various authors including McMillan and Piranian
 [33], Carleson [9] and Kaufman and Wu [26].

 In 1985, the relation between harmonic and Hausdorff measures was

 greatly clarified by a stunning result of Makarov. He showed that if fl is any
 simply connected domain and if Ah is the Hausdorff measure corresponding to
 the function

 h (t) = t exp CO log-log log log-

 then any subset E C Al with Ah(E) = 0 must have harmonic measure zero.
 Conversely, Makarov showed that there is always a set of full measure which has
 Hausdorff dimension exactly 1. Pommerenke [39] improved this to sigma-finite /
 measure. In fact, harmonic measure is supported on a set of Hausdorff dimen-

 sion 1 even for arbitrary plane domains (Jones and Wolff [24]). This has been
 improved to sigma-finite / measure by

 Makarov's theorem also tells us exactly which domains can give positive
 harmonic measure to a set of zero length. A result of McMillan says we can write
 Al = A U T U N where the A are the inner tangents of ail, T is the set of

 twist points and N has harmonic measure 0 (see [32] or [36] for definitions).
 McMillan's and Makarov's results imply that harmonic measure is mutually
 absolutely continuous with ! on A, but that when restricted to T it gives full
 measure to a set of zero length. Thus a Lavrentiev-type example occurs
 whenever the twist points have positive harmonic measure.

 The support of harmonic measure also satisfies other geometric constraints.
 For example, if L is a straight line in the plane and E C A9f n L, Oksendal [34]
 proved that I(E) = 0 implies @(E) = 0, and Kaufman and Wu showed this
 remains true if L is replaced by a chord-arc curve [26]. Theorem 1 generalizes
 this to rectifiable curves, verifying a conjecture of Oksendal. Thus harmonic
 measure can be concentrated on a set of length zero, but any such set must be so
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 HARMONIC MEASURE AND ARCLENGTH 513

 "dispersed" in the plane that it is impossible to draw a rectifiable curve through

 it. We should also point out that if fl is a quasidisk, one can prove this directly

 using the associated quasiconformal reflection to find a new rectifiable curve F'

 with F n fl = 0 and F' n a9 = F n a9f (see Ahlfors [1] or [2]). The result

 then follows from the maximum principle and the F. and M. Riesz theorem.

 The problem can also be interpreted in terms of Fuchsian groups and

 covering maps, and this interpretation is fundamental to our approach. Given a

 closed subset E of the Riemann sphere, let (D: D -* C \ E denote the universal
 covering of its complement and consider C \ E = D/c9, where S is a Fuchsian

 group acting on D. Let

 9= {z E D: Ig'(z)I < 1 for all g E 9, g # id) .

 Then Y_ is the normal fundamental domain for S. It is a simply connected,

 hyperbolically convex subdomain of D with the following "extremal" property. If

 2 C D is a simply connected subdomain which contains {O}, but contains no two

 S equivalent points, then w(O, d9? n T, 9) > 0 implies /(IYfn T) > 0. So to
 prove the theorem one may assume Q = (F(Y) ([37], [38]). The group S is

 called accessible if da9n 9D has positive length. Thus an equivalent formulation

 of Theorem 1 is that if E is a subset of a rectifiable curve, then the associated

 group S is accessible if and only if E has positive length.

 For example, consider the case E C R (Oksendal's theorem). Since W is a

 Borel measure we may assume E is closed, and let R \ E = Ur9=OIj be the
 decomposition of the complement of E into open intervals. Suppose (F(0) E 1o.
 By symmetry, @(4(YF)) = R \ 1o0 But on the domain bounded by R \ 1o it is a
 simple exercise to compute the Riemann mapping and thus deduce that har-

 monic measure and arclength on R \ 1o are mutually absolutely continuous (this
 also follows from the F. and M. Riesz theorem). Thus we see Theorem 1 holds in
 this special case.

 The main difficulty in proving Theorem 1 has been to utilize properly the
 hypothesis that E lies on a rectifiable curve. The main idea of this paper is to

 use a result of the second author [22] which characterizes subsets of rectifiable

 curves in terms of geometrically defined "square functions." This result is

 combined with L2 estimates and a stopping time construction to show that there

 exists a certain Lipschitz domain _/c Yc D such that w(F(O), E, (y(_/)) > 0
 and

 (1.2) /,( o < 00.

 The F. and M. Riesz theorem now implies Theorem 1. The inequality in (1.2)
 comes with bounds depending only on the length of the shortest curve contain-

 ing E, so that a slightly more involved argument allows us to prove Theorem 2,
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 an analogue of Lavrentiev's inequality (1.1). The L2 techniques used to bound
 /f@F(4)()) are closely related to those developed during the past decade to

 study Cauchy integrals on Lipschitz curves. In particular, we need to know L2

 bounds for functions in terms of estimates on area integrals (see e.g. Jerison-Kenig
 [20] and Kenig [27]), as well as estimates on how far E lies from straight lines on
 different scales (see [21], [22]).

 Theorem 3 was proved in the case where F is a straight line by Hayman

 and Wu [19] and a little later by Garnett, Gehring and Jones [18]. A simple
 proof has recently been given by Fernandez, Heinonen and Martio [14].

 Fernandez and Hamilton [13] extended it to chord-arc curves and Fernandez
 and Zinsmeister [15] proved it for regular curves F when F C Ql. It is related to
 Theorem 1 because a result of [18] reduces the problem to estimates of harmonic

 measure on a domain fl' constructed from fl and F. In particular, we must

 show that certain small subsets of F have small harmonic measure in f' and
 this is exactly what Theorem 2 allows us to do.

 One can generalize Theorem 1 to finitely connected domains and to some

 infinitely connected domains (e.g., fully accessible domains; see [37], [38]), but
 these cases are not fundamentally different from the simply connected case. A

 more ambitious extension would be to replace the simple connectedness of fl by
 some "thickness" condition on Afl, as in [34, Theorem 2]. Unfortunately, one can
 construct a regular curve F and a thick subset E of F, such that harmonic
 measure on C \ E gives positive mass to a set of zero length. (Thick means

 Cir < f(E n D(x, r)) < f(F n D(x, r)) < C2r.) Even a generalization of the
 theorem to simply connected Riemann surfaces covering planar domains is ruled

 out by a counterexample given by the first author in [6]. Thus Theorem 1 is
 something very special about simply connected domains in the plane.

 The rest of this paper is organized as follows. In Section 2, we record
 several needed definitions and well-known lemmas. We will also introduce the

 geometric square functions mentioned above. In Section 3, we use extremal

 length to relate the behavior of S(@), the Schwarzian derivative of (F, to the
 square function estimates on E and deduce that IS(@)(Z)I(1j- IZI)2 is generi-
 cally small on -/. (A less precise version of this estimate, established by normal
 families, was recorded in the second author's paper [21]. However, that result is
 far too weak for our present purposes.)

 Section 4 uses the estimates of Section 3 and a version of a result of Kenig
 [27] to prove

 1(F)(a~)) < c/(F) + C I 1(Qj),
 Qj E

 where F is a suitable rectifiable curve passing through E and E is a collection
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 of "bad" squares in C\E where the Schwarzian on FD-l(Q) is very small
 compared to ko'I, where Sp(z) log F'(z). These bad squares are the ones that
 often show up in the study of Fuchsian groups-they correspond in a certain

 sense to elements of a Fuchsian group which lie "far" from translations. In

 Section 5, we bound the sum of the lengths of the bad squares by using

 Lavrentiev's theorem to associate to each such square certain disjoint subsets of

 F. In Section 6, we refine our estimates and obtain Theorem 2. The changes

 required are purely technical in nature. In Section 7, we use Theorem 2 to

 obtain a short proof of Theorem 3. In Section 8, we present the non-simply

 connected counterexample mentioned above.

 2. Some facts and definitions

 Before starting the proof of Theorem 1 we will record some well-known

 definitions and results needed later.

 Given a set E C C and an increasing function h with h(O) = 0 we let

 Ah(E) = inf{ Eh(rj): E C UD(xj, rj), rj < 8),

 Ah(E) = lim Ah(E)

 denote the Hausdorff measure with respect to h. When h(t) = t we write this

 as Al or / (for "length"). Note that F is a rectifiable curve if and only if it is
 connected and satisfies /(F) < oo.

 We let D denote the unit disk IIzI < 1} and T its boundary. H denotes the
 upper half-plane. The hyperbolic metric on D is denoted by p. For a domain fQ,
 a point z E fl and a subset E C dfl, we let w(z, E, fl) denote the harmonic
 measure of E with respect to the point z. Often the domain and point are

 understood from context and we merely write w(E). (For Lemmas 2.1 to 2.6 see

 Ahlfors [3] or Pommerenke [36].)

 LEMMA 2.1. Suppose fl is simply connected and z e Ql. Let d = dist(z, af.
 Then for each -r > 0 there is a A > 1 (not depending on z or fl) such that

 w(z, af n D(z, Ad), f) 2 1-

 In Lemma 2.2 we can take r7 and A to satisfy

 1 -7 = (2/wr)arcsin((A - 1)/( A + 1)).

 LEMMA 2.2 (Koebe 1/4 Theorem). If F: fl -Q f' is a univalent mapping of
 simply connected domains then

 dist(F(z), anv)
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 516 C. J. BISHOP AND P. W. JONES

 LEMMA 2.3. If F is univalent on D then

 11I CIF'(z)I IF"(z)I < I

 for some universal C > 0.

 LEMMA 2.4. Suppose _Zc D is star-shaped with respect to the origin and
 that (F is holomorphic and univalent on {z: p(z, _Z) < e} and that VW'(O) = 1.
 Then, given 8 > 0, there exist a number K = K(e, 8) and a set E C T such that
 IEI < 8 and for w E (T n laZ) \ E,

 IfkF'(rw)I dr < K.

 If F is a locally univalent function the Schwarzian derivative of F is

 defined by

 S(F)(z) = | __ - 1[F'(Z)]I

 F'(Z) 2 F"(Z) 1
 F ____ - 3 F11(z)]

 LF (Z) 2 LF (Z)

 Recall that S(F) 0 if and only if F is a Mobius transformation and that S
 satisfies the composition law

 S(F o G) = S(F)(G')2 + S(G).

 In particular, if G is Mobius then

 S(F ? G) = S(F)(G

 S(G o F) = S(F).

 In addition, given an E > 0 and a hyperbolic disk D, there is a 8 > 0 so that
 IS(F)| < 8 on D implies F uniformly approximates a Mobius tranformation on
 D to within E. The final fact we shall need about the Schwarzian is the following
 result.

 LEMMA 2.5. Suppose F is a univalent mapping defined on D. Then

 6

 IS(F)(z)I - Z12)2

 Suppose 6 is a family of curves in the plane. We say a positive, measurable
 function or is admissible for 6 (written or E Q/(e)) if for every locally
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 rectifiable curve y E -'

 fu ds ? 1.

 (ds is arclength on -y.) We define the modulus of e as

 M(W) = inf(ffr2 dxdy:cr E ( -e

 and the extremal length of -& as

 A(W) = M(W) 1

 Note that extremal length is a conformal invariant.

 LEMMA 2.6 (Beurling's Theorem). Let I be a subarc of T = {IzI = 1}, K a
 closed disk centered at the origin and -e the family of curves in the unit disk with
 one endpoint in K and the other on I. Then

 w(0, I, D) -expf-A )
 The constants for "depend only on the diameter of K.

 One consequence of this we shall use is that w(z, D(x, r) n aiW, fl) < CX4'

 for any simply connected domain fl with a constant C that depends only on

 dist(z, Af). The next lemma makes precise a statement from the introduction
 and is found in Pommerenke's paper [37].

 LEMMA 2.7. Let Y be the normal fundamental domain for C \ E defined in
 Section 1. Suppose fl C D is a simply connected domain containing no two a

 equivalent points. Then

 Ia9n TI ? w(O,afQ n T.fQ).

 Combined with the fact that &F is rectifiable with length at most i7F2
 (since it is hyperbolically convex [16]) this implies by Lavrentiev's theorem that

 w(0, ,fln T, Y) is bounded away from zero by a constant depending only on
 w(0, af n T, W).

 A Jordan domain -/ is called chord-arc with constant M if the shorter arc
 of If? connecting two points z, w E If? has length bounded by MIz - wI.
 Given a domain -Z we let d(z) = dist(z, Ift).

 LEMMA 2.8 ([20], [27]). Suppose -Zc D is chord-arc with constant M and
 suppose F is holomorphic on D and satisfies

 ff I F'(z)I2 d(z) dx dy < oo.
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 Then F E H2(-/) and

 f IF(z)I2 ds(z) IF(O)12 + f I F'(z)2 d (z) dx dy

 with constants depending only on M. Similarly,

 f IF(z)12 ds(z) IF(0)12 + JF'(0)12 + ff IF"(Z)12 d( Z)3 d dy

 See [10] for a simple proof when -/ is a Lipschitz domain.

 We also need some facts from [22]. A dyadic square Q is a square of the

 form

 Q = [k2n, (k + 1)2n] x [j2n, (j + 1)2n]

 with j, k, n c Z. Let /(Q) denote the side length of Q and for a > 0, let aQ
 denote the concentric square with side length of a/(Q). Given a dyadic square
 Q there is a unique dyadic square Q' containing Q such that I(Q') = 2n/(Q).
 We denote this square by Qnf. Now suppose E is a compact subset of the plane.

 To each dyadic square Q we will associate two numbers, f3(Q) = P3E(Q) and
 y(Q) = YE(Q)* /8(Q) is defined as the smallest /8 ? 0 such that there exists a
 line L in C so that

 E n 1OQ c S = z: dist(z, L) < (Q)

 We also let SQ denote a fixed choice of an infinite strip of width 8/3(Q) such
 that E l 1OQ c SQ.

 To define -y(Q), let (E n 1OQ)* denote the orthogonal projection of
 E n 1OQ onto LQ (the axis of SQ). Let M be the maximum of the lengths of the

 intervals in (LQ n 1OQ) \ (E n 1OQ)* and set -y(Q) = M/1(Q). Thus -y(Q)
 represents the size of the largest "gap" of SQ not containing a point of E.

 The second author proved in [22] that the set E is a subset of a rectifiable

 curve F if and only if

 82 (E) - 2 E(Q) /(Q) < 00
 dyadic Q

 and that the length of the shortest such curve is comparable to

 diam(E) + PE + E

 More precisely, we have the following:

 LEMMA 2.9. (1) If F C C is connected then

 Q,8(Q)I(Q) < Cl(r)
 Q
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 (2) If E C D satisfies

 /82(E) = LEp2(Q)/(Q) < 00,
 Q

 then there exists F connected with E C F and

 a(F) < 4 + COJ82(E)).

 Furthermore, F can be taken to satisfy:

 (a) If z1, Z2 E F, then z1 and Z2 can be connected by a subarc of F of

 length less than Clz1 - Z21.
 (b) If f8E(Q) < 1/1000, /(Q) < diam(E) and E n Q # 0, then there

 exists an infinite strip SQ with axis LQ which crosses 3Q, and the orthogonal

 projection FQ of F n 3Q onto LQ is all of LQ n 3Q (i.e., no "gaps").

 A curve F is called regular if there is an M > 0 such that

 /f(F n D(x, r)) < Mr

 for every disk D(x, r). Using Lemma 2.9 one can show that F is a regular curve
 if and only if there is a constant C such that for all Q,

 ,p2(0)/(O) < c/(Q).
 QCQ

 3. An estimate on the Schwarzian derivative

 Suppose E c C is compact and let (F: D -* C \ E be the uniformizing
 map. Let Y be the normal fundamental domain for (F. Set cp(z) = log (F'(z)

 (which makes sense because (F' is never zero). Fix w e Y and let zo = CO(w).
 Let Q = Q(zo) be the smallest dyadic square containing zo such that I(Q) >
 dist(zo, E). In this section we shall prove:

 LEMMA 3.1. Suppose (F is univalent on D(w, E(1 - 1w)) Then

 (3.1) IS((F)(w)*(1 - wi) ? Cr 2 12
 n=O

 where

 5n =max(,8E(Qn) zYE (Qn)).

 The number ,u satisfies 0 < bL < 1 but can be taken as close to 1 as wished (part
 of statement of Lemma 3.1). The constant C depends only on the choice of ,u.

 Actually the estimate is true for 0 < ,u < 2, but this is harder to prove and

 we will not need the extra decay. In fact, we will only need the lemma for some
 ,u > 1/2. Also, we will only need the case E = 1/2 for Theorem 1, but we will

 consider small E's when we prove Theorem 2. The lemma is easily verified by
 hand in many cases. For example, if the right-hand side in (3.1) is 0 then E
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 must be a straight line. In this case (F is simply a Mobius transformation and so
 the left-hand side must also be zero. Next suppose that E = Z C R C C. The

 universal covering map T from the upper half-plane H to C \ E can be

 constructed by letting P map Y= H \ Un lE {z - n + 1/21 < 1/2} to H and
 extending P to the rest of H by reflections. Then (Y9) is one half of a
 fundamental domain Y_ which can be obtained by reflecting 5 through any of

 the circles {Iz - n + 1/21 < 1/2}. We also have IP(z) - zj < C on A. It is

 not hard to compute that IS(T)(x + iy)ly2 < Cy-' if IyI ? 1. For z = x + iy
 this corresponds to Lemma 3.1 in the case where 83(Qn) = 0 and Y(Qn)

 y- 2-f; i.e., Enbn(Qj) y' The covering map for any Denjoy domain can be
 similarly constructed by a method due to Beurling (see Rubel and Ryff's paper

 [41]).
 To prove Lemma 3.1 first note that by Lemma 2.5

 IS(')(w)I(1 - IwI)2 < C1c-2.

 Now fix 0 < q < 1/100 (to be chosen later depending on ,u). We may assume
 that 80 < rj, for otherwise the inequality would be trivially satisfied by taking
 C = C1/,7. Since E is bounded, zy(Qn) is eventually larger than rj and so we
 can define N = N(Q) < o? to be the smallest integer such that 5N 2 rj.

 Let So be the strip across 5Q collinear with SQ but of width 80 > /3(Q).
 Let Ho be the half-plane in C \ So which contains the point zo (note: zo t SO
 since 8 < 1/100) and let Lo be the boundary of Ho. Set V0 = Ho. In general,
 Sn is the strip collinear with SQn but of width 8n. Hn is the half-plane in C \ Sn
 which intersects H__ nf Qn-l (both sides of Sn cannot hit Hn fl n Qn-

 without violating Y(Qn) < 8n < 1/100). Let An = 5Qnf/5Qn-l and set

 V = (Ho n 5Q) U (H1 n A1) U * U (Hn-1 n An-1) U (Hn\5Q ').

 Clearly {VnJ is a sequence of planar domains in C \ E. For example V2 is the
 region above the solid line in Figure 1 (see next page).

 Let Gn denote the Green's function on Vn with pole at zo. When n = 0,
 V0 is just a half-plane and so there is a M6bius transformation r mapping D to

 V0 and taking w to zo. In terms of r, Go is given by

 z -w

 Go(,r(z))= -log 1-

 We define another function G on VN by the formula

 z -w

 G((D(z)) = -log 1 -

 which is well defined because )- can be defined on VN. Then G is a positive
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 V2

 :5Q:

 5Q1

 5Q2

 FIGURE 1. The domain V,

 harmonic function on VN \ {z0} and has a logarithmic pole at z0. (In fact, we may

 view G as the Green's function of the universal covering surface of C \E

 restricted to VN.) By rescaling we may assume that 0 c E and dist(zo, E) = 1.
 Let A = {z: z - zol = 1/2}. We will prove that

 (3.2) supIG(z) - G0(z)I < C E ,2
 zEA n=O

 To see why (3.2) implies (3.1) let r be as above and note that by Koebe's

 theorem (Lemma 2.2) Lr'(w)I (1 - Iw)-1.

 LEMMA 3.2. Suppose z E VN and z = 4!(w). Then

 VFD'(w)l dist(z, E)/(1 - IwI).
 One direction follows because D(z, dist(z, E)) C Ql. To prove the other

 direction, note that by the definition of VN, if lzi E An n VN then dist(z, E) >
 An. Since yn < 8n) we can find points Z1, Z2 E E such that

 1z -Z11 [-1Z Z21 [z- IIZ21 -dist(z, E).
 The estimate now follows by renormalization and the fact that the functions on

 the disk which omit the values 0, 1 and oo form a normal family.

 Thus kFD'(w)l (1 - IwI)-1. Now let B = r-'(A). By our formulas for
 G and Go and the fact that Ir'- (1 - Iw-1 on B, the inequality
 IG(z) - Go(z)l < v for z E A implies

 F(B) C {1/2 - Cv < z - zol < 1/2 + Cv).
 The composition law for the Schwarzian now gives

 ISeL')(z0)I
 IS(4F(w)I (1 _ IWID2
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 where T is a conformal mapping of A to 4)(B) which fixes zo. To see why such
 a map satisfies IS(T)(zo)l < Cv, we use the following simple lemma.

 LEMMA 3.3. Suppose fl is a simply connected domain satisfying

 D(O, 1 - v) C fl C D(O, 1 + v).

 Let P: D -* fl be a conformal mapping such that T(O) = 0 and T'(0) > 0.
 Then for all z with IzI = 1/2,

 It(z) - zI < Cv.

 Thus I I'()I -11 < Cv, 14if"(O)I < Cv and IV"'().1 < Cv.

 To prove this note that

 1-v< ?1+v

 holds for all z E T and hence for all z E D (since P(z)/z has no zeros). Thus
 F(z) = log(P(z)/z) satisfies

 -v < Re(F) < v,

 Im(F(0)) = 0,

 Cv

 IV Im(F(z))I = IV Re(F(z))I < 1 Z

 Hence for IzI = 1/2

 z Cv

 Im(F(z))l < I~m(F(O))I + lo 1-Z dIzI < Cv.

 This implies

 t(z) -<1 ? Cv
 z

 as desired. The estimates on NV" and I."' now follow from the Cauchy estimates
 applied to T(z) - z.

 Thus Lemma 3.3, combined with the formula for S(P) in Section 2, allows
 us to deduce (3.1) from (3.2). To establish (3.2) we will prove the inequalities

 N

 (3.3) IGN(Z) -GO(z)l < C X, 8n2-2nA,
 n=O

 N

 (3.4) IG(z) -GN(z)I < C X, 5n2
 n=1
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 for z E A. Clearly (3.3) and (3.4) imply (3.2). We will prove (3.3) first. We start

 with an estimate which shows how Gn decays far away from z0.

 LEMMA 3.4. For fixed -q > 0 there is a 0 < /i < 1 and C > 0 so that if
 0 < n < N then for z E A,

 w(z, Ann dVN, VN) < C2 Z.

 Furthermore, 1 - C'r, < A < 1.

 This is just the Ahlfors distortion theorem [3], but for completeness we will

 give a proof, using the method of extremal length. We define a metric o- on VN

 by

 oJ(Z) = {[zenlog2' for 1 < lzI < 2"

 O. otherwise

 Let e be the family of curves connecting A to Ann dVN in Vn. Then ar is an
 admissible metric for e since y E =-6 implies

 1 2ndr
 fads ng - =71.

 E nlog 2J r

 So to get a lower estimate on A(W) we need an upper bound on ffa2. We write

 J J a2dxdy= (1 ) f2 ) dr

 where 0(r) is the angle measure of (IzI = r} n VN. For 2k ? r < 2k+1 we have
 D(O, r) c 5Qk and so the definition of ,8(Q) implies

 10(r) - 7I < C13(Qk) < CSk < Caq.

 Consequently,

 M(if) ff a 2dx dy? (wT+ Cr1)
 VN @ ) <| | O n log2

 Thus by Beurling's theorem, for z E A,

 (3.5) w(z, An fl dVN, VN) < C exp{ -wA(e)}

 <-n log2 }

 X 1ep + C77
 < C2-n.

 This completes the proof of Lemma 3.4.
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 A similar argument shows that for 1 < n < N.

 w)(ZO) d5Q, VN n 5Qn) < C2'-n

 and for k = 1, 2,. . ..

 w(zo, LNn AN+k, VN) < C2? -k

 since VN looks like a half-plane outside 5QN. Let z * denote the reflection of z0 0

 across Lo and note that

 GO(z) = log 0
 z Zo

 is actually defined and harmonic on C \ {z0, z *} and satisfies

 IVGO(z)l < C2-n

 for Izi E An. Also note that for z E dVN n An,
 min(n, N)

 dist(z, LO) < C2n E f j
 j=O

 and hence IGO(z)I < CEj>=O ,3j. Thus for Iz-z01 = 1/2,

 IGN(Z)-Go(z)l < IGN-Go1 dWz < 2f IG0I dwz
 YVN n=O yVNnAn

 00 n 00 00

 <?CE C j 2-nA < C j 1 2-nA
 n=O j=O j=O n=j

 < C pj2-jA.
 j=O

 We now turn to the proof of (3.4). We start by observing that if z, w E VN
 with Iz - wI = dist(z, E)/2 then p(z, w) -1 (p is the hyperbolic metric
 induced by PD). Clearly p(z, w) < 1 since D(z, 21z - wI) n E = 0. (Recall that
 z, w E Ql c fQ implies pQ(z, w) 2 pQ,(z, W).) The other direction follows from
 Lemma 3.2.

 Now let F be a curve in VN which satisfies

 dist(z, S(Qn)) _ (5n-1 + 5n + 5n+i)

 for z E F r, An. (We will assume 5n > 0. The case 5n = 0 is easier and left to
 the reader.) Also assume that F is uniformly smooth on scale 2f; i.e., if
 rn = F n An and if f is an arclength parameterization of Fn then

 IV2f I < C2n

 (V2 means all second derivatives of f ). Let 9 be the subdomain of VN

 bounded by an arc Fb of F and an arc F,. of d5QN and containing zo. Divide
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 d? into intervals {Ik} such that the hyperbolic diameter of each Ik is about 1. By

 Lemma 3.4 if Ik C Fb n An then

 (Ik) < C(5n-1 + 5n + ?n+J2.
 Suppose z E ?9 n An and dist(z, E) - 2n. Because of the smoothness of F on

 An) harmonic measure there looks like (normalized) arclength; e.g., if Ik C
 F n An then

 cW (Z, lk, -9) < C / (02 n

 But by the remark following the proof of Lemma 3.4,

 w(z0 d5Q n-1 n 5Qn-l) < W)(ZO, d5Q n-1 VN n 5Qn-1) < C2 -n

 and thus

 W (Z)(, Ik, -9) < C / (02 2 n
 Therefore,

 w(ZO, Ik, 9) < C( n-1 + 5n5n bn+ )2

 On the other hand, if Ik c F, then

 W(Zo) Ik, 9) < w(zo, Fr, 9) < C2N/N.

 Since N was chosen so that 5N ? Y,

 W(ZO Ik, 9) < C"N2-N.

 Therefore, for any 'k,
 N

 ft)(zOIk,9) < C E 5n2
 n=O

 LEMMA 3.5.

 N

 supG(z) < C E Cn2 -n=C5(Q).
 d-9 n=l

 Let ? = d'(-9), and Ik = (- 1(Ik). Observe that

 sup G(z) = sup sup log - sup sup (1-Iwi).
 d-9 k WeJk IwI k weJk

 Let ko be an index where the last supremum is attained and let w0 be the point

 in IkO where the supremum is attained. Also let k-1, ki be the indices of the

 adjoining intervals. Set J = Ak_ U Ako U Jk,. Then if w E d9f\ J, p(w, wO) ? Co
 and Iwl ? 1wol. Set

 = - n ({Iwl < Iwol) u {p(w, wo) < Co)).

 (See Figure 2.)
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 FIGURE 2. 9 and 9

 Then clearly

 c (0, J, ) 20 e(0, J,)

 c 1( - 1w0j) 2 CsupG(z).

 But by the remarks preceding Lemma 3.5,

 w(O,I, ) = wO(zo, (I(J), 9)

 < CwO(zo, ik-1 U Iko U Ik, ?) ? C5(Q).

 Inequality (3.4) now follows easily from Lemma 3.5 because by the maximum
 principle and the fact 9 C VN C C \ E,

 IGN(z) - G(z)l < IGg(z) - G(z)I
 < supIG(z)l < C5(Q).

 (G_ is, of course, the Green's function for ? with pole at z0.) This completes
 the proof of Lemma 3.1.

 4. A reduction to the study of bad squares

 Suppose fl is simply connected and E C Al is closed. As in the introduc-

 tion let <D be the universal covering map from D to C \ E and let Y-c D be the
 normal fundamental domain. Assume w(z, E, fl) > 0. By Lemma 2.9, this
 implies that w(z, E, (D(F)) > 0. Thus without loss of generality we may assume
 Q = (D(). Since w(z, E, W) > 0, given any r7 > 0 there is a zo c= such that
 W(zo, E, W) > 1 - 71. We may assume that CP(O) = zo. By hypothesis E lies on
 some rectifiable curve. Let F be the special rectifiable curve associated to E by
 part 2 of Lemma 2.9, satisfying properties (2a) and (2b).
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 The fundamental domain F can be written as S= D \ UB1 where the

 (Bj are disks orthogonal to T. If r7 is small enough, then B1 n flzI < 1/2} = 0,

 for otherwise Lemma 2.1 would imply w(O, dF\ T, S) ? w(O, dBp, D \ B) > q.
 Let F be the radial projection of dO\ T onto T. Then by the maximum

 principle,

 2/F) < (o(0, dF\ T, )

 LEMMA 4.1. With notation as above, there exists a Lipschitz domain -/c F

 such that for all z E A/,

 w (z, dFn T, FY) = w (1D(z), E, <(F()) ? 1 -C

 and p(z, dF) ? 1.

 One proves this by considering the open set where the Hardy-Littlewood
 maximal function of the characteristic function of dF is larger than /i. Over

 each interval I in this set we place a "tent" of the form

 T, = {z E D: 1 - IzI < dist(z/IzI,T\I)}.
 It is easy to check that by taking -/ to be the complement of these tents in D,

 we obtain a domain which satisfies the lemma. Also note, for future reference,

 that if z E a, then <D is univalent on the disk D(z, (1 - IzI)/2) and that the
 hyperbolic distance from z to &F is very large (depending on 7)

 By the lemma, E has positive harmonic measure in the domain CF(X) c Ql.
 If dO(X/) were rectifiable then the F. and M. Riesz theorem would imply that
 E has positive length. Thus it suffices to prove that for any Lipschitz domain -t

 satisfying the conclusions of Lemma 4.1,

 = f kV(z)l ds(z) < C(kV(O)I + a(F)) < oo.

 To see why it is necessary to replace Y- by the subdomain I/, consider the

 following example. Suppose E consists of N equally spaced intervals of length
 wr/N on T and let 'D denote the universal covering map which takes 0 to mo. By
 symmetry one can show that CFGdS) consists of E together with the N radial
 segments which connect the origin to the midpoint of each interval in E. Thus
 the total length of d(D9') is greater than N. However if we consider the
 corresponding region 'D(y/) (see Figure 3) we see its boundary has length
 about 1, independent of N because the boundary of this domain must stay near
 the unit circle.

 Let {Q)} be the dyadic squares in the Whitney decomposition of C \ E (see
 Stein [42, Chapter VI]). Let E, 5 > 0 (to be chosen later). Define Ye ^ C - to
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 F

 L:: E

 E

 FIGURE 3. V(SF) and 14W2")

 be the set of z E -/ such that

 I,'(Z)I(1 - IZI) > 8
 and

 IS(P)(z)I(1 - IZI)2< ?.

 We define a collection of "bad squares" Me , by putting Qj E A if
 dLY- (Qj) n He ^= 0. Also let d(z) = dist(z, do) for z E -.

 LEMMA 4.2. There are universal constants 80 > 0 and CO > 0 such that
 whenever E < E0 and 5 > 0 then

 (4.1) J kV(z)l ds < C0kVD(0)I + CO(i + 5-2)

 x ff V('(Z)l IS((P)(Z)12 d(z)3 dx dy

 + CO E /(Qj)
 Qj E= He 6

 The proof that we will give also shows that if 'D: D -- C is univalent and
 satisfies

 Ilp'(z)I ? ' 4, 1 - Izi
 (i.e., Sp has small Bloch norm) then

 /((P(T)) < C0k(V?(0)I + CoGf Ik(z)l IS((P)(z)j2(1 _ IzI)3 dxdy.

 This should be compared with Becker's theorem ([4]) which states that 'D(D) is a
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 quasicircle. Also note that if Sp has small Bloch norm on -/ then there are no
 bad squares; so we can simplify the proof. However, in this case d(L&) is a
 quasidisk and we noted in the introduction that this case is easy. If we replace
 the term 1P'(O)I in the inequality above by diam(cP(D)) then the inequality holds
 whenever CP(D) is a quasidisk (the proof will be discussed in a later paper). That
 the last term in (4.1) is really necessary can be seen by mapping the disk to a
 half-plane. Zinsmeister [43] has obtained related results.

 Now set F = (P')"/2 and ( = log(@') and observe

 F' =1 1/2
 2

 F" = 1 (D t)1/2(p + -(p)1
 2 2!

 =(Dt1/2(S ((D + ( DP)2).

 Normalize so that kVO(O)I= 1. The first equality, together with Lemma 2.8,
 implies

 (4.2) f kP'(z)I ds -1 + f kD'(z)I I0p'(Z)I2 d(z) dxdy

 and the second gives

 f 1'D(z)l ds < CO + Cof 0P'(z)I IS(P)(z) + (*p'(z))212 d(z)3 dx dy

 < CO + c1ff kP'(z)I IS((P)(Z)12 d(z)3 dxdy

 + C1 1VP',(z)I ISP'(Z)14 d(z)3 dx dy

 + clff kZ'(z)I ISD(Z)14 d(z)3 dx dy
 7\2e7, 3

 < Co + C1f (DP(z)I IS((D)(z)12 d(z)3 dxdy

 + C1E 1(Qj)
 Q;e e,S

 + C E2f kP'(z)I ISp(Z)I2 d(z) dx dy

 + C1&-2 kP(D(z)I IS((P)(Z)12 d(z)3 dxdy.
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 In the last inequality the third term is correct because Lemma 2.3 and the fact

 that CP is univalent on D(z, (1 - Izl)/2) for z E -/ imply Ip'(Z)I < Cd(z)-'. So
 by Lemma 2.2 we have

 ff_ 4('(z)l d(z)- dx dy < C/(Qj)
 ?- i(Qj)

 The last two terms bound the integral over -/\ -4 , since for z E /\ 4
 either Iko'(Z)I d(z) < E (in which case the first term bounds) or E <
 Ikp'(Z)I d(z) < C and IS@(Nz)I d(z)2 ? - (in which case the second term
 bounds).

 Taking E small enough and using (4.2) give

 J 1V(z)l ds < C2 + C2(1 + &-2)fJ |k(z)I IS(D)(Z)12 d(z )3 d dy

 + C2 E (Q)+ 2 DI (z)l ds.
 Qj G A.6

 We can now subtract the term on the far right from the left-hand side to
 establish an a priori estimate; this can be combined with a limiting argument to
 complete the proof of Lemma 4.1.

 Thus to prove that f IP l < oo we must bound both the integral and the sum
 which appear on the right-hand side of (4.1). In the rest of this section we will
 prove the integral is finite. In the next section we will deal with the sum.

 As above, let {Qj} be the squares of the Whitney decomposition of C \ E.
 Given a square Qj, let N(Qj) be the smallest integer n ? 0 such that
 ,8(Qjn) + Y(Qn) > 1/1000. Thus for z E ID-'(Qj) n -/ (by Lemma 3.1),

 N(Q;)

 IS(CP)(z)I(1 - IzI) 2 < C E (3(Qn) + y (Qn))2-nA = C5(Qj).
 n=1

 We claim that to prove

 f kV,(Z)l IS(P)(Z)12 d(z)3 dxdy <00

 it is sufficient to establish

 (4.3) E52(Qj)V(Qj) <00.
 j

 To see this, recall that if z E /, then the hyperbolic distance from z to dF is
 > 1. Thus Lemma 2.2 implies

 4VP'(z)I(1 - Izl) - dist(4P(z), E) - 1(Qj).
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 Hence,

 fI(D(Z)I IS((D)(Z)12 d(z)3 dxdy

 ? ||ff VF'(z)l IS(D)(z)12(1 - IzI)3 dx dy

 < C - 5(Qj)2 A d
 E b ( ) 2 | 'P(z)Il dx dy

 ' C 2 (Qj) /(Qj). i~~~~~~~-Ii

 Therefore it suffices to prove (4.3).

 LEMMA 4.3. Suppose Q is a dyadic square. Then

 E / (Qj) < 2 n/ (Q).
 j: Qjn=Q, N(Qj)?n

 This is trivial since there are at most 4n squares Qi such that Qjn = Q and
 each has length 2- n(Q). The lemma is actually true with 2 replaced by a

 strictly smaller number, but we will not need this result.

 LEMMA 4.4. For each n = 0, 1,...,

 E 2 (Qjn) / (Qj) < 2 n p |2(Q)/(Q).
 j: N(Q) 2 n dyadic Q

 To prove this just use Lemma 4.3 and observe that

 E 2(Qn)I(Qj) = E 2(Q) 1(Q1)
 j: N(Qj)?n dyadic Q j: Qjn=Q, N(Qj)?n

 < 2 nE ,l32 (Q) / (Q) .
 dyadic Q

 COROLLARY 4.5. If 2-' is smaller than I/ F/,

 N(Qj) 2

 E O (Qjn)2-nA )(Qj) < C 12(Q)I(Q) < C/(F).
 j \ n=O I dyadic Q

 To prove this we merely apply Minkowski's inequality to the left-hand side

 and then apply Lemma 4.4.

 LEMMA 4.6. For each n = 0, 1,...,

 E 'y2(Qn)1(Qj) < C2U((F)
 j: N(Qj)?n
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 First let {Ik} be a decomposition of F \ E into disjoint pieces satisfying

 1
 diam(Ik) < -dist(Ik, E),

 l(Ik) ? C dist(Ik , E).

 Such a collection can easily be constructed by considering the Whitney decom-

 position of C \ E. Given a dyadic square Q such that 3(Q) < 1/1000 we can
 pick an index k = k(Q) such that

 Y(Q) < CI(Ik)/1(Q).

 This is possible because by the definition of y(Q) and Lemma 2.9 (2b), C \ E
 contains a disk of diameter y(Q)/1(Q) centered on F. Next, note that if
 k(Q) = k then /(Q) ? l(Ik), and only a bounded number of squares of the
 same size can hit Ik. Thus grouping the dyadic squares such that k(Q) = k
 according to size, we get

 E /(Q)-' < C1(1k)1 E 2-m < C/(Ik)
 Q: k(Q)=k m=0

 We split the sum in the lemma into two pieces. In the first we only sum over
 squares with /(Q) < 1/1000 and obtain

 Z y2 (Qn)1(Qj) = E y2(Q) E(Q )
 j: N(Qj)?n Q:/3(Q)< I/1000 Q7 =Q, N(Qj)?n

 < 2E YQ(Q)/(Q)
 Q

 < C2n E /(Ik(Q))2 /(Q) -
 Q

 -C2n /(Ik)2 E (Q)-
 k Q: k(Q)=k

 < C2n E /(k)2 I(IJk)
 k

 < C2n1(F).

 The last line holds because the {Ik} are disjoint. For squares with /3(Q) > 1/1000

 we note that -y(Q) < 1000,8(Q) and then use Lemma 4.4.

 COROLLARY 4.7. If 2- is less than 1/ F/ then
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 COROLLARY 4.8. For ji > 1/2, (4.3) holds; i.e.,

 j(Qj)2/(Qj) < C/(r).

 The corollary follows from Corollaries 4.5 and 4.7. We have now shown the

 integral on the right-hand side of (4.1) is finite.

 5. Bounding the bad squares

 In this section we will prove

 (5.1) E /(Qn) < C (, a)/(r)
 QnE e, 6

 if E and 5 are small enough. Let E be fixed so small that Lemma 4.2 holds and

 fix a value of ji in Lemma 3.1 so that Corollary 4.8 holds. Let 50 > 0 (to be
 chosen later). Note that if 5(Qj) ? 50 then 1(Q1) < (1150)15(Qj)2 (Qj). By
 Corollary 4.8 these squares sum, and so we may assume from here on that

 ?(Qj) < 5o. Also note that since the harmonic measure of E is close to 1 on the
 bad squares we must have dist(Qj, E) < C diam(E), because PG9SF) goes out
 to oo. (This is why we use C \ E instead of C \ E.) Our basic strategy will be to

 build a new curve F with /(r) /F) and to associate to each bad cube Qn a
 positive function fs on F such that

 (5.2) Jfin ds 2 C11(Qn)

 (5.3) E fn(x) < 4
 n

 except for a set of zero length in F. Thus

 1 1 E (Qn)< EC fnds< - :Efn ds
 QnE= a, n C1 C1 r n

 4
 < -1(r).

 C1

 Since /(r) < C/(F), this will complete the proof of Theorem 1. This idea was
 also used by Jones and Marshall in [23] in a related, but much simpler, situation.

 We start with the following lemmas which allow us to exploit our assump-

 tion that SOD) is small on the "bad" cubes. As before we set Sp = log(V).
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 LEMMA 5.1. Given E > 0 and A > 0 there are a C and a 5 such that if (D is
 locally univalent on D and there is a point z such that

 I'(z)I 2 IZI

 for all p(w, z) < C, then there exist a hyperbolic disk D centered at zo of radius
 A and a point wo e D such that p(D, z) < C and 1 - 1wol < 1 - IzI and

 Ikp'(w0)I > 2(1 - IwoI)
 8

 Ikp'(W)I w E D.
 The proof is very easy. We merely observe that if (t is a Mobius transfor-

 mation, then the lemma is true for some C > 0 (it is instructive to consider 1/z

 on the upper half-plane). If the lemma failed in general, we would take

 a sequence of functions I?n with S(@D)(w)(1 - wi)2 -O 0 uniformly on
 p(w, z) < C, but such that the corresponding sp'(w)(1 -Iw) remained larger
 than 8. Passing to a subsequence and a limit we obtain a Mobius transformation

 for which the lemma fails, a contradiction. This proves the second inequality
 holds. We can easily get the first to hold by moving D closer to z if necessary.

 Also note that we can get the second inequality to hold just by taking any disk D

 close enough to T as long as it stays away from one boundary point (which

 depends on (D), because the same is true for M6bius transformations. This
 observation will be useful when we prove Theorem 2.

 LEMMA 5.2. Given E > 0 there is a 5 > 0 with the following property.

 Suppose zo = roeio E D and let -y = [roei6, r1ee6] be a radial line segment with
 endpoint zo. Suppose Ip'(z)I < E8(1 - zol) andfor all z E -y

 IS@(D)(Z)I < - I)2

 Then for all z E y,

 Ip'(Z)I < 1- 1z
 Moreover, for z EE y and p(z, zo) large enough (depending only on 5 and 8),

 I'(Z)I < ?
 1-IzI
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 To prove this, suppose IJp'(tei')I < ?( -t)' and IS(@D)(tei)I ? (1 _ -
 for r0 < t < r. Then

 1~~~~
 kp`D(teiO)I J ISP(()(te'6)I + 2 Ip'(teio)l2

 < (5 + E2/2)(1 _ t)-2 < e2(1 -t)

 if 5 < E2/2. Clearly this implies IJp'(tei6)I < E( - t)' for t < rl. In fact, we
 get Isp'(teiO)l <?E2(1 - t)- for t close enough to 1. The final claim comes from
 iterating this argument n times until E2n < 5.

 Now consider the sum in (5.1). By definition each "bad" square Qj con-
 tains a point F(y;) with yj C , Ilp'(yj)l ? e/(1 - IyjI) and JS(@)(yj)J <
 5/( _- lyjl)2. Moreover, S(@P) remains small on a large hyperbolic neighborhood
 of yj because we may assume 5(Q) < 50 is very small (use Lemma 3.1 and our
 comments at the beginning of the section). Applying Lemma 5.1 to z = yj with
 E as above and A = 10, we obtain a point z; (zo of the lemma) which satisfies
 the conclusions of Lemma 5.1. Also note that z; is only a bounded hyperbolic

 distance from -Y (and therefore in Sr).

 Arrange the {z1} so that Iz11 < IZ21 < .... By dividing A,, into a finite
 number of disjoint families, we may also assume

 (5.4) p(zj, Zk) ? C2 >> 1, j 0 k.

 C2 is a large positive constant which will be chosen later.

 To each point z; we wish to associate a Carleson box, i.e., a set of the form

 Rj = {z: 1 - IIjI < IzI < 1, z/lzI E Ij)

 for some interval Ij C T. We also let Si denote dRi n D = dRi \ Ib and let Tj
 denote the top edge of R . Suppose by induction that we have defined

 subdomains R1.. ., Rn-1 such that
 (1) Si C .

 (2) /(4D(S.)) < C3dist(cP(z;), E) C3d1.
 (3) p(z;, T3) < 10.

 (4) If Rf n Rk = 0 and k ? j then Rk C R1 and dist(Rk, S) 2 f(Rk).

 Also note that d1 IV2'(zj)I(1 - zj) I I(Qj)
 To define Rn we consider two cases. The first occurs if dist(zn, S.) >

 2(1 - IznI) for every 1 < j < n - 1. If so, build Rn as follows. Since zn is only a
 bounded distance from /, Harnack's inequality implies w(zn, OdFn D, F) <
 C4F. Let J denote the arc on T of length 2(1 - IzjI) centered at zn/lZnl. By a
 localized version of Lemma 2.4 there is a set F c J n F with I Fl > IJ 1/2 such
 that for every radial segment -y with an endpoint on F and length 1 - IZJ, we
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 have /(1(-y)) < Cdn. Choosing the sides of our Carleson square Rn from such
 segments, we easily satisfy (1), (2) and (3). We may also assume Rn contains zn
 in its top half. Then (3) and (5.4) imply dist(R, S ) < 1(R ) for every 1 < j <
 n - 1 which is (4).

 In the second case there is some 1 <j < n - 1 such that dist(zn, S.) <
 2(1 - lZnl). Choose k so that this distance is minimized. Then if C2 is large
 enough, l(Rk) ? 50(1- lZnl). Now build Rn satisfying (1)-(3) inside the box
 Rk and so that

 dist(Sn, Sk)

 1(Rn)
 To see that (4) holds consider j < n - 1 and j 0 k. If l(Rj) > 501(Rn) then

 dist(S3, sn) ? dist(Sj, Sk) - 2 dist(Sn, Sk)

 > max(/(Rj), /(Rk)) - 4/(Rn) /(Rn)

 On the other hand, if 1(R) < 50/(Rn) then dist(Sj, SO) ? 10/(Rn) because
 P(Zj, Zn) ? C2. Proceeding by induction, we obtain a sequence of Carleson
 boxes {Rd) satisfying (1)-(4). (See Figure 4.)

 Rk
 Wk

 Zn~~~~

 FIGURE 4. Building the Carleson squares

 Next we observe that we can ignore the bad squares which are "near" F.

 More precisely, let wn be the center of the top half of Rn. Suppose
 p(ID(wn), F) < C2/10. Then there exists an arc In C F n fp(z, 1(wn)) < C2/2)
 with /(In) dn (if 80 is small enough, depending on C2). Clearly all the arcs
 arising in this way are disjoint. Thus setting fn to be the characteristic function
 of In gives (5.2) and (5.3). Therefore we may now assume that p(I(wn), F) >
 C2/10.

 Now let en = I(Sn), and 4n* denote the component of 4n* \ F which
 contains I'(Tn). (Such a component exists because we are assuming the hyper-
 bolic distance from 1'(wn) to F is large.) Let Wn denote the component of
 c \ (r u 4n*) containing (F(wn). Observe that en* has its endpoints on
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 F n SQ and by the assumption that 8(Q) < 80 we can find a collection of points
 {Xk) c F n SQ with IXk - Xk-lI < 8od for each k. By part (a) of Lemma 2.9, F
 connects x k to x k -1 inside a disk of size C80 d Therefore

 (5.5) diam(W, ) -d,
 . ~~~~~~~ \

 E E

 FIGURE 5. The domain W,

 Now let An be the component of C \ (F Ukek*) which contains I(w,).
 Since An C W,

 diam(2n) < diam(Wn) < Cdn.

 This and the fact that p(wn, Wk) is large imply that for n A k, fAn n ?7k = 0
 To see this, assume dn < dk. Then (F(Wk) E f/n implies kI(wn) - F(Wk)I <
 Cdn. Combined with dk ? dn and 8(Qn) < 80, this implies p(Wn, Wk) < C2 (for
 C2 large enough). Furthermore, n A k implies Cn n Ck = 0 since Sn and Sk
 are disjoint in 9' and hence Of/n consists exactly of the arc 4n*, a subset of F
 and some collection of other arcs 4k*'s. Furthermore, if 4'k* n ayn # 0 then
 -k* C dgO and dk < dn/2. Consequently,

 (5.6) nk = I and Cl* n -,n # 0 C* n k k=0

 We now define the new curve F by adding certain arcs to F. For each Rn
 choose a maximal collection of dyadic subcubes {Qn) of Rn with the property
 that the top half of each Qk contains a point z such that F(z) is in a Whitney

 cube Qkn of C \ E with 1/10 ? 5(Qn) ? 8, (8, to be chosen later). For each k
 let Fkn denote the line segment containing the top edge Tkn of Qk, but three
 times as long. Let En be a curve which connects F n to - '(F) and such that

 /(I'(F n U E9n)) < C/(On). We can do this because /(I(F n)) /(QOn) by
 the assumption that 5(Qn) < 1/10 and the estimates of Section 3 (Lemma 3.2
 in particular). En can be chosen so that F(E n) is a curve of length < C/(Qn)
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 connecting 1( Fn) to E C F. Finally we set

 F= u U o((Fun U En).
 It, k

 To see that P has finite length, note that each square Qn has a uniformly
 bounded hyperbolic diameter (because 5(Qn) < 1/10); so F - (On) can hit the
 top half of only finitely many dyadic Carleson squares, and hence can be chosen

 only finitely often. Moreover, since 8(oQn) ? 81 the lengths of these squares sum
 by the remark at the beginning of this section. Hence

 () ? (F) + CE 1( (n) < c1(r).
 n, k

 Define ?n to be the component of n \ f' which contains I(Wn). We claim
 that

 (5.7) (0)(?(Dn), P n a -n) n) 2 C4.

 Let Vn be the component of An \ 4n) containing I(w ). Then Vn C An and
 aVn \ dn = en \ An* has large hyperbolic distance from (F(Wn) depending
 only on C2 (just recall that en is the image of the sides of the Carleson box Rn).
 This implies w(Cwn), awn \ V?n) Vn) is small depending only on C2. Therefore
 if we can show

 W()(D(Wn) IF n dVn, Vn) 2 2C4

 for some absolute C4 > 0 we can deduce

 (0 (( Wn)v n awn An) ()(D (Wln)v n dVn, Vn)

 W(( (Wn)v Iawn \ w)Vn) 2 C4

 if C2 is large enough.

 We begin by observing that any radial segment starting at the top edge of

 Rn must hit b-I'(P) before it hits any R, C Rn. To see this, fix some Rj c Rn.

 By definition there is a point zj (the point wo of Lemma 5.1) within hyperbolic
 distance A of S1 where I n'(x )I ? e/(2(1 - Ixjl)). Let y be the radial segment
 which connects x to Sn. Since p(xj, SO) C2 - 2A is large, we will contradict
 Lemma 5.2 unless there is a point z E y where IS(@)(z)l 2 8/(1 - IZI)2. So
 choosing 81 to be the 8 given by Lemma 5.2, we see that y must hit one of the
 squares Qn in the definition of F. Moreover, the hyperbolic distance of the top

 of this square to R is very large if NO << ? 1 (because Lemma 3.1 and 8O very
 small imply S(@) remains very small in a large hyperbolic neighborhood of Sj).

 Finally, p(Rj, F) < A, p(Rj, T n) 2 10 and y n Tkn A 0 imply Fkn (the "triple"
 of Tkn) covers R .
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 Consider the domain Un = Rn \ UkQk', where Qk consists Of Qk together
 with the two adjacent Carleson squares of the same size (see Figure 6). Then by

 the argument above, any Rj C Rn lies in some Qn. Hence if Vn is the
 component of I(Un) n Vn containing ID(Wn) we see Vn C Vn and OVn \ OVn C F.

 Un

 b- 1(E)

 FIGURE 6. Un and ( )

 Thus

 cW (?(DWn), I P vfn) < W((?(Wn) r Vn).

 Let F C OUn consist of aUln n T plus the top edge of each cn. By the maximum
 principle,

 W ('F(Wn), f Vn) ? W (wn, F, Un)

 because F C 1r'(fI. Note that Un is a chord-arc domain with /(aUn) 1 - IWJ
 and that 1(F) ? 1 - lwnl (Any domain formed by removing dyadic Carleson
 squares from a larger Carleson square is chord-arc with constant < 6.) Thus by

 the A. condition for harmonic measure on a chord-arc domain (Jerison and
 Kenig [20]),

 W(wn, F, Un) ? 2C4

 as required.

 We are now ready to begin the construction of the fn's. Let us first note
 that except for a set of zero length each x E r is contained in the boundaries of

 at most two of the domains f/a. This is because these domains are disjoint and
 (by rectifiability) contain cones with angle near 7r at ia.e. boundary point.
 Therefore we can consider each point on r as a pair of points, each correspond-
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 ing to a "side" of the curve. With this convention it makes sense to claim that

 each point of P is in at most one of the sets P n a W
 It is enough to bound every finite subsum of (5.1), and so we may assume

 our collection of domains {in) is finite. Relabel them so that d, < d2 ? ...
 Define f1 to be the characteristic function of n f an. This satisfies (5.2) since
 Q?2 consists only of C and a piece of F of diameter di. (The upper
 estimate follows from Lemma 2.9 (2a) and diam(19) di. The other direction
 follows from the lower bound on the harmonic measure of P in J1 and the
 usual estimates on harmonic measure.) Now suppose fl, ... fn-1 have already
 been constructed satisfying (5.2). To construct fn we consider two cases.

 Let C5> 0 be a small constant to be chosen below. If 1(f n flO) > C5dn,
 then let fn be the characteristic function of the set P n ffai. Certainly (5.2) is
 satisfied if we take C1 < C5.

 Now suppose /(F n On) < C5dn. Suppose C0 is the constant in
 Lavrentiev's inequality (1.1). Equation (5.7) and Lavrentiev's theorem imply that

 G9n) > C4110g C51dn/CO. Since we know that /(C *) < C3dn and are assum-
 ing a(f r n ) < C5d, nwe must have

 2 C0
 U~~~~~ ekk* Ca 3 5

 and observe by the induction hypothesis and (5.6) that

 f ds? 2 ffkds
 1 1 C1
 2 Cldk? 2 2 1CL(@k*)

 > : dn > 2C 3

 - 2 3 C o

 if C5 is smalllegough. Dedin

 We now turn to the proof of (5.3). Fix x E F (not in the exceptional set and

 with the "two sides" convention discussed above), and let k5 be the first index

 such that fklx) f 0. Then it must be the case that x E r O and fk(x) = 1.
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 Let kI > k0 be the next index such that fk1(x) : 0 and similarly for k2, k3,2....
 Since x Ec n Eke we have C * c and hence fk(x) = 1/2. Now con-

 sider k2. Since by (5.6) ok* C Q_2 implies 'k0 ? 2 we must have 4, C
 O92. Therefore fkP) = fkx)/2 = 1/4. In general, 4k* = 0 if 0 <j
 < n-1 and -` C Of2Y. Thus fk(X) = 2-n for all n and so Efk(x) < 2.
 This proves (5.3) and finishes the proof of Theorem 1.

 6. Proof of Theorem 2

 We now turn to the proof of Theorem 2. All this really requires is a slight
 technical modification of the argument of the previous section, and so we will
 only sketch these changes.

 Suppose co(z, E, fl) ? e. We replace Lemma 4.1 with a construction that
 gives a Lipschitz domain -/c 5_ such that co(z, ,95-n T, 5-) ? v(E) for z c -/.
 Furthermore, p(z, O5F) ? Cv for z E -/ and the chord-arc constant of Ad-
 depends only on e. Therefore, Lemmas 3.1 and 4.2 still hold, but with constants
 C, E' that depend on e. Thus we can prove that '(DL/) has finite length
 (depending only on E and /(F)), if we can modify the argument in Section 5 to
 bound the bad squares.

 The statements of Lemmas 5.1 and 5.2 still hold since they did not involve
 either -/ or Y or the assumption that the harmonic measure of E was close to
 1 in F(K/). However, we can no longer choose Carleson squares {Rd) which
 satisfy conditions (1)-(4). In particular, condition (1) may be impossible to
 satisfy. However, we can construct a sequence {w3) of points associated to the
 bad squares {Q3) which satisfy

 ko'(W)I(l - IWi) ? ', p(w, wj) < 10,

 kp'(Z)(1 -IzI) ? E'/10, for some p(z, wj) < C(E).

 To each w3 we will associate an arc Il centered at wj/lwjl so that 1(1.) >
 n(eX1 - 1w)l). We define

 Z:= {zz/ZI E In,2(1 - IWI) < 1 -IZi ? 1).

 Instead of being "squares" these are tall, narrow rectangles, but with eccentric-

 ity bounded by 1/,q. We can choose {w3) and (I) so that we also have

 (1') Si C 9a.
 (2') /(?((sj)) < C,(E)d;.
 (3') p(zj, Tj) < C2(E)?
 (4') If Rf n Rk * 0 and k 2 j, then Rk C RJ and dist(Rk, Si) >

 C3(E)I(Rk)'
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 (As before, Sj and Tj denote the "sides" and "top" of Rj.) Now the construction
 proceeds exactly as before except the values of the constants change.

 To construct {wn) and {In) we proceed as follows. To each bad square Q3

 we associate a point yj E - just as in Section 5. Then apply Lemma 5.1 to
 the point yj with A = 10/v. This gives us a sequence of points zj satisfying the
 inequalities in Lemma 5.1. By dividing this sequence into a finite number of

 subsequences we may assume the z1's are well separated in the hyperbolic

 metric, say p(zj, Zk) ? 100/v for j + k. We may also choose the z; E 9' so
 that they are at least a fixed hyperbolic distance from OS. Since F is

 hyperbolically convex this implies we can connect z; to -/ by a geodesic of

 bounded length which stays a fixed distance from d9. Applying Harnack's

 inequality along the geodesic gives co(zj, dFn T. F) ? v/C. Replacing v by
 v/C we will assume this inequality holds with C = 1. Let 1j = 1-lzjl and let
 J be the arc on T which is centered at zj/lzjl but has length 10l1/v. Now apply
 Lemma 2.4 to obtain F c dFn T such that Il ? laFn J 1/2 and so that every
 radial segment y with endpoint in F and of length ij satisfies /(?(y)) <
 C(e)di. Then there exist intervals J11,J2 C J such that dist(J1,J2) 2 vlj/4
 and lJ, n Fl, 1J2 n Fl ? vlj/4. There exist points X1, X2 C j, n F such that
 Ix1 - X21 v lj/16. (To see this, consider the convolution of the characteristic
 function of F n J, with itself. Since it is a function bounded by vlj/4 but
 having Li norm (vlj/4)2, it must be nonzero at some point at least distance
 vl/16 from zero, which is equivalent to our claim.) Now let K1 be the arc

 between x1 and x2. Using the same argument on J2, we define an interval
 K2 C J2 with endpoints in F.

 We now mimic the construction of the Carleson squares in Section 5,

 assuming we have ordered the points {z3) so that 1z11 < 1z21 < * and that we
 have already constructed the points {w3) and intervals (1) up to n - 1 satisfying
 (1')-(4'). If the sequence {z3) is sufficiently separated in the hyperbolic metric,

 so will w1,..., Wn1 be since p(wj, z;) < C(E). Therefore, we can have
 P(Zn, Sk) < 10/v for at most one index k < n. Moreover, at most one of the
 radial edges in Sk can hit J (the interval from the last paragraph). Therefore, at
 least one of the two intervals K1, K2 constructed above must be at distance at

 least v(1 - lznl)/8 from Sk. We now take In to be this interval, and define wn
 so that wn/lWnl is the center of In and lwnl = min(lZnl, 1 - linl). It is now easy
 to check that we have satisfied all the required conditions, (1')-(4').

 7. Proof of Theorem 3

 In this section we will prove Theorem 3. If F is not Ahlfors regular, it is

 clear that the supremum over F and fQ of /(?'-@(F n fQ)) is infinite. There-
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 fore we may assume that

 / (F nl D(x, r)) < Mr

 for all disks. We will use the following result which is due to Garnett, Gehring

 and Jones [18].

 LEMMA 7.1. Let , ..., ,/N be collections of points in F n fl and let

 = UN = lm.Let K3 = {z-zj I < dist(zj, f)/2) for zj E v/, and for zj E
 n let

 fj = fl\ U Kk-
 ZkGYE k j

 Suppose the collections zn and y satisfy

 inf p(z, z;) < M, for all z E F,

 and

 c)(z ) aQl n Alp fQf) 2 , zj E '.
 Then

 /((D-'( n fQ)) < C(M, N. e)
 for any univalent mapping (': D - Q.

 Let A > 0. It is an exercise to show that for any A < oo there are points {z3)
 in F n fl which satisfy

 (7.1) P(Zk, zj) 2 A, Zk # Zj;

 (7.2) infp(zzj) < 4A, z E F;
 J

 32
 (7.3) d(zj) < ? /(Fi)

 where

 d(z) = dist(z,Oaf), rF = {z E F: p(Z, zj) < A/4).

 Because of (7.1) we can divide the points {z3) into N(A) disjoint subsets
 -'V-4** */2 'N(A) such that for any Zj, Zk E Sn, j # k,

 (7.4) Iz -Zk1 ? A inf(d(zj), d(zk)).

 Now let Kj = {z: Iz -zjl < d(z)) and for z; E /n set

 Qj = Q \ U Kk.
 Zke6>n~ k j
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 By Lemma 7.1 it suffices to prove

 (7.5) W (Zj, aQ n aol, fj ) ? 1/2.
 We now normalize so that z; = 0, d(z3) = 1. Since (by Lemma 2.1)

 (0,A alln {IzI ? 10), Qj) < 1/4,

 we see by the maximum principle that (7.5) follows from

 (7.6) w(o,(aflj\ al) n {I zI ? 1oQj) < 1/4,
 where f)j is the component of Qfl n lzl < 10) which contains the origin. Let

 v {Zk EJ/n: IZkI < 10, k j}.

 Condition (7.1) implies the sets rk are disjoint and condition (7.4) implies

 rk C (IzI < 20) for k E W. Therefore condition (7.3) and the regularity of F
 give:

 C

 (7.7) Ed(Zk) <- A/(Fk) < CA'1(r n {IzI < 20)) < CoA'.

 Let Lk be a line segment connecting Kk to Al such that l(Lk) = d(Zk)/2, set

 E = U et{Kk U Lk), and let Q be the component of fQj \ U e Lk which contains
 the origin. Then h is simply connected and by (7.7), 1(E) < C1A'. The set E
 is contained in the rectifiable curve

 F= (n{IzI < 10)) U ({IzI= 10)) U E

 and

 /(F) < lOM + 20r- + C1A-'.

 Thus by Theorem 2,

 cw(O,E,h)< 1/4

 if A is large enough. The desired estimate (7.6) follows from this last estimate
 and the maximum principle.

 We should also mention that Theorem 3 actually follows from the estimate
 for Theorem 1. This is because it is possible to choose the line segments {Lk) in

 such a way that adding them to F gives a regular curve. The arguments in
 Sections 4 and 5 together with the remark following Lemma 2.9 therefore give
 uniform estimates for harmonic measure in h which is all we need.

 8. The counterexample

 If F is a straight line then Theorem 1 is still true for domains which are not
 simply connected, but which satisfy a "uniform thickness" estimate in terms of /

This content downloaded from 129.49.5.35 on Wed, 18 Mar 2020 22:36:17 UTC
All use subject to https://about.jstor.org/terms



 HARMONIC MEASURE AND ARCLENGTH 545

 (see [34, Theorem 2]). However, this is not the case when F is merely

 rectifiable, or even regular.

 LEMMA 8.1. There exist a rectifiable curve F and subsets K C E C F such
 that for all x E F, y E E and 0 < r < diam(F)

 /(F n D(x, r)) < Clr,

 1(E n D(y, r)) 2 C2r

 and such that 1(K) = 0. However, if w denotes harmonic measure on C \ E

 then co(K) > 0.

 To prove this, suppose N1 < N2 < ... is an increasing sequence of positive

 integers (to be chosen later). Let {x ) be a collection of N1 equally spaced points
 on T and let E1 = UIP be the union of N1 subarcs of T of length 27r/10N1
 centered at the points {xk). Let F1 = T.

 Now suppose we have defined the N1 ... N2 points {Xn), the set En

 composed of the intervals {IjnJ and a curve Fn. For each point Xn we let
 Dn = D(xkn, /(Inj)) and choose Nn+l equally spaced points {Xnl}) on the circle
 OD n. Let {Ijn+} be the subarcs of OD n centered at the points {Xnl 7) and of
 length /(1 D9n)/1ONn+1. Let En+j be the union of the N1 ... Nn+1 arcs.
 Define rn+ 1 = Fn Uk ODk. Clearly

 n n l2

 /(Fn) = 2,iT+ E l(dDki) = 277 + E -< 20.

 Thus taking n -- oo we obtain a rectifiable curve F as the limit of the Fn's.
 Furthermore it is easy to show

 n

 /(r n D n) < x, El(dDk) < 20/(D n).
 j=l k

 Let rn = diam(Dk) = (N1 ... Nj)-1(2 -/1O). Given r > 0, choose n = n(r)
 so that lOrn < r < lOrn- . Then a disk D(x, r) centered at a point of F,
 contains r/rn disks D n, so that

 / (F n D(x, r)) < Cr.

 Set E = U En and K = E \ U En. Then clearly E C F and the observation
 above implies

 I(E n D(x, r)) ? Cr.

 Also, since K can be covered by N1 ... N, disks of radius 2rn, we have
 /(K) = 0. Finally, to show @o(K) > 0 we need only choose the (NnJ growing so
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 fast that

 cW(zO, En, f) < 4f

 But this is easy since if we set t = C \ Un+L Ej, fix N1, ..., Nn and take
 n+ - o? then w(z0, E QE ) - 1. Thus for Nn+I large enough

 cW(zo, En) fl) < W(z), En' Qn) 4 4-n

 The domain ft is not a domain of Widom type. However, if E is a

 homogeneous subset of a chord-arc curve, fl must be of Widom type (proven by

 Jones and Marshall [23] when F is a line). This is because when F is chord-arc,

 one can estimate the sum of the Green's function over its critical points, EG(z3),

 by noting G(zj) = G(z.) for some z; e F \ E and so that each component of
 F \ E contains at most one ij. The result then follows from the A. condition for
 harmonic measure on chord-arc curves plus the results of [20].
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