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Abstract. If f is in the Eremenko-Lyubich class B (transcendental entire func-
tions with bounded singular set) then Ω = {z : |f(z)| > R} and f |Ω must satisfy
certain simple topological conditions when R is sufficiently large. A model (Ω, F )
is an open set Ω and a holomorphic function F on Ω that satisfy these same con-
ditions. We show that any model can be approximated by an Eremenko-Lyubich
function in a precise sense. In many cases, this allows the construction of functions
in B with a desired property to be reduced to the construction of a model with that
property, and this is often much easier to do.

Date: May 2014.
1991 Mathematics Subject Classification. Primary: 30D15 Secondary: 37F10, 30C62 .
Key words and phrases. Eremenko-Lyubich class, Speiser class, entire functions, approximation,

models, quasiconformal maps, quasiconformal folding, critical values, transcendental dynamics, Julia
set, tracts, Blaschke products .

The author is partially supported by NSF Grant DMS 13-05233.
1



MODELS FOR THE EREMENKO-LYUBICH CLASS 1

1. Introduction

The singular set of a entire function f is the closure of its critical values and finite

asymptotic values and is denoted S(f). The Eremenko-Lyubich class B consists of

functions such that S(f) is a bounded set (such functions are also called bounded

type). The Speiser class S ⊂ B (also called finite type) are those functions for which

S(f) is a finite set.

In [9] Eremenko and Lyubich showed that if S(f) ⊂ DR = {z : |z| < R}, then

Ω = {z : |f(z)| > R} is a disjoint union of analytic, unbounded, Jordan domains,

and that f acts a covering map f : Ωj → {x : |z| > R} on each component Ωj of Ω.

Building examples where Ω has a certain geometry is important for applications to

dynamics. We would like to start with a model, i.e., a choice of Ω and a covering map

f : Ω → {|z| > 1} and ask if f can be approximated by an entire function F in B or

S. In this paper, we deal with approximation by functions in B. It turns out that

if Ω satisfies some obviously necessary topological conditions, the approximation by

Eremenko-Lyubich functions is always possible in a sense strong enough to imply that

the functions f and F have the same dynamical behavior on their Julia sets. This

allows us to build entire functions in B with certain behaviors by simply exhibiting

a model with that behavior (this is often much easier to do). In [5] we deal with the

analogous question for the Speiser class; again the approximation is always possible,

but in a slightly weaker sense (dynamically, given any model we can build a Speiser

class functions that has the model’s dynamics on some subset of its Julia set). In

the next few paragraphs we introduce some notation to make these remarks more

precise.

Suppose Ω = ∪jΩj is a disjoint union of unbounded simply connected domains

such that

(1) sequences of components of Ω accumulate only at infinity,

(2) ∂Ωj is connected for each j (as a subset of C).

Such an Ω will be called a model domain. If Ω ∩ {|z| ≤ 1} = ∅, we say the model

domain is disjoint type. The connected components {Ωj} of Ω are called tracts.

Given a model domain, suppose τ : Ω → Hr = {x + iy : x > 0} is holomorphic so

that

(1) The restriction of τ to each Ωj is a conformal map τj : Ωj → Hr,
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(2) If {zn} ⊂ Ω and τ(zn) → ∞ then zn → ∞ .

Given such a τ : Ω → Hr, we call F (z) = exp(τ(z)) a model function.

The second condition on τ is a careful way of saying that the conformal map on

each component sends ∞ to ∞. Even after making this condition, we still have

a (real) 2-dimensional family of conformal maps from each component of Ω to Hr

determined by choosing where one base point in each component will map in Hr. A

choice of both a model domain Ω and a model function F on Ω will be called a model.

Given a model (Ω, F ) we let

Ω(ρ) = {z ∈ Ω : |F (z)| > eρ} = τ−1({x+ iy : x > ρ}),

and

Ω(δ, ρ) = {z ∈ Ω : eδ < |F (z)| < eρ} = τ−1({x+ iy : δ < x < ρ}).

If Ω has connected components {Ωj} we let Ωj(ρ) = Ω(ρ) ∩ Ωj and similarly for

Ωj(δ, ρ).

Moreover, a model has dynamics: we can iterate F as long as the iterates keep

landing in Ω, and we define the Julia set of a model

J (F ) =
⋂

n≥0

{z ∈ Ω : F n(z) ∈ Ω}.

Each function f in the Eremenko-Lyubich class that satisfies S(f) ⊂ D gives rise

to a model by taking Ω = {z : |f(z)| > 1} and τ(z) = log f(z). The log is well

defined since each component of Ω is simply connected and f is non-vanishing on Ω.

Eremenko and Lyubich proved in [9] that τ defined in this way is a conformal map

from each component of Ω to Hr. We call a model arising in this way an Eremenko-

Lyubich model. If f is in the Speiser class, we call it a Speiser model.

An entire function f is called hyperbolic if f ∈ B and if there is a compact set

K so that f(K) ⊂ int(K) and f : f−1(C \ K) → C \ K is a covering map. This is

equivalent to saying that the singular set is bounded and every point of S(f) iterates

to an attracting periodic cycle in the Fatou set. If we can take K to be connected,

then f is called disjoint type. This implies the Fatou set of f (i.e., the set where the

iterates of f form a normal family) is connected (e.g., see [15]). The assumption that

S(f) ⊂ D and Ω = {z : |f(z)| > 1} implies that f is disjoint type. In this case, the

usual Julia set of f (defined as the complement of the Fatou set) is the same set as
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Figure 1. A model consists of an open set Ω which may have a
number of connected components called tracts. Each tract is mapped
conformally by τ to the right half-plane and then by the exponential
function to the exterior of the unit disk. The composition of these
two maps is the model function F . In this paper, we are interested in
knowing if a holomorphic model function on Ω can be approximated
by holomorphic function on the entire plane.

the Julia set of the corresponding model

J (f) =
⋂

n≥0

{z : |fn(z)| ≥ 1}.

Thus we can refer to J (f) where we think of f as either an entire function in B or

as a model function on Ω = {x : |f(z)| > 1} without ambiguity. Basic facts about

hyperbolic and disjoint type functions are discussed in [2].

The question now arises of whether or not the Eremenko-Lyubich models are only

a very special subclass of general models. There are at least two ways to make such

a comparison: geometric and dynamical. We start with our geometric result.

A homeomorphism of the plane is called quasiconformal if it is absolutely continu-

ous on almost all vertical and horizontal lines and the partial derivatives fz = fx−ify
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and fz = fx + ify almost everywhere satisfy

|fz| ≤ k|fz|,

where 0 ≤ k < 1. Geometrically, the derivative of f exists almost everywhere and

sends circle to ellipses of eccentricity at most K = (1 + k)/(1− k). This number K

is called the quasiconstant of f . The ratio µ = fz/fz is called the complex dilatation

of f . The measurable Riemann mapping theorem (see e.g., [1], [14]) says that given

any measurable µ with |µ| < k < 1, there is a quasiconformal homeomorphism ϕ of

the plane so that the complex dilatation of ϕ equal µ almost everywhere. We shall

actually use the following consequence of this: if ψ : Ω → Ω′ is a a quasiconformal

map between planar domains, then there is a quasiconformal map ϕ : C → C so that

ψ ◦ ϕ is conformal on ϕ−1(Ω).

We can now state our main result:

Theorem 1.1 (All models occur). Suppose (Ω, F ) is a model and 0 < ρ ≤ 1. Then

there is f ∈ B and a quasiconformal ϕ : C → C so that F = f ◦ ϕ on Ω(2ρ). In

addition,

(1) |f ◦ ϕ| ≤ e2ρ off Ω(2ρ) and |f ◦ ϕ| ≤ eρ off Ω(ρ). Thus the components of

{z : |f(z)| > eρ} are in 1-to-1 correspondence to the components of Ω via ϕ.

(2) S(f) ⊂ D(0, eρ).

(3) the quasiconstant of ϕ is O(ρ−2) with a constant independent of F and Ω,

(4) ϕ−1 is conformal except on the set Ω(ρ
2
, 2ρ).

Another useful way to state the result (for those familiar with the language), is that

for any model F and any ρ > 0, F restricted to Ω(ρ) can be extended to a quasiregular

function on C that is bounded off Ω(ρ) and has a quasiconstant bounded depending

only on ρ. The extension is holomorphic off Ω(ρ/2). The precise definition and basic

properties of quasiregular functions can be found in, e.g., [13], [14], [18], [20].

We say that two continuous maps f : X → X and g : Y → Y are conjugate if

there is a homeomorphism h : X → Y so that

g = h ◦ f ◦ h−1.

It is easy to see that if this holds then

gn = h ◦ fn ◦ h−1,
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for all n ≥ 0, so that the orbits of f correspond via h to the orbits of g. For our

purposes this means the dynamics of f and g are “the same”.

Lasse Rempe-Gillen has pointed out that Theorem 1.1 implies the following result:

Theorem 1.2. If F is any disjoint type model, then there is a disjoint type Eremenko-

Lyubich function f so that f and F are quasiconformally conjugate on a neighborhood

of their Julia sets. More precisely, there is a quasiconformal ϕ : C → C so that

f ◦ ϕ = ϕ ◦ F,

on an open set that contains both J (f) and J (F ).

This means that any property of J (F ) that is preserved by quasiconformal maps

also holds for J (f), e.g., every component of J (f) is path connected or the Julia

set has positive area. Since it is generally easier to build a model with a desired

property than to build a entire function directly, this result is useful in constructing

Eremenko-Lyubich functions with pathological behavior. For example, Rempe-Gillen

uses this result in [17] to show there are functions in B so that the components of the

Julia sets are pseudo-arcs, by building models that have this property.

Theorems 1.1 and 1.2 are inspired by results of Lasse Rempe-Gillen [15] that draw

the same conclusions from a stronger hypothesis: he assumes that F = eτ is defined

on a model domain Ω with a single tract and restricts it to a slightly smaller domain

than Ω(ρ); roughly, he omits a strip whose width grows logarithmically, i.e., τ−1({x+

iy : x > max(1, log |y|}). His version of Theorem 1.1 is proved by using a Cauchy

integral construction to first approximate F uniformly and then show that uniform

approximation implies quasiconformal approximation in the sense of Theorem 1.1.

Rempe-Gillen then shows how to deduce Theorem 1.2 from Theorem 1.1 using an

iterative construction. With his permission, we sketch his argument in Section 9

for the convenience of the reader (our application does not require the much more

powerful results he also proved in [16]).

We sketch the proof of Theorem 1.1 quickly here to give the basic idea. Let

W = C \ Ω(ρ). It is simply connected, non-empty and not the whole plane, so there

is a conformal map Ψ : W → D. Since Ψ maps ∂W to the unit circle, if we knew

that F = f |Ω for some entire function f , then B = e−ρ · F ◦ Ψ−1 would be an inner
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function on D (i.e., a holomorphic function on D so that |B| = 1 almost everywhere

on the boundary).

The proof of Theorem 1.1 reverses this observation. Given the model and the

corresponding domain W and conformal map Ψ we construct a Blaschke product B

(a special type of inner function) on the disk so that G = B ◦Ψ approximates F = eτ

on ∂Ω(ρ) (the precise nature of the approximation will be described later). This step

is fairly straightforward using standard estimates of the Poisson kernel on the disk.

We then “glue” G to F across ∂W to get a quasi-regular function g that agrees with

F on Ω(2ρ) and agrees with G on W . This takes several (individually easy) steps

to accomplish. We then use the measurable Riemann mapping theorem to define a

quasiconformal mapping φ : C → C so that f = g ◦ φ is holomorphic on the whole

plane. The only critical points of g correspond to critical points of B, and critical

points introduced into Ω(ρ, 2ρ) by the gluing process. We will show that both types

of critical values have absolute value ≤ eρ. A different argument shows that any

finite asymptotic value of f must correspond to a limit of B along a curve in D, so

all finite asymptotic values of f are also bounded by eρ. Thus f ∈ B. Since g is

only non-holomorphic in Ω(ρ, 2ρ), we will also get that φ−1 is conformal everywhere

except in Ω(ρ, 2ρ).

Given Theorem 1.1 for the Eremenko-Lyubich class B, it is natural to ask the

analogous question for the more restrictive Speiser class: can every model be ap-

proximated by a Speiser model? This question is addressed in [5], where an analog

of Theorem 1.1 is proven for the Speiser class. In that paper we show that given a

model (Ω, F ) and any ρ > 0, there is a f ∈ S and a quasiconformal map φ : C → C

so that f ◦ φ = eτ on Ω(2ρ). We may take φ to be conformal on Ω(ρ), and f may be

taken with the two critical values ±eρ and no finite asymptotic values.

Note that this result omits the conclusion “f ◦ φ is bounded off Ω(2ρ)”. In fact,

the Speiser functions constructed in [5] will usually be unbounded off Ω; f can have

“extra” tracts that do not correspond to tracts of the original model function F . It is

shown in [5] that f has at most twice as many tracts as F and sometimes this many

are needed. The Speiser version of Theorem 1.2 says that if (Ω, F ) is any model,

there is a Speiser class function f , a closed set A ⊂ J (f), an open neighborhood U

of A and a quasiconformal map ϕ : C → C that conjugates f to F on U . Thus the
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dynamics of any model can be found “inside” the Julia set of a Speiser class function.

See [5] for the precise statement.

Finally, the construction in this paper uses a construction called “simple folding”.

A more complicated version of this is used in [4] to construct functions in the Speiser

class with prescribed geometry. The paper [5] on Speiser models uses the main

result of [4] to prove the results described in the preceding paragraphs. Thus this

paper can be thought of as a gentle introduction to [4], whereas [5] is a sequel to

[4]. The results of both this paper and [5] originally appeared in a single preprint

titled “The geometry of bounded type entire functions”, but I have split this into

two papers in an attempt to improve the exposition and to separate the simpler,

self-contained arguments for the Eremenko-Lyubich class B from the more intricate

arguments relying on [4] needed for the Speiser class S.

Using quasiconformal methods to construct holomorphic functions with desired

geometry has a long history and has been a crucial tool in several areas such as value

distribution theory and, more recently, holomorphic dynamics. See [8] and [12] for

surveys of applications to the first area and [6] for a recent survey of the second.

Many thanks to Adam Epstein, Alex Eremenko and Lasse Rempe-Gillen for very

helpful discussions about the contents of this paper and about the folding construc-

tions and their applications. The introduction of the paper and the formulation of the

main result in terms of approximation of models was inspired by a lecture of Lasse

Rempe-Gillen at an ICMS conference on transcendental dynamics in Edinburgh, May

2013. Also thanks to the anonymous referee whose comments prompted the revision

of the entire manuscript and improved its clarity and correctness. Malik Younsi also

read the revised manuscript and gave me numerous corrections and suggestions that

I greatly appreciate.

2. Reduction of Theorem 1.1 to the case ρ = 1

We start the proof of Theorem 1.1 with the observation that it suffices to prove

the result for ρ = 1.
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To do this we define two quasiconformal maps, ψρ and ϕρ. Define

L(x) =











x, 0 < x < ρ/2,

(2−ρ
ρ
)(x− ρ/2) + ρ/2 ρ/2 ≤ x ≤ ρ,

x/ρ ρ ≤ x ≤ 2ρ.

This is a piecewise linear map that sends [ρ/2, ρ] to [ρ/2, 1] and sends [ρ, 2ρ] to [1, 2].

The slope on both intervals is less than 2/ρ. For z = x+ iy ∈ Hr, define

σρ(z) =

{

L(x) + iy 0 < x ≤ 2ρ,

z + 2− 2ρ x > 2ρ.

This is quasiconformal Hr → Hr with quasiconstant K ≤ 2/ρ. Then set

ψρ(z) =

{

z, z 6∈ Ω

τ−1
j ◦ σρ ◦ τj(z), z ∈ Ωj.

Note that ψρ is the identity near ∂Ω, so ψρ is quasiconformal on the whole plane by

the Royden gluing lemma, e.g., Lemma 2 of [3], Lemma I.2 of [7] on page 303, or [19].

(Actually, since ψρ is the identity off Ω(ρ/2) which has a smooth boundary, one can

use a weaker version of the gluing lemma.)

Next, define

ϕρ(z) =

{

z, |z| < eρ/2

exp(σρ(log(z))), |z| ≥ eρ/2
.

Note that even though log(z) is multi-valued, the function σρ does not change the

imaginary part of its argument, so the exponential of σρ(log(z)) is well defined. This

is clearly a quasiconformal map of the plane with quasiconstant 2/ρ. Note also that

these functions were chosen so that if F = exp ◦τ is the model function associated to

Ω and τ , then on Ωj

F ◦ ψρ = exp ◦ τj ◦ τ
−1
j ◦ σρ ◦ τj

= exp ◦σρ ◦ log ◦ exp ◦τj(2.1)

= ϕρ ◦ F.

Now apply Theorem 1.1 to the model (Ω, F ) with ρ = 1 to get a f ∈ B and a

quasiconformal map Φ : C → C so that f ◦ Φ = F on Ω(2) and S(f) ⊂ D(0, e1).

Let gρ = ϕ−1
ρ ◦ f ◦ Φ ◦ ψρ. This is an entire function pre and post-composed with

quasiconformal maps of the plane, so it is quasiregular. By the measurable Riemann
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mapping theorem, there is a quasiconformal Φρ : C → C so that fρ = gρ ◦ Φ−1
ρ is

entire and clearly

S(fρ) = S(gρ) ⊂ ϕ−1
ρ (S(f)) ⊂ ϕ−1

ρ (D(0, e)) = D(0, eρ).

For z ∈ Ω(2ρ), ψρ(z) ∈ Ω(2), so using this and (2.1)

fρ ◦ Φρ(z) = gρ(z)

= ϕ−1
ρ (f(Φ((ψρ(z))))

= ϕ−1
ρ (F (ψρ(z)))

= F (z).

Similarly, |fρ ◦Φρ| = |gρ| is bounded by e2ρ off Ω(2ρ). The quasiconstant of Φρ is, at

worst, the product of the constants for Φ, ψρ and ϕρ, which is K1 · 4ρ
−2, where K1 is

the upper bound for the quasiconstant in Theorem 1.1 in the case ρ = 1.

Finally, our construction in the next section will show that Φ is conformal except

on Ω(1, 2) and that F has a quasiregular extension to the plane that is holomorphic

except on Ω(1, 2) and is bounded by e off Ω(1) and by e2 off Ω(2). This implies that

gρ is holomorphic except on Ω(ρ/2, 2ρ) (since ψρ is holomorphic off Ω(ρ/2, 2ρ) and

ϕ−1
ρ is holomorphic off {eρ/2 < |z| < e2}.) This, in turn, implies that Φρ is conformal

except on Ω(ρ/2, 2ρ), as desired. Thus fρ satisfies Theorem 1.1 for the model (Ω, F )

and the given ρ > 0.

3. The proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 for ρ = 1, stating certain facts as

lemmas to be proven in later sections.

Let W = C \ Ω(1). This is an open, connected, simply connected domain that

is bounded by analytic arcs {γj} that are each unbounded in both directions. See

Figure 2. The same comments hold for the larger domain W2 = C \ Ω(2).

Let L1 = {x + iy : x = 1} and L2 = {x + iy : x = 2}. The vertical strip between

these two lines will be denoted S. Note that L1 is partitioned into intervals of length

2π by the points 1 + 2πiZ. This partition of L1 will be denoted J . Note that

τj(γj) = L1, so each curve γj is partitioned by the image of J under τ−1
j . We denote

this partition of γj by Jj. Because elements of Jj are all images of a fixed interval

J ∈ L1 ⊂ Hr under some conformal map of Hr, the distortion theorem (e.g., Theorem
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Ψ

L1

L2

τ

Ω(2)

Ω(1)
Ω(1)

Ω(1)

Ω(2)

Ω(2)

W

Figure 2. W is the complement of Ω(1); it is simply connected and
bounded by smooth curves. We are given the holomorphic function
F = eτ on Ω(2) and we will define a holomorphic function on W using
the Riemann map Ψ of W to the unit disk, and a specially chosen in-
finite Blaschke product B on the disk. We will then interpolate these
functions in Ω(2)\Ω(1) by a quasiregular function. Each component of
this set is mapped to a vertical strip by τ , and it is in these strips that
we construct the interpolating functions. Note that the integer parti-
tion on the boundary of the half-plane pulls back under τ to a partition
of each component of ∂Ω(1), and that Ψ maps these to a partition of
the unit circle (minus the singular set of Ψ). The Blaschke product B
will be constructed so that B−1(1) approximates this partition of the
circle.

I.4.5 of [11]) implies they all lie in a compact family of smooth arcs and that adjacent

elements of Jj have comparable lengths with a uniform constant, independent of j,

Ω and F .

Let Ψ : W → D be a conformal map given by the Riemann mapping theorem. We

claim that Ψ can be analytically continued from W to W2 across γj. Let R1 denote

reflection across L1 and for z ∈ Ωj∩W = τ−1
j ({x+iy : 0 < x < 1}) let T = τ−1

j ◦R1◦τj;

this defines an anti-holomorphic 1-to-1 map from Ωj(0, 1) to Ωj(1, 2) that fixes each

point of γj. We can then extend Ψ by the formula

Ψ(T (z)) = 1/Ψ(z),

(where the right hand side denotes reflection of Ψ(z) across the unit circle). The

Schwarz reflection principle says this is an analytic continuation of Ψ to W2.
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Thus Ψ is a smooth map of each γj onto an arc Ij of the unit circle T = ∂D =

{|z| = 1}. The complement of these arcs is a closed set E ⊂ T. It is a standard fact

of conformal mappings that since E is the set where a conformal map fails to have a

finite limit, it has zero Lebesgue, indeed, zero logarithmic capacity. We will not need

this fact, although we will use the easier fact that E can’t contain an interval (i.e., a

conformal map can’t have infinite limits on an interval).

The partition Jj of γj transfers, via Ψ to a partition of Ij ⊂ T into infinitely many

intervals {J j
k}, k ∈ Z. We will let K = ∪j,kJ

j
k denote the collection of all intervals

that occur this way. Thus T = E
⋃

∪K∈KK.

Because Ψ conformally extends from W to W2, |Ψ
′| has comparable minimum and

maximum on each partition element of γj (with uniform constants). Thus the cor-

responding intervals {J j
k} have the property that adjacent intervals have comparable

lengths (again with a uniform bound).

The hyperbolic distance between two points z1, z2 ∈ D is defined as

ρ(z1, z2) = inf
γ

∫

γ

|dz|

1− |z|2
.

See Chapter 1 of [11] for the basic properties of the hyperbolic metric. Here we will

mostly need the facts that it is invariant under Möbius self-maps of the disk, that

hyperbolic geodesics are circular arcs in D that are perpendicular to T, and that

points hyperbolic distance r from 0 are Euclidean distance

2

exp(2r) + 1
= O(exp(−r)),

from the unit circle.

For any proper sub-interval I ⊂ T, let γI be the hyperbolic geodesic with the same

endpoints as I and let aI be the point on γi that is closest to the origin (closest in

either the Euclidean or hyperbolic metrics; it is the same point).

Since K are disjoint intervals on the circle,

∑

K∈K

(1− |aK |) <∞,

and so

B(z) =
∏

K

|aK |

aK

aK − z

1− aKz
,
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defines a convergent Blaschke product (see Theorem II.2.2 of [10]). Thus B is a

bounded, non-constant, holomorphic function on D that vanishes exactly on the set

{an}. Also, |B| has radial limits 1 almost everywhere. Moreover, B extends mero-

morphically to C \ E, where E is the accumulation set of its zeros on T; this is the

same set E as defined above using the map Ψ (the zeros accumulate at both endpoints

of every component of T\E, and since these points are dense in E, the accumulation

set of the zeros is the whole singular set E). The poles of the extension are precisely

the points in the exterior of the unit disk that are the reflections across T of the zeros.

Any subset M of K also defines a convergent Blaschke product. Fix such a subset.

The corresponding Blaschke product BM induces a partition of each Ij with endpoints

given by the set {eiθ : BM(eiθ) = 1} and this induces a partition Hj of each γj via

the map Ψ. This in turn, induces a partition Lj of L1 via τj.

We would like to say that the partitions Lj and J are “almost the same”. The

first step to making this precise is a lemma that we will prove in Section 4:

Lemma 3.1. There is a subset M ⊂ K so that if B is the Blaschke product corre-

sponding to M and Lj is the partition of L1 corresponding to B via τj ◦ Ψ−1, then

each element of J hits at least 2 elements of Lj and at most M elements of Lj, where

M is uniform. In particular, no element of J can hit both endpoints of any element

of Lj (elements of each partition are considered as closed intervals).

In Section 5 we will prove

Lemma 3.2. Suppose K = [1 + ia, 1 + ib] ∈ Lj and define

α(1 + iy) =
1

2π
arg(B ◦Ψ ◦ τ−1

j (1 + iy)),

where we choose a branch of α so α(1 + ia) = 0 (recall that B(Ψ(τ−1
j (1 + ia))) = 1 ∈

R). Set

ψ1(z) = 1 + i(a(1− α(z)) + bα(z)) = 1 + i(a+ (b− a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ ψ−1
1 : K → [0, 1] is linear

and ψ1 can be extended to a quasiconformal homeomorphism of R = K × [1, 2] to

itself that is the identity on the ∂R \K (i.e., it fixes points on the top, bottom and

right side of R).
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The main point of the proof is to show that arg(B ◦ Ψ ◦ τ−1
j ) : K → [0, 2π] is

biLipschitz with uniform bounds.

Roughly, Lemma 3.1 says there are more elements of J than there are of Lj . This

is made a little more precise by the following:

Lemma 3.3. There is a 1-to-1, order preserving map of Lj into (but not necessarily

onto) J so that each interval K ∈ Lj is sent to an interval J with dist(K, J) ≤ 2π.

Moreover, adjacent elements of Lj map to elements of J that are either adjacent or

are separated by an even number of elements of J .

This will be proven in Section 6. Again, the proof is quite elementary.

Partition J = J j
1 ∪ J j

2 according to whether the interval is associated to some

element of Lj by Lemma 3.3 (i.e., J j
1 is the image of Lj under the map in the

lemma). The maximal chains of adjacent elements of J j
2 will be called blocks. By

the lemma, each block has an even number of elements. We will say that the block

associated to an element J ∈ J j
1 is the block immediately above J .

Thus each interval K in Lj is associated to an interval J ′ that consists of the corre-

sponding J given by Lemma 3.3 and its associated block. K and J ′ have comparable

lengths and are close to each other, so the orientation preserving linear map from J ′

to K defines a piecewise linear map ψ̃2 : R → R that is biLipschitz with a uniform

constant. Using linear interpolation we can extend this to a biLipschitz map ψ2 of

the strip S = {x+ iy : 1 < x < 2} to itself that equals ψ̃2 on L1 (the left boundary)

and is the identity on L2 (the right side).

Each element J ∈ J j
2 is paired with a distinct element J∗ ∈ J j

2 that belongs to

the same block. The two outer-most elements of the block are paired, as are the pair

adjacent to these, and so on. Similarly, each point z is paired with the other point

z∗ in the block that has the same distance to the boundary (the center of the block

is an endpoint of J and is paired with itself).

For each K ∈ Lj, let JK be the corresponding element of J j
1 and let IK be the

union of JK and its corresponding block. Let RK = [1, 2]× IK . Let UK = RK \XK ,

where XK is the closed segment connecting the upper left corner of RK to the center

of RK . See Figure 3.



14 CHRISTOPHER J. BISHOP

UK

RK

Figure 3. Definition of UK

Lemma 3.4 (Simple folding). There is a quasiconformal map ψ3 : UK → RK so that

(ψ3 depends on j and on K, but we drop these parameters from the notation)

(1) ψ3 is the identity on ∂RK \ L1 (i.e., it is the identity on the the top, bottom

and right side of RK),

(2) ψ−1
3 extends continuously to the boundary and is linear on each element of J

lying in IK,

(3) ψ3 maps IK (linearly) to JK,

(4) for each z ∈ IK, ψ
−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (i.e., ψ3 maps opposite sides of Xk

to paired points in Ik),

(5) the quasiconstant of ψ3 depends only on |IK |/|JK |, i.e., on the number of

elements in the block associated to K. It is independent of the original model

and of the choice of j and K.

We call this “simple folding” because it is a simple analog of a more complicated

folding procedure given in [4]. In the lemma above, the image domain is a rectangle

with a slit removed and the quasiconstant of ψ3 is allowed to grow with n, the number

of block elements. This growth is not important in this paper because here we only

apply the folding construction in cases where this number n is uniformly bounded

(this will occur in our application because of Lemma 3.1). In [4], the corresponding

values may be arbitrarily large but the folding construction there must give a map

with uniformly bounded quasiconstant regardless. The construction in [4] removes a

collection of finite trees from Rk and does so in a way that keeps the quasiconstant
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of ψ3 bounded independent of n (there are also complications involving how the

construction on adjacent rectangles are merged).

We want to treat the boundary intervals in J1 and J2 slightly differently. The

precise mechanism for doing this is:

Lemma 3.5 (exp-cosh interpolation). There is a quasiregular map σj : S → D(0, e2)

so that

σj(z) =











exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z − 1), z ∈ J ∈ J j
2 ,

exp(z), z ∈ Hr + 2.

The quasiconstant of φj is uniformly bounded, independent of all our choices.

This lemma will be proven in Section 8 and is completely elementary.

We now have all the individual pieces needed to construct the interpolation gj

between ez on L2 and B ◦ Ψ ◦ τ−1
j on L1. Let Uj be S minus all the segments XK

where K ∈ Lj as in Lemma 3.4. Define a quasiconformal map ψ : Uj → S by

ψ = ψ1 ◦ ψ2 ◦ ψ3,

and let gj = σj ◦ ψ map Uj into D(0, e2). By definition, each ψi, i = 1, 2, 3 is the

identity on L2, so gj(z) = ez on L2. For any K ∈ Lj, the map ψ sends the boundary

segments of ∂UK that lie on some XK linearly onto elements of J j
2 , so boundary

points on opposite sides of XK get mapped to points that are equidistant from 2πiZ

and cosh agrees at any two such points. Thus gj extends continuously across each

slit XK . Finally, the map ψ was designed so that gj is continuous on S and agrees

with B ◦Ψ ◦ τ−1
j on L1. Thus gj ◦ τj continuously interpolates between B ◦Ψ on W

and F on Ω(2) and so defines a quasiregular g on the whole plane with a uniformly

bounded constant. Thus by the measurable Riemann mapping theorem there is a

quasiconformal ϕ : C → C so that f = g ◦ ϕ is entire.

The singular values of f are the same as for g. On Ω(2), g = F = eτ , so g has no

critical points in this region. In Uj , g = gj is locally 1-to-1, so has no critical points

there either. Thus the only critical points of g in Ω(1) are on the slits XK , then these

are mapped by g onto the circle of radius e around the origin. Thus every critical

value of g (and hence f) must lie in D(0, e).

If g has a finite asymptotic value outside D(0, e), then it must be the limit of g

along some curve Γ contained in a single component of Ω. Then ez has a finite limit
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along τ(Γ) ⊂ Hr; this is impossible, so f has no finite asymptotic values outside

D(0, e). Thus S(f) ⊂ D(0, e), and so f ∈ B.

This proves Theorem 1.1 except for the proof of the lemmas.

4. Blaschke partitions

In this section we prove Lemma 3.1. We start by recalling some basic properties

of the Poisson kernel and harmonic measure in the unit disk D.

The Poisson kernel on the unit circle with respect to the point a ∈ D is given by

the formula

Pa(θ) =
1− |a|2

|eiθ − a2|
=

1− |a|2

1− 2|a| cos(θ − φ) + |a|2
,

where a = |a|eiφ. This is the same as |σ′| where σ is any Möbius transformation of

the disk to itself that sends a to zero. If E ⊂ T, we write

ω(E, a,D) =
1

2π

∫

E

Pa(e
iθ)dθ,

and call this the harmonic measure of E with respect to a. This is the same as

the (normalized) Lebesgue measure of σ(E) ⊂ T where σ : D → D is any Möbius

transformation sending a to 0. It is also the same as the first hitting distribution on

T of a Brownian motion started at a (although we will not use this characterization).

Suppose I ⊂ T is any proper arc, and, as before, let γI be the hyperbolic geodesic

in D with the same endpoints as I; then γI is a circular arc in D that is perpendicular

to T at its endpoints. Let aI denote the point of γI that is closest to the origin.

Lemma 4.1. ω(I, aI ,D) =
1

2
.

Proof. Apply a Möbius transformation of D that sends aI to the origin. Then γI

must map to a diameter of the disk and I maps to a semi-circle. �

Given two disjoint arcs I, J in T, let γI , γJ be the two corresponding hyperbolic

geodesics and let aJI be the point on γI that is closest to J and let aIJ be the point

on γJ that is closest to I.

Lemma 4.2. ω(I, aIJ ,D) = ω(J, aJI ,D)

Proof. Everything is invariant under Möbius maps of the unit disk to itself, so use

such a map to send I, J to antipodal arcs. Then the conclusion is obvious. �
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Lemma 4.3. If z, w ∈ D and I ⊂ T, then

ω(I, z,D)

ω(I, w,D)
≤ C

where the constant C depends only on the hyperbolic distance between z and w.

Proof. Suppose σ(z) = (z − w)/(1− wz) maps w to 0. Then u(z) = ω(I, σ(z),D) is

a positive harmonic function on D, so the lemma is just Harnack’s inequality applied

to u. �

Suppose I, J,⊂ T are disjoint closed arcs and dist(I, J) ≥ ǫmax(|I|, |J |). Then we

call I and J ǫ-separated. This implies the hyperbolic geodesics γI , γJ are separated in

the hyperbolic metric (with a lower bounded depending only on ǫ), but the converse

is not true.

Lemma 4.4. If I, J ⊂ T are ǫ-separated, then the hyperbolic distance between aI and

aJI is bounded, depending only on ǫ.

Proof. Assume I is the longer arc and consider hyperbolic geodesic S that connects

aJI and aIJ . Then S is perpendicular to γI at aJI , so if 1− |aJI | ≪ 1− |aI |, S will hit

the unit circle without hitting γj. See Figure 4. �

aJ
γ

J

J

a
J
I

aI
γ

I

I

aJ
I

S

Figure 4. If the intervals I and J are ǫ-separated, then a shortest
path between γI and γJ must hit each geodesic near the “top” points.
A perpendicular geodesic that starts too “low” on γJ will hit the unit
circle without hitting γI .

Lemma 4.5. Suppose that I, J are ǫ-separated. Then

ω(I, aJ ,D) ≃ ω(J, aI ,D),

where the constant depends only on ǫ.
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Proof. This follows immediately from our earlier results. �

Lemma 4.6. Suppose that I and J are ǫ-separated and that aJ , aI are at least distance

R apart in the hyperbolic metric. Then

ω(J, aI ,D) ≤ C(ǫ)e−R.

Proof. Since the intervals are ǫ-separated, the hyperbolic distance between aI and aJ

is the same as the distance between aJI and aIJ , up to a bounded additive factor. Thus

if we apply a Möbius transformation of D so that aJ = 0, aI is mapped to a point w

with 1 − |w| = O(e−R), which implies ω(I, aJ ,D) = O(e−R). Since the intervals are

ǫ-separated, the reverse inequality also holds by Lemma 4.5. �

FixM <∞ and suppose K is a collection of disjoint (except possibly for endpoints)

closed intervals on T so that any two adjacent intervals have length ratio at most M .

We say that two intervals I, J are S steps apart if there is a chain of S + 1 adjacent

intervals J0, . . . , JS so that I = J0 and J = JS.

Note that if I, J ∈ K are adjacent, then aI , aJ are at bounded hyperbolic distance

T apart (and T depends only on M). Also, if I, J ∈ K are not adjacent, then they

are ǫ-separated for some ǫ > 0 that depends only on M .

Lemma 4.7. For any R > 0 there is a collection N ⊂ K so that

(1) for any I ∈ K, there is a J ∈ N with ρ(aJ , aI) ≤ R

(2) for any I, J ∈ N , ρ(aJ , aI) ≥ R.

Proof. Just let N correspond to a maximal collection of the points {aK} with the

property that any two of them are hyperbolic distance ≥ R apart. �

Fix a positive integer S. For each J ∈ N choose the shortest element of K that

is at most S steps away from J . Let M ⊂ K be the corresponding collection of

intervals.

Lemma 4.8. Suppose R, S, T are as above and R ≥ 4ST . If K and M are as above,

then for all K ∈ K,

ǫ ≤
∑

J∈M

ω(K, aJ ,D) ≤ µ,

where ǫ > 0 depends only on R and µ→ 1/2 as S → ∞.
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Proof. The left-hand inequality is easier and we do it first. Fix K ∈ K. There is a

I ∈ N with ρ(aI , aK) ≤ R, and since adjacent elements of K have points that are

only T apart in the hyperbolic metric, there is an element J ∈ M with ρ(aK , aJ) ≤

R + ST ≤ 5

4
R. This implies |J | ≃ |K| ≃ dist(J,K) and these imply ω(K, aJ ,D) ≥ ǫ

with ǫ depending only on ρ. Thus every element of K has harmonic measure bounded

below with respect to some point corresponding to a single element of M and hence

the sum of harmonic measures over all elements of M is also bounded away from

zero uniformly.

Now we prove the right-hand inequality. By our choice of R, points aJ correspond-

ing to distinct intervals in M are at least distance R/2 apart. Fix K ∈ K. There is

at most one point within hyperbolic distance R/4 of aK and the harmonic measure

it assigns K is at most 1/2 since the point lies on or outside the geodesic γK .

All other points associated to elements ofM are Euclidean distance≥ exp(R/8)|K|

away from K or are within this distance of K, and are within Euclidean distance

exp(−R/8)|K| of the unit circle (this is because of the Euclidean geometry of hyper-

bolic balls in the half-space). We call these two disjoint sets M1 and M2 respectively.

Using Lemma 4.5 we see that the
∑

J∈M1

ω(K, aJ ,D) = O(
∑

J∈M1

ω(J, aK ,D)) = O(exp(−R/8)).

To bound the sum over M2, we note that each interval in M2, is the endpoint of

a chain of S adjacent intervals that are each at least as long as J . Since

|J | ≤ exp(−R/8)|K|,

and

dist(J,K) & |K|,

we can deduce

ω(J, aK ,D) ≤ O(
1

S
)ω(aK , J,D),

so since the J ’s are all disjoint intervals,
∑

J∈M2

ω(K, aJ ,D) = O(
1

S

∑

J∈M2

ω(J, aK ,D)) = O(
1

S
).

Choosing first S large, and then R large (depending on S and separation constant of

K), both sums are as small as we wish, which proves the lemma. �
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Corollary 4.9. Suppose B is as above and K ∈ K. Then

ǫ ≤
1

|K|

∂B

∂θ
≤ C.

Proof. If I, J are ǫ-separated, then it is easy to verify that

sup
z∈J

PaI (z), inf
z∈J

PaI (z),

are comparable up to a bounded multiplicative factor that depends only on ǫ. The

lemma then follows from our earlier estimates. �

We have now essentially proven Lemma 3.1; it just remains to reinterpret the

terminology a little. For the reader’s convenience we restate the lemma.

Lemma 4.10 (The Blaschke partition). There is a subset M ⊂ K so that if B is

the Blaschke product corresponding to M and Lj is the partition of L1 corresponding

to B via τj ◦Ψ
−1, then each element of J hits at least 2 elements of Lj and at most

M elements of Lj, where M is uniform. In particular, no element of J can hit both

endpoints of any element of Lj (elements of each partition are considered as closed

intervals).

Proof. A computation shows that for the Blaschke product

B(z) =
∏

n

|an|

an

z − an
1− ānz

,

the derivative satisfies

|
∂B

∂θ
(eiθ)| =

∑

n

Pan(e
iθ),

and the convergence is absolute and uniform on any compact set K disjoint from

the singular set E of B (since B is a product of Möbius transformations, and the

derivative of a Möbius transformation is a Poisson kernel, this formula is simply the

limit of the n-term product formula for derivatives).

Lemma 4.8 now says we can choose M so that

2πǫ ≤

∫

J

|
∂

∂θ
B|dθ ≤

3

4
· 2π =

3π

2
.

Since the integral over an element of L has integral exactly 2π, the lower bound

means that an element of L can contain at most 1/ǫ elements of J and hence can

intersect at most 2+ 1

ǫ
elements of J . The upper bound says that each element K of
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L must hit at least 2 elements of J . Hence it is not contained in any single element

of J , and so no single element of J can hit both endpoints of K. �

5. Straightening a biLipschitz map

Lemma 5.1. Suppose K = [1 + ia, 1 + ib] ∈ Lj and define

α(1 + iy) =
1

2π
arg(B ◦Ψ ◦ τ−1

j (1 + iy)),

where we choose a branch of α so α(1 + ia) = 0 (recall that B(Ψ(τ−1
j (1 + ia))) = 1 ∈

R). Set

ψ1(z) = 1 + i(a(1− α(z)) + bα(z)) = 1 + i(a+ (b− a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ ψ−1
1 : K → [0, 1] is linear

and ψ1 can be extended to a quasiconformal homeomorphism of R = K × [1, 2] to

itself that is the identity on the ∂R \K (i.e., it fixes points on the top, bottom and

right side of R).

Proof. The linearizing property of ψ1 is clear from its definition, so we need only

verify the quasiconformal extensions property.

Corollary 4.9 implies α′ is bounded above and below by absolute constants. Let

R = K × [1, 2] and define an extension of ψ1 by

ψ1(x+ iy) = u(x, y) + iv(x, y) = x+ i[(2− x)ψ1(1 + iy) + (x− 1)y)].

i.e., take the linear interpolation between ψ1 on L1 and the identity on L2. We can

easily compute
(

ux uy
vx vy

)

=

(

1 0
y − ψ(y) (2− x)(b− a)α′(y) + (x− 1)

)

.

Note that |y − h(y)| ≤ |K| is absolutely bounded. Also, since |b− a||α′| is bounded

above and away from 0, so is vy. Thus the derivative matrix lies in a compact subset

of the invertible 2 × 2 matrices and hence ψ1 is quasiconformal (with only a little

more work we could compute an explicit bound for the quasiconstant, and even prove

that the extension is actually biLipschitz). �
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6. Aligning partitions

Now we prove Lemma 3.3, which we restate for convenience.

Lemma 6.1. There is a 1-to-1, order preserving map of Lj into (but not necessarily

onto) J so that each interval K ∈ Lj is sent to an interval J with dist(K, J) ≤ 2π.

Moreover, adjacent elements of Lj map to elements of J that are either adjacent or

are separated by an even number of elements of J .

Proof. For each K ∈ K choose J ∈ J so that J contains the lower endpoint of K

(if two such intervals contain the endpoint, choose the upper one). No interval J is

chosen twice, since Lemma 3.1 says that no J can hit both endpoints of any element

of L.

Fix an order preserving labeling of the chosen J by Z and denote it {Jn}. By

the gap between Jn and Jn+1 we mean the number of unselected elements of J that

separate these two intervals. The position of J0 is fixed. If the gap between J0 and J1

is even (including no gap), we leave J1 where it is. If the gap is odd, there is a least

one separating interval and we replace J1 by the adjacent interval in J that is closer

to J0. If the gap between (the new) J1 and J2 is even, we leave J2 alone; otherwise,

we move it one interval closer to J0. Continuing in this way, we can guarantee that

for all n ≥ 0, gaps are even and each Jn is either in its original position or adjacent

to its original position. Thus its distance to the associated element of K is at most

2π. The argument for negative indices is identical. �

7. Foldings

Now we prove Lemma 3.4. This is the step that makes the gluing procedure a little

different from a standard quasiconformal surgery.

Lemma 7.1 (Simple folding). There is a quasiconformal map ψ3 : UK → RK so that

(ψ3 depends on j and on K, but we drop these parameters from the notation)

(1) ψ3 is the identity on ∂RK \ L1 (i.e., it is the identity on the the top, bottom

and right side of RK),

(2) ψ−1
3 extends continuously to the boundary and is linear on each element of J

lying in IK,

(3) ψ3 maps IK (linearly) to JK,
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(4) for each z ∈ IK, ψ
−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (i.e., ψ3 maps opposite sides of Xk

to paired points in Ik),

(5) the quasiconstant of ψ3 depends only on |IK |/|JK |, i.e., on the number of

elements in the block associated to K. It is independent of the original model

and of the choice of j and K.

Proof. The proof is a picture, namely Figure 5. The map is defined by giving com-

patible finite triangulations of Rk and Uk (compatible means that there is 1-to-1 map

between vertices of the triangulations that preserves adjacencies along edges). Such a

map defines linear maps between corresponding triangles that are continuous across

edges. Since each such map is non-degenerate, it is quasiconformal and hence the

piecewise linear map defined between Uk and RK is quasiconformal (with quasicon-

stant given by the worst quasiconstant of the finitely many triangles). The other

properties are evident. �

Figure 5. The pictorial proof of Lemma 7.1 for n = 5.
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8. Interpolating between exp and cosh

Lemma 8.1 (exp-cosh interpolation). There is a quasiregular map σj : S → D(0, e2)

so that

σj(z) =











exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z − 1), z ∈ J ∈ J j
2 ,

exp(z), z ∈ Hr + 2.

The quasiconstant of σj is uniformly bounded, independent of all our choices.

Proof. As with the previous lemma, the proof is basically a picture; see Figure 6.

Suppose J ∈ J and let R = J × [1, 2]. The exponential map sends R to the annulus

A = {e < |z| < e2}, with the left side of R mapping to the inner circle and the top

and bottom edges of R mapping to the real segment [e, e2].

Now define a quasiconformal map φ : A→ D(0, e2) that is the identity on {|z| = e2}

and on [e, e2], but that maps {|z| = e} onto [−e, e] by z → 1

2
(z + e2

z
) (this is just a

rescaled version of the Joukowsky map 1

2
(z + 1

z
) that maps the unit circle to [−1, 1],

identifying complex conjugate points).

In Hr +2 and in rectangles of the form J × [1, 2] for J ∈ J1 we set σj(z) = exp(z).

In the rectangles corresponding to elements of J2 we let σj(z) = φ(exp(z)). This

clearly has the desired properties. �

exp φ

Figure 6. The exponential function maps the rectangle [1, 2] × J
conformally to the slit annulus {e < |z| < e2} \ [e, e2]. The map
φ is chosen to map the annulus A={e < |z| < e2} to the slit disk
{|z| < e2} \ [−e, e] so that it equals the identity on {|z| = e2} and

equals 1

2
(z + e2

z
) on {|z| = e}.
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Actually, the cosh function in the lemma can be replaced by any function h : J →

[−1, 1] that has the property that h(z) only depends on the distance from z to the

endpoint of J . This will ensure that after applying a folding map, points that started

on opposite sides of some slit Xk will end up being identified by h, which is all we

need.

This completes the proof of Theorem 1.1.

9. Proof of Theorem 1.2

Theorem 9.1 (Rigidity for disjoint type). Suppose (Ω, f) and (Ω′, g) are disjoint

type models, ϕ : C → C is quasiconformal with ϕ(Ω) = Ω′ and f = g ◦ϕ on Ω. Then

there is a quasiconformal map Φ of the plane so that

Φ ◦ f = g ◦ Φ,

on Ω. In particular J (g) = Φ(J (f)).

Proof. The statement and proof are due to Lasse Rempe-Gillen [16], but we recreate

it here for the convenience of the reader.

Let W = C \ Ω and W ′ = C \ Ω′. We can exhaust W by nested open sets

U1 ⊂ U2 ⊂ . . . with smooth boundaries and Ω′ is exhausted by the images ϕ(Un).

Since the union of these open nested sets covers D one of them covers D, call it U .

Thus we can find a new quasiconformal map φ : C → C that equals ϕ outside U and

is the identity on D.

Now inductively define a sequence of quasiconformal maps {Φn} on C by setting

Φ0 to be the identity and, in general,

Φn+1 =

{

g−1 ◦ Φn ◦ f, z ∈ Ω

φ, z 6∈ Ω

Note that since f : Ω → {|z| > 1} and g : Ω′ → {|z| > 1} are covering maps, the

definition of Φn+1 makes sense as long as Φn is a homeomorphism of {|z| > 1} to

itself. We shall verify this below.

Set U0 = U ∩ {|z| > 1} and let Un = ∪n
k=1{z ∈ Ω : fk(z) ∈ U}. Then ∪nUn is the

set of all points in Ω that eventually iterate out of Ω. This is the complement of J (f)

in Ω and hence is an open dense set in Ω by Lemma 2.3 of [16]. Let Vn = ∪n
k=1Uk.

We claim that
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(1) for n ≥ 0, Φn maps {|z| > 1} to itself,

(2) for n ≥ 0, Φn is quasiconformal with the same quasiconstant as φ,

(3) for n ≥ 1, Φn = Φn+1 on Vn.

We prove these by induction. The case n = 0 for (1) and (2) is trivial since Φ0 is the

identity. For n = 1, (3) holds because if z ∈ U1 then f(z) ∈ U0

Φ2(z) = g−1(Φ1(f(z)))) = g−1(Φ0(f(z)))) = Φ1(z).

Similarly, for general n (3) holds because if z ∈ Vn, then z ∈ Uk for some 1 ≤ k ≤ n,

so f(z) ∈ Uk for some 0 ≤ k ≤ n− 1. By the induction hypothesis, f(z) ∈ f−n−1(U),

so

Φn+1(z) = g−1(Φn(f(z)))) = g−1(Φn−1(f(z)))) = Φn(z).

Claim (1) follows from (3) for every n since (3) implies Φn is the identity on U0,

which contains the unit circle. Since Φn is a homeomorphism of the plane that means

Φn is a homeomorphism of {|z| > 1} to itself.

Since f : Ω → {|z| > 1} and g : Ω′ → {|z| > 1} are holomorphic covering maps,

(1) for n implies that the first part of the definition of Φn+1 gives a quasiconformal

homeomorphism from Ω to Ω′ with the same quasiconstant as Φn. By induction,

this constant is bounded by the quasiconstant for φ. Outside Ω, Φn+1 agrees with

φ, so again is quasiconformal with constant bounded by that of φ. By the Royden

gluing lemma (e.g., Lemma 2 of [3], Lemma I.2 of [7] on page 303, [19] ), this implies

Φn+1 is K-quasiconformal on the whole plane. (In many cases of interest, ∂Ω will

be piecewise smooth, hence removable for quasiconformal mappings, and then the

gluing lemma is not needed.) Thus all the claims have been established.

Since the sequence {Φn(z)} is eventually constant for every z in the dense set

∪nVn ⊂ Ω0, and since K-quasiconformal maps form a compact family, we deduce

that Φ(z) = limn Φn defines a K-quasiconformal map of the plane. Moreover,

Φn+1 = g−1 ◦ Φn ◦ f, z ∈ Ω

becomes

Φ = g−1 ◦ Φ ◦ f, z ∈ Ω

in the limit. �
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from the English by M. E. Novodvorskĭı, Collection of articles dedicated to the memory of Ivan
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