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A DISTANCE FORMULA FOR ALGEBRAS ON THE DISK

CHRISTOPHER J. BISHOP

Suppose H°°(!)))[?] is the closed algebra on the disk gen-
erated by H°°(β) and a countable collection T of bounded
harmonic functions. Given g G I/°°(D) we give a method for
calculating the distance from g to H00^)^] (in the L°° norm).
As applications we compute the Bourgain closures of such al-
gebras and give a new proof of a result of Axler and Shields.

1. Introduction.

Let iϊ°°(D) denote the algebra of bounded holomorphic functions on the
unit disk, D. If T is a collection (finite or countable) of bounded harmonic
functions on the disk let H00^)^] denote the algebra generated by iJ°°(D)U
T (i.e., the smallest algebra containing H°°(D) U T which is closed with
respect to the supremum norm on D). The purpose of this paper is to
give a method for estimating dist(#, H°°(p)\T\) (in the L°° norm) for any
9 e L°°(β).

Let M be the maximal ideal space of i/°°(D). This is a compactification of
D to which every bounded harmonic function has a continuous extension (see
[6] for the definition and basic facts). Suppose / is a real valued, bounded
harmonic function on D and let / also denote its continuous extension to
M. For each a G R let Ea = {ζ G M : f{ζ) = a}. Then Shilov's theorem
(e.g., Theorem IΠ.2.20 of [13]) in this case implies that for any g G C(M),

(1.1)

In particular, g G JSΓ°°(D)[/] iff for every aβR, g\Ea G H°°(B)\Ea.
We will extend this in several ways. Roughly speaking,

(1) We will formulate the distance formula in a way that makes sense
for all g G L°°(D), not just those with a continuous extension to Λ4.
Unfortunately, this reformulation looks much messier since we can no
longer refer to g\E where E C M, but must state everything in terms
of open sets in the disk.

(2) We will consider complex valued harmonic functions. This introduces
further complications because the distance formula now involves level
sets of auxiliary functions instead of the original generating set.
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(3) We will allow finite and countable infinite collections of functions. In-
stead of level sets of individual functions we will consider joint level
sets, but otherwise nothing much changes.

(4) We will allow certain generating functions in C(M) which need not
be harmonic. However, the class of functions we allow is very closely
related to harmonic functions.

The precise statements require some more notation and will be given in
the following sections. I thank Joe Cima, Pam Gorkin, Peter Jones, Karel
Stroethoff and Tom Wolff for very helpful comments and conversationsron
various aspects of this paper. This paper is a shortened version of an earlier
preprint entitled "Some characterizations of algebras on the disk" which also
recovered several known results using the techniques in this paper. Many
errors in the original version have been corrected due to the suggestions of
the referees. They have greatly improved the quality of the paper and I am
very grateful for their help.

2. The distance formula for algebras with one generator.

In this section we state Theorem 2.1 which gives the formula for
dist(#, H°° (D) [/]) where / is a single harmonic function on D and g G L°°(D).
For many applications, this is the most interesting case. In the next section
we will give the statement for algebras with more than one harmonic gener-
ator.

If / is a bounded harmonic function write / = u + iv = Re(/) + ilm(f)
and set

Λ = |((« + «•) - *(tι - «•)) = | ( / + </•),

(the "*" denotes harmonic conjugation, normalized so /*(0) = 0). Then h
is holomorphic and, though it need not be bounded, it is in BMOA(D) (see
[8] for definition). Moreover, h is constant iff / is holomorphic.

Given a function / on the disk, a G C and δ > 0 let

δ)) = {zeΌ: \f(z) -a\<δ}.

For convenience, given an open set Ω C D we will write

dfet(0,£Γ~(Ω)) = inf | | 9 | Ω - G\\L-{Qtdtdv).

If Ω is empty, we interpret the distance as 0.

Theorem 2.1. If f is a bounded harmonic function on D and g G L°
then

dte(g,H°°<p)\f\) = inf sup
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If we assume / is anti-holomorphic then h — f so Ω/^α, δ) = Ω/(α, δ) and
hence Theorem 2.1 is valid with Ωh replaced with Ω/. In this case we obtain
a more natural looking result.

Corollary 2.2. If f e H°°(Ό) and g G L°°(Ώ) then

dist((7,ir°(D)[/]) = inf sup distfo, JΪ~(Ω,(M))).
<*>° aec

Constant functions are examples of holomorphic functions, so one trivial
(but useful) special case is

Corollary 2.3. If f e H°°(ΊD>) and g G L°°(D) then

dist(2,JP°(D)[/]) < inf sup dist(p,C|Ω / ( M ))
°>° aec

where dist(g, C|fi/(ttj<j)) denotes the distance of g to the constants on Ω/(α7(5).

If φ is a uniformly continuous function on the plane then φ o h is close to
constant on any set where h is close to constant, in particular on the sets
ΩΛ(α,5). Thus

Corollary 2.4. If ψ is uniformly continuous on C then φoh G H°°(B)[f].

If / G H°°(JD>) and φ : C -» C is continuous then this implies φ o / e
H°°(JD))[f]. However, this particular consequence is much easier than The-
orem 2.1. The function φ can be uniformly approximated by a polynomial
P(x, y) on the closure of/'s range and it's easy to see that if / £ H°°(Ώ>) then
Re(/),Im(/) e H°°(B)[f]. Thus P(Re(/),Im(/)) uniformly approximates

Next we consider what happens in Theorem 2.1 when / is real valued.

Corollary 2.5. /// is a real valued, bounded harmonic function on D and
g G L°°(D) then

= inf sup

Proof The holomorphic function h corresponding to / is h — f+if*. There-
fore, if 5, t are real, Ωh(s + it, δ) C Ω/(s, δ), so,

(2.1)

Thus combining Theorem 2.1 and (2.1) gives

dist(g,H°°(lD>)[f]) = i

δ>0
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To prove the other direction, suppose {/&&} C H°°(Ό) and

k=0

satisfies

Fix a and let F[z) = Σ*=o hk{z)ak G H°°(β). Then for z G Ω/(α, δ) we have

|p(z) - F(z)\ < \g{z) - F(z)| + \F(z) - F(z)\

< dist(p,fr°(D)[/]) + 6 + f; |Mz)||/(z)* - o*l

<dist(P,iίoo(D)[/])+2e,

if δ is small enough (depending on e, ||/||oo and {hk}, but not on a). Taking
€ -» 0 proves the corollary. D

Remark 2.1. Here is a simple example which shows that we must replace Ω/
by Ωh in Theorem 2.1. Take f(z) = z and #(z) = z. Then the sets Ω/(α, 5)
are just small disks D(a,δ). Since # is uniformly continuous, g is close to
holomorphic (in fact close to constant) on every such disk Ω/(α, δ) = D(a, δ),
but g 0 H°°(B)[f] = ff°°(D). Thus Corollary 2.2 is not correct in this case.
However, Theorem 2.1 is correct since in this case h = f + if* is constant,
so the sets Ω^(α, δ) can only be empty or the whole disk.

Remark 2.2. For a fixed α, the sets ΩΛ(α, δ) decrease as δ -> 0, so the "inf"
is really a limit. Thus we can write

dist(0,#°°(D)[/]) = lim sup dist(g,H°°(Ωh(a,δ))).

Similarly, we have an equivalent discrete version

dist(<7,iF°(D)[/]) = lim sup dist (g,H°° (ah fα, -))) .

Of course, similar restatements work for the various corollaries.

Remark 2.3. We claim that in Corollary 2.2 we can interchange the order
of the "inf" and the usup", i.e., for any bounded / we have

inf sup ά\st(g,H°°(ςif{a,δ))) = sup inf dist(g, jff°°(Ω/(α,ί))).

This follows from the following general fact.

Lemma 2.6. Suppose Y is a compact metric space and {Fn} is a sequence
of real valued functions on Y such that
(1) Fn{y)>Fn^{y)forallnandy.
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(2) // {yk} -> y and nk -» oo then l imsup^^ Fnje (yk) < Fn(y) for all n.
Then

inf supFn(2/) = supinf Fn(y).
n y e γ yeγ n

Proof. The direction > is completely general, in fact,

inf supF(x,y) > sup inf F(x,y),
xex γ yeYχex

holds for any real valued function on a product space. To prove it, one simple
notes that for a fixed x0 and y0

F{xo,yo) > inf F{x,y0),
x€X

so taking the supremum over y0 gives

supF(xo,y) > sup inf F(x,y),
γχex

and then taking the infimum over all possible £0's gives the desired inequality.
To prove the other direction, we need to use our hypotheses. We may

choose a sequence {yk} and {nk} so that

By compactness of Y we may assume yk —> yo G Y. Since for a fixed y,
the sequence {Fn(y)} is decreasing, the infimum over n is the same as the
limit as n -> oo. Therefore we may assume (without loss of generality) that
nk —> oo as k -> oo. By hypothesis (2) of the lemma, we deduce that for any
n,

supinf Fk(y) = lim Fnk(yk) < Fn(y0),
yeγ k k-+oo

for any n. Thus
supinf Fk(y) < supFn(y),
yβY k yeY

and so
supinf Fk(y) < inf supFn(y),
yeY k n Y

which proves the lemma. D

To apply the lemma to our case we simply note that it suffices to assume
< 1. Let Y = D a n d

Fn(a) =dist(g, H~(nf(a^
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Then Y is compact and part (1) of the lemma clearly holds (since
Ω/(α, JJ^J ) C Ω/(α, £)). To check (2), note that if α^ —>• a and n* -> oo
then Ωf(ak, ^ ) C Ω/(α, £) if |α — αfc| < ̂  and n* > 2n (i.e., if fc is large
enough). Thus

inf sup dist (g,H°° (Ω,(α, δ))) = inf sup dist (g,H°° (tit (a, -
δ>° α€C n α6C V V V Π

= supiπfdist(9,ίf»(fi/(α,i)))

= sup inf dist (g, H°° (Ω/ (α,

as desired.

Remark 2.4. In Theorem 2.1 the "inf" and the "sup" cannot be exchanged
in the case of a general /. Let φ be a conformal mapping from D to the
region {z = x + iy : 0 < y, 0 < x < (1 + y)"1}. Let / = Re(φ) so that the
corresponding h in Theorem 2.1 equals \ψ and set u(x,y) — 2x(\ + y) and
g = u o h. By unwinding the various definitions one can check that

sup inf di8t(g,H°°{Ωh{a,δ))) = 0,

iirfsupdist(g,JΓ~(ΩΛ(α,ί))) = 1.

Remark 2.5. To see that Corollary 2.3 is really weaker than Corollary 2.2,
consider the following example. Let f = z and let

and let φ be a conformal mapping of the disk onto U which maps 1 to the
prime end containing {|}. Then g — ψ is close to ψ G fΓ°°(D) in small
neighborhoods of {1}, but g is not close to a constant on any neighborhood
of {1}.

3. The formula for algebras with several generators.

In this section we state Theorem 3.1 which gives the formula for
dist(^,ίίoo(D)[JΓ]) when J 7 is a countable collection of bounded harmonic
functions on D and g e L°°(D).

Given a countable collection T = {fi}iei indexed by the set I (either
/ = N or / = {1,..., N} for some N E N) and an a = {ai}ieI G C7 define

Ω jr (α, ί, m) = P| Ω/fc {ak, δ).



A DISTANCE FORMULA

Given a collection T of harmonic functions the corresponding collection of
/ι's (as described in the previous section) is denoted %. To simplify notation
we will sometimes write inf^ instead of of inis>Otmej and just write supα

in place of supα €Cj.

Theorem 3.1. If T is countable collection of bounded harmonic functions
onB and g G L°°(D) then

dist(#,iJ°°(D)[«F]) = inf sup dist(#,H°°(Ωn(a,δ,m))).
<5>0m€/ l

Remark 3.1. In Remark 2.2 (when T — {/} was a single function) we noted
that "inf̂ " could be replaced by "lim^o"- Here we could also reinterpret
"inf^m" as a limit "lim(^m)_^(0,|/|)", (here | / | denotes the number of elements
of the index set / ) . The limit could be interpreted in terms of nets (e.g., see
page 187 of [12]) indexed by the pairs (5, m) G (0, oo) x I with the partial
order (δ, m) < (77, n) if δ > η and m < n. With this in mind, it is easy to
see that

inf sup dist(p,H°°(Ωn(a, δ,m)))
δ>θ,mel aζC1

= lim sup
((S,m)->(0,|/|) a e C i

One can also view the infimum as a limit in the usual sense by noting that

inf sup
δ>o,mei a e σ

= lim sup dist (g.H00 (Ωn (α, -,min(n, |/ |)) ] ) .
n~*°° aec1 \ V V n / / /

Remark 3.2. Corollaries 2.2, 2.3 and 2.5 all have the obvious generaliza-
tions to algebras generated by a collection T. For example, if T consists of
bounded anti-holomorphic functions then

dist(p,H°°{Ό)m) = inf sup dist(#,ίP°(Ω^(α,δ,m))).
<5>0mG/

4. The distance formula for non-harmonic generators.

We shall see later (Section 6) that if / is bounded and harmonic on D,
then iJ°°(O)[/] is also generated by a collection of four real-valued functions
{/i,..., /4} G C(M) (see Lemma 6.1). We will also verify a special property
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of these particular functions: given any a = (αi,... ,α4) 6K 4 , we will show
the joint level set

is the zero set (in M) of some A e H°
Using these facts we will deduce Theorem 3.1 from

Theorem 4.1. Suppose T — {fi)iei C C(M) is a countable collection of
bounded, real-valued functions with H°° level sets (i.e., every for a = {α }̂ G
R1, the set Ea = {ζ € M : fi(ζ) = α<,ϊ E /} is a countable intersection of
zeros sets of H°°(B) functions). If g € L°°(D) then

distfo,ff°°(D)[.F]) = inf sup dist(ff,iΓ°°(Ω^(α, 5,m))).
<*>Ome/

Remark 4.1. The argument of Remark 2.3 shows the "inf" and "sup" in
Theorem 4.1 may be interchanged, i.e.,

distfa,H°°(B)[T]) = inf sup distfa, ^ ^ ( Ω ^ ( α , ί,m)))
<5>0,τnG/ R/

= sup inf

To repeat the proof in this setting, we assume (without loss of generality)
that all the functions in T are bounded by 1. Take Y = D , which is easily
seen to be compact with the metric

d(a,β) =d({αj,{δj) =inf {^ : k - b,\ < ±,i = 1,... ,min(n,

Then set

Fn(y) = diet (g,H°° ( Ω ^ (y, ^,min(n, | / | ) ) ) ) .

One verifies (1) and (2) of Lemma 2.6 just as before using the facts that

and

Ωjr (y^,— ,min(n fc,|/|)j C Ω̂ r ( y,-,min(n,

if d(y,yk) < ± and nk > 2n.
This argument also shows that the "inf" and "sup" may be exchanged

in Theorem 3.1 if the collection T consists of anti-holomorphic functions
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(or, more generally, if the associated collection Ή, of holomorphic functions
consists of bounded functions).

Remark 4.2. We mentioned above that if / is bounded and harmonic
then H°°(P)[f] is also generated by H°°(&) and a collection of real valued
functions. I do not know whether H°°(Ώ))[f] can always be generated by
if°°(D) and some collection of real valued harmonic functions, but this seems
unlikely.

5. The distance formula for g G C(M).

So far we have been careful to state the distance formula in such a way
that it makes sense for any g G L°°(D). In this section we will specialize
Theorem 4.1 to the case when g has a continuous extension to M (which
we will still call g). In this case Theorem 4.1 has a more compact statement
which is very similar to Shilov's theorem (described in the introduction).

We start by reviewing a few facts about Λ4, the maximal ideal space of
iJ°°(D). A basis for the topology is generated by sets of the form

where / G H°°(B), a G C and δ > 0. For a collection of functions T C C(M)
we define

ίV(α, δ, m) = p | Ωfk (αfc, £),

just as before, but now it is a subset of M instead of D. It is clear that

(Prom now on, Ω will always denote a set in M and Ω the corresponding
intersection with D.) Conversely, the fact that D is dense in M (Carleson's
corona theorem) implies that

ζlτ(a,δ,m) = U Ω;r(α,r?,ra),

(the closure is in M). Note that the zero set of a function on M need not
be the closure of its zero set on D, but it is always equal to

{C e M : f(ζ) = 0} = f]fmδ) = Π«/(θ,ί),
δ δ

(the closure is taken in M). Furthermore, a function / G Hoo(Ω^(a1 δ)) has
a unique continuous extension to Ω^α, δ).
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Given a compact subset E C M let H(E) be the functions f on E which
have a continuous extension F to open neighborhood U of E such that F is
bounded and holomorphic on UΓ)Ώ>. Let H^C(E) denote the closure of H(E)
in C(E) with respect to the sup norm on E. Clearly H°°(O)\E C H(E) C

Next we want to rewrite the distances in Theorem 3.1 and Theorem 4.1
in terms of distances to H^C(E). Suppose that E C ΛΊ can be written in
the form

δ>o,mei

for some collection functions T = {fi}iζi C C(Λί) (i.e., E is a joint level set
in Λ4). Then it is easy to see that

& (E))= inf dist(g,H°°(nT(0, δ,m))).
σ>0,mGi

Therefore Theorem 4.1 implies

Theorem 5.1. Suppose T — {/;};<=/ is as in Theorem 4.1. If g E C(M)
then

where Ea = {ζ e M : fi(ζ) =aijie I}.

Remark 5.1. We will prove later (Lemma 7.1) that if E C M is a finite
intersection of zero sets of functions in i/°°(D) then H°°(Ό)\E = H(E), and
therefore we have H°°(Ό)\E = H^C(E). It would be interesting to know for
which sets E C M we have #°°(D)|£ = H£C(E). If if C D is compact
this is Runge's theorem: every function holomorphic on a neighborhood of
K can be approximated by a polynomial iff K has connected complement.
This condition is sometimes stated by saying K is polynomially convex, i.e.,
K = K where

K = \z : \p(z)\ < sup |p| for all polynomials p >.
I K J

J. Garnett has suggested that the appropriate condition for the H°° problem
should be the analogous convexity condition: E = E where

E = {c 6 M |/(C)| < sup I/I for all / € fP° j .
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6. Reducing Theorem 3.1 to Theorem 4.1.

Now that we have introduced all the notation and stated the results we are
ready to start proving the theorems. In this section we show how to deduce
Theorem 3.1 from Theorem 4.1. Theorem 4.1 will be proven in the following
two sections. We start with,

Lemma 6.1. If f is a bounded harmonic function onΏ>, let h = \{f + if*)
Then H°°(Ώ)[f] is generated by four real valued functions C = {fu . . . , /4}
which satisfy the following conditions:
(1) fi€C(M)t i = l,2,3,4.
(2) ;/α={o 1 ) . . . ,α 4 }6i 4 , then there is an A E H°°(Ώ>) such that

nt=1 {ζeM . MO = ai} = {ζeM . A(ζ) = o}.

In other words, the common level sets are zero sets for H°° (D). A more
precise version of this is the following; there is an absolute C < oo and
an Ae H°°(B) such that

g - < 4 W*>l < α

(3) We have the following equality

inf supdist(p, jff°°(ΩΛ(α, δ))) = inf sup distfo iJ°°(Ωc(α, δ, 4))).
δ C δ 4

In the rest of the paper, the notation A ~ B means that A/B is bounded
and bounded away from zero. Thus the inequality in part (2) of the lemma
could be written

To deduce Theorem 3.1, note that parts (1) and (2) of the lemma imply
that Theorem 4.1 can be applied to H°°(Έή[f] = H°°(B)[C], giving

distfo, JΪ

= inf sup distfo, H°°(Ωc(a, δ, 4))).
δ α€K4

Now apply part (3) of the lemma to get

a£C

which is Theorem 3.1 in the case of one generator. An extra argument
is required to deduce the general case of Theorem 3.1 (the case of several
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generating functions) and we will give this at the end of this section. In the
remainder of this section we will prove the lemma.

Let / = u + iv = Re(/) + Hm(f) and h = | ( / + if*). We start by
using the observation of Axler and Shields [1] that if / is harmonic on D and

< π/4 then the algebra ff°°(D)[/] is also generated by the functions

(6.1) G(z) = e

i

and

(6.2) F(z) = e < I m ( f t ( z ) ) = e

i(v{z)~u*{z)) = e

f{z)e~{u{z)+iu*{z)).

Lemma 6.2. // / is bounded and harmonic on D and G, F are as
then G,Fe H°°(Ώ)[f] and H°°(D)[f] = ίP°(B)[G] =

/. First observe that eif^ G H°°(Ώ))[f] because it can be approximated
by finite sums of the series

1 + if(z) + \{if{z))2 + ••• + ^{if(z)T + • • ,

which converges uniformly to e*^z^ since / is bounded. Moreover, the func-
tion ev(*)+™*(*) is bounded and holomorphic on D (since υ is bounded). Thus
by (6.1) G is the product of functions in H°°(B)[f], so is in H°°(B)[f]. Sim-
ilarly for F.

To see why G generates fl"°°(D)[/], we use our assumption that ||/||oo <
π/4. Then eif{z) can only take values on the arc {eiθ : |0| < f}. This arc is a
compact subset of the disk Z)(l, 1), so the power series for log^ centered at 1
converges uniformly on this arc. Thus f(z) = —i\og(eif^) is in ίf°°(D)[G],
as desired. The same proof works for F. D

Since the complex conjugate of G is given by

Q(zj = G(z)~l = eΓίRe(Mz)) = e-i(u(z)+v*(z)) = e-if(z)e-(v(z)+ivm(z))^

the same argument as above shows G E fΓ°°(D)[/]. Thus

Re(G) = \(G + G), 1m(G) = ±(G - G),
Δ Δl

are real valued functions in the algebra i7°°(D)[/] and these two functions
(with iϊ°°(D)) generate the algebra.

We now start the proof of Lemma 6.1. We begin with part (1). Define

(6.3) C = {/i,.. , h}

= {Έte{G),laί{G),Έte{F),\m{F)}

= {cos(Re(/ι)), sin(Re(/ι)), cos(Im(/ι)), sin(I
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Then C C H°°(D)[f] C C(M), so part (1) of Lemma 6.1 is satisfied and
iJ°°(D)[/] is generated by C (by Lemma 6.2).

Next we verify part (2) of Lemma 6.1, i.e., the level sets are holomorphic
zero sets. Note that the sets where the quadruple is constant are the same
as

{z eB: h(z) Ea + 2πZ + i2πZ},

i.e., they are a countable union of level sets of h. More precisely, we claim
that

Lemma 6.3 Given a EC let

{αi,α2,α3,α4} = {cos(Re(α)),sin(Re(α)),cos(Im(α)),sin(Im(α))},

and given h on the disk let {/i,/2,/3,/4} be as in (6.3). Let C be the lattice
2π(Z + iZ). Then

Proof. First note that for any w, a £ C, we have

\w — a\ ~ I Re(w) — Re(α)| + | lm(w) —

(i.e., the L1 and L2 norms on R2 are equivalent) and

(6.4) dist(w, a + C)~ dist(Re(iϋ), Re(α) + 2πZ)

+ dist(Im(ty),Im(o) + 2πZ).

Similarly, for i , y € R ,

(6.5) dist(a?, y + 2πZ) - \eix - eiy\

~ I cos(a ) — cos(y)| + | sin(a ) — sin(y)|.

Combining (6.3), (6.4) and (6.5) proves the lemma. D

That the quadruple level set is also the level set of a single bounded
holomorphic function is immediate from the following (see Lemma 3.1 of

Lemma 6.4. Suppose h 6 BMOA(Ό). Let C = 2π(Z + iZ) be the lattice
of Gaussian integers (times 2π). Then there exists a bounded holomorphic
function A on the unit disk and a constant C (depending only on the BMO
norm of h) such that for all z G D,

C'ldist(h(z),C) < \A(z)\ < Cdist(h(z),C).
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Combining Lemma 6.4 and Lemma 6.3 proves part (2) of Lemma 6.1.
Next we verify part (3) of Lemma 6.1 Fix an a G C and let

= {Re (e i R e ^) , Im (e i R e ^) , Re (e i I m ^) , Im

= {cos(Re(α)), sin(Re(α)), cos(Im(α)), sin(Im(α))}.

Let I C R4 be the set of all α's which have this form. Note that X is a
compact set which contains the range of the map

Lemma 6.3 says there is a C < oo such that

(6.6) Ωc(α,ί/C,4)C | J Ωh(a + 2πw,δ) cΩc(a,Cδ,4).

Note that if {Ω }̂ are disjoint open sets then

3

Since the union in (6.6) is disjoint if δ < π, we get (for all small J),

< sup
wez+iz

<dhΛ(g,Hoo(Qc(a,Cδ,4))).

Therefore,

sup dist(ff,H°°(Ωc(a, δ/C,4))) < supsupdist(g, H°°(Ωh((a + 2πw, δ))))
aeX aeC w€C

< supdist(g,H°°(Ωc(a,Cδ,4:))).
aex

Thus taking the infimum over δ gives equality.
Also observe that,

hence,

(6.7) infsupdist(^fr°°(«c(a,i,4))) = infsupdist(^jff°°(ΩΛ(a,ί))).
δ>°x δ>0oec
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Finally, we wish to replace X by 1R4. If a 0 X then a is not in the range of
the quadruple, so either Ωc(α, 5,4) is empty or Ωc(α, <5, 4) C Ωc(/3,2$, 4) for
some β€X. Thus either dist(#, H°°(Ωc(a, ί,4))) = 0 or

(6.8)

for some β £ X. Therefore,

inf sup dist(#,H°°(Ω,c(a, δ,4))) = inf sup dist(#,ίP°(Ωc(α, ί,4))).
δ > ° 4 * > ° X

Now (6.7) and (6.8) prove part (3) of Lemma 6.1.
We have now proven Theorem 3.1 (given Theorem 4.1) when the algebra

is generated by one function. To do the general case, suppose T = {fi}iei
is a countable family of bounded harmonic functions and let

be the family of corresponding holomorphic functions. We form a countable
collection C by converting each fa G T into a quadruple {/ij}J=i,2,3,4 as
above. Then C generates i / 0 0 ^ ) ^ ] and property (1) holds as before. To
prove (2) we simply note that

{C e M : fij(ζ) = a^i E I,j = 1,2,3,4} = f]{ζ G M : MO = 0>.

where Aι G ίf°°(D) is the function associated to f{ by Lemma 6.1. Thus
common level sets of the collection C are countable intersections of H°° zero
sets, as required in Theorem 4.1. Finally, we have to verify (3). To do this
we simply note that Lemma 6.3 implies

(J Ωn(a

(index {fij} in the obvious way). This gives (as before),

inf sup dist(#,iJ°°(ΩH(α,J,ra))) = inf sup dist(^,ίf°°(Ωc (α,5,m))),

as desired. Thus Theorem 4.1 implies Theorem 3.1 in the general case.

7. Proof of Theorem 4.1.

In this section we reduce the proof of Theorem 4.1 to a lemma involving
approximation in jy°°(D). We prove the lemma in the following section.
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Without loss of generality we may assume that all the functions in T are
bounded by 1. We start with the easy direction,

(7.1) > inf sup dist(g,H°°(Ωτ(a,δ,m))).
5τn

Fix some e > 0. By definition we can choose a finite collection of functions
{hJ!k} G H°°(P) so that G = ΣΛj,*/* 6 H°°(p)[7] satisfies

\\g{z) - e.

Let S = Σ,-,* ||k; ,*||oo> let M be the largest value of j used in the definition
of G and let N be the largest power of any fj in the sum defining G. Fix
α = { θ j } € R ί . Then on SlF(a, δ, M) we have

Φ) -

< dist(5,H™φ>)[T]) +e + 2SN sup

<dist(g,H°°(O)[F])+2e,

if δ is small enough. Since Σ hjtk(z)cij is holomorphic on the whole disk we
get,

Γoo(ΩJr(α,ί,m))) < \\g(z) - G ^ I U
d,TO

Since this holds for any α £ l ' we get

supinf di8t(p,fΓ0O(Ω^(α,5, < ά3Bt(g,H°

Now use Remark 4.1 to exchange the "sup" and the "inf" and we obtain
(7.1).

Next we must prove the opposite inequality

(7.2) < inf sup dist(g,H°°(ζljr(a,δ,m))).
δ,m a

The main idea in the proof is given by the following lemma, which is implicit
in Carleson's solution of the corona problem (see [6, Chapter VIII]).
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Lemma 7.1. Suppose A = {Ak} C H°°(Ώ>) and E = Πk{ζ e M : Ak(ζ) =
0}. Then H°°(D)\E = H(E). More precisely, given a bounded holomorphic
function G o n ί i = Ω^(0, <S,ra) fΛere ezώfo e > 0 and G G H°°(D) swcΛ ίΛaί
IIGHoo < C = C(A,δ,m) and such that \G(z) - G(z)\ < CΣΓ=i \Ak(*)\ f°r

zenΛ{0,e,m).

We will prove the lemma in the next section. In the remainder of this
section we will give the proof of inequality (7.2) using Lemma 7.1. The
proof is a standard argument involving compactness and partitions of unity.

Fix € > 0, a = {ai}ieI € [-1,1]J and a g G L°°(D). Let Ea = ΠieI{ζ G
M. : fi{ζ) = «i} denote the level set in Λί corresponding to a. We will
construct an H G #°°(D)[.F] so that

p ^ ί ^ ^ ^ ) ) ) +26.

Clearly, if we can construct such a iϊ, we will have proven (7.2).
For each a G MJ, choose 5, m and Gα G H°°(Ωf (α, 5, m)) so that

Il0(s)ta(α,*.m) - Gβ(2r)||oo < iof supdist(5, H°°(ttT (α, ί,m))) + e.
d,m α

Let ^l = {Ax,...} be the sequence of bounded holomorphic functions
associated to the level set Ea by assumption. The hypotheses of Theorem 4.1
say that the collections

{ΩΛ(0, δ, m)}δ>OimeI, {Ωjr(α, 5, m)}<5>0,mE/,

both form a basis of neighborhoods for the set Ea. In other words, given
any open neighborhood U of Ea there are δ > 0 and m G / such that

ttΛ(Q,δ,m) CU,

Ωjr(α, ί, m) C U.

In particular given δ and m there are δ'^δ" and m\mtf such that

(7.3) £ α C Ω^(α, ί", m") C Ω^(0,5', m') C Ω^(α, 5, m).

This is just simple point set topology using the fact that Λ4 is a compact
Hausdorff space.

Now use Lemma 7.1 to obtain a Gα G H°°(β) such that

\Ga(z) ~ Ga(z)\ < CΣ \Ak(z)\, z
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where C depends on h,a,δ',m' but not on z. Thus

\g(z) - Ga(z)\ < \g(z) - Ga(z)\ + \Ga(z) - Ga(z)

k=l

for ζ G ΩΛ(0, 77, ra'). Thus if η < e/Crn we get

\g{z)-Ga(z)\<\g{z)-Ga{z)\+e

< distfa, H°°(Ωjr (a, δ, m))) + 2e.

By (7.3) we can choose δ" and m" so that

Ωr(a,δ",m") cΩΛ(0,η,m').

Every point of Λ4 is in some level set Ea and so the sets {Ωjr(α, δ", ra"
form an open cover of Λ4. Since Λ4 is compact, we can find a finite subcover
{Ωj}jLi ={&Aaj>δj,™>j)}jLi' Let Ω^ = D Π Ω , for j = l,...,iV. For each
j we construct (as above) a Gj € fΓ°°(D) so that

\g(z) - Gj{z)\ < mΐsnpdist(g,H°°(nτ(a,δ,m))) + 2e, zE Ω, .

Let M denote the largest rrij used in this cover. For each j — 1,... ,7V,
suppose OLj = {αi,j} £ K7, and define

B i = {(xu ... ,xm.) e Kmi : la;* - OiJ < ί,i = 1,... m,-},

and define [/, = JB7 X RM~mJ c MM. Consider the continuous map from M
to RM given by the M-tuple (/ l 5... ,/M) Since Λί is compact, the image
is compact. By definition, the sets {Uj} form a finite open cover of this
compact set, so we may choose a continuous partition of unity {ψj} of this
set which is subordinate to the cover {Uj}.

i i 0 0 ^ ) ^ ] contains every function of the form ψ(fi, . ., /M), with ψ con-
tinuous on RM. To prove this, we recall that on any compact subset of RM

the polynomials are dense in the continuous functions. Thus φ can be uni-
formly approximated by a polynomial P ( # i , . . . , XM) Then P ( / i , . . . , /M)?
uniformly approximates ψ(fi,..., /M)> SO φ(fι,..., /M) is in the algebra
generated by the /f's (in particular, it is in i ϊ 0 0 ^ ) ^ ] ) . This is the only
place that we use our assumption that the functions {/1,. , /M} are real
valued.

Thus {φj}f=1 = {φj(fu.. .JM)}?=1 C JΓ~(D)F] is a partition of unity
on M, subordinate to the cover {ίV,}^. In particular, these functions form
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a partition of unity when restricted to the disk. For a fixed z, Σ^Li Φj (z) — 1?
so

N

is a convex combination of the complex numbers {Gj(z)}jL1. By Equation

(7.4) these points all lie in a disk of radius

p { g , ( τ ( , δ , m ) ) ) + 2e,
δ,m a

around g{z). Hence the convex combination also lies in this disk, i.e.,

N

g{z)- < inf supdist(#, if°°(SV (a, δ, m))) + 2e,
s'm «

as desired. Thus H = ΣjLi&jφj G H°°{Ώ)[T] is the desired approxima-
tion. This completes the proof of Theorem 4.1, except for the proof of
Lemma 7.1. D

8. Proof of Lemma 7.1.

First we prove Lemma 7.1 when there is only one function, A — {A}. We

will then obtain the general case by induction.

By assumption the function G in the lemma is defined on some neighbor-

hood of E of the form Ω^(0, δ). Fix this value of δ. By Carleson's corona

construction (e.g., [6], Theorem VIΠ.5.1) given A G H°°{B) with \\A\\oo < 1

and a δ > 0 there is a φ G C°°(D) such that

(1) O < V < 1 ,

(2) ^ ) = l i f | i l ( ^ ) | > J ,

(3) ψ(z)=Oi£\A(z)\<e = e(δ),

(4) \Vφ(z)\<C(l~\z\)-\

(5) supp(V^) is contained within a unit hyperbolic neighborhood of a
Carleson contour Γ c D . (Recall that Γ is a Carleson contour if there
is a C < oo such that the arclength of ΓΠD(x, r) < Cr for any x G flD.)

Define H(z) = (1 - φ(z))G(z) on U ΠD and let H = 0 elsewhere on D.
Then H is smooth on the whole disk and is holomorphic except in the region

{z G D : dφ(z) φ 0} C {z G D : e(δ) < \A(z)\ < δ}.

Moreover, H = G on the set {z G D : \A(z)\ < e(δ)}.
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Suppose we could find a function φ on the unit disk, bounded by C and
so that F — H + Aψ is holomorphic. Then F satisfies

Halloo < Halloo + I M U M U < oo,

so F E H°°(D). Furthermore,

\F(z)-H{z)\<\\ψ\\ΌO\A{z)\<C\A{z)\.

On the set {z € D : \A(z)\ < e} we have H = (1 - ψ)G = G, so

\F(z) - G(z)\ < \F(z) - H(z)\ + \H(z) - G(z)\ < C\A(z)\.

Therefore, F satisfies the conditions of the lemma (in the case m = 1). So
to prove the m — 1 case of the lemma it suffices to find a bounded φ so that
H + Aψ is holomorphic.

We do this by solving a d equation. For a smooth function / on the disk
define df = \(fx+ ify). Recall that / is holomorphic on the disk iff df = 0
(this is just the Cauchy-Riemann equations in a slightly different form). In
other words, we want to find a bounded solution ψ of the equation

d(H + ψA) = 0.

Since d is linear and A is holomorphic we can rewrite this as

dH + Adφ = 0,

or equivalently,

By (5) above, the right hand side is supported in a unit neighborhood of
a Carleson contour Γ. Furthermore, G is bounded above (say by M) on the
disk and A is bounded below by e on this neighborhood. Thus —^dφ is
supported in unit neighborhood of a Carleson contour and satisfies

G{z)dφ{z) \ - i

A(z)

Thus a bounded solution of (8.1) exists by the following result.

Lemma 8.1. Suppose b is a smooth function on D such that
(1) b supported in a unit hyperbolic neighborhood of a Carleson contour Γ,

(2) b(z)<-M-r



A DISTANCE FORMULA 21

Then there exists a bounded, smooth F such that dF = b and \\F\\QQ <
<7(Γ,Λf).

This is Lemma 3.3 of Garnett and Jones' paper [7] (actually they prove
a more general version, replacing the disk with more general domains). A
proof is also given on page 789 of [2].

This completes the proof of Lemma 7.1 for the case of a single A.
Next we deduce the general case using induction. First note that if A

is a bounded, analytic function and δ > 0 then each component of Ω =
Ω^(0, δ) C D, is simply connected. Otherwise there would be a point x on
its boundary, surrounded by a loop 7 in Ω. Applying the maximum principle
to A(z) on the subdomain of D bounded by 7 and containing x we deduce
\A(x)\ < £, a contradiction.

Fix some m and for 0 < k < m — 1 define

m-k

Uk = ΩΛ(0,δ,m-k)= f| nAj(0,δ).
i=i

Thus
ΩΛ(0,δ,m) = U0CU2C'"C Um-X C D.

Since each component of a finite intersection of simply connected domains is
also simply connected, we deduce that each Uk is a union of simply connected
components.

Suppose we are given G G iP°(Ω.4(0,δ,m)) = H°°(U0). Since each com-
ponent Ω of U\ is simply connected it is conformally equivalent to the unit
disk so by the previous case of Lemma 7.1 there is an e0 > 0 and a bounded
holomorphic function G in if°°(Ω) so that

\G(z)-G(z)\<CAm(z)

for
z e Ω Π {z E D : \Am(z)\ < e0} = U'Q C Uo.

Applying this procedure separately to each component of C/χ gives us a func-
tion G\ defined on all of U\ with the same estimate.

By induction we see that for each k = 1,..., m there is an e^ > 0 and a
Gk e H°°(Uk) so that

\Gk^{z)-Gk{z)\<C\Ak{z)\

for

* € tffc_i = {* € Uk : \Ak(z)\ < ek}.
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Continuing for m steps we get a bounded holomorphic function Gm on the
unit disk so that

J f c = l k = l

for

zeΩΛ^mJcnΓ ί/;,
where e = min^ ek. This proves Lemma 7.1. •

9. An application: the Bourgain closure of H

The following application was suggested by conversations with Joe Cima and
Dechao Zheng.

Given Banach algebras 4 c 5 , the Bourgain closure of A in B is defined
as

Ab = {g βB : {fn} C A, fn ->• 0 weakly, implies dist(#/n, ,4) -> 0}.

This notion was introduced by Cima and Timoney in [5]. Some recent pa-
pers on the topic include [3, 4, 8, 9, 10, 11, 14, 15]. In [8] Ghatage,
Sun and Zheng prove that the Bourgain closure of ίf°°(D) in C(M) is
H°°(O)[z] = H°°(B) + C(D). In [6], Cima, Stroethoff and Yale show that
its Bourgain closure in L°°(D) is H°°(B)[z] + V where V = {g G L°°(D) :
limr_n Hgll/̂ ΐDXrD) = 0}. Here we will use Theorem 4.1 to compute the
Bourgain closure of iϊoo(D)[.7Γ]. First we verify two simple facts.

Lemma 9.1. Suppose T satisfies the conditions of Theorem 4.1. // {/n} is
a sequence in L°°(D) and dist(/n, i P ^ O ) ^ ] ) ->> 0 then for every e > 0 there
exist no,mo,£o such that n>no,m> m0, δ < δ0 implies

supdis t t/n, !? 0 0 ^^,δ.m))) < e.
α

Proof As usual, we may assume ||/||oo ^ 1 for every / G T. Suppose the
lemma fails. Then there are δk -> 0, n^, mk -> oo and ak G W so that

,H°°{Ωτ{ak,δk,mk))) > e.

We may use the compactness of Ό1 (see Remark 4.1) to pass to a subse-
quence such that ak -> α G ID)7, and using the fact that Ωτ(ak,δk,mk) C
Ω^ (α, δj m) if k is large enough, we see that dist(/nfc, if°°(Ω^r (c*, 5, ra))) > e
for all δ and m if k is sufficiently large. Therefore
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so dist(/nfc,jy~(D)[,F]) yV 0 by Theorem 4.1, a contradiction. D

Lemma 9.2. Suppose T — {/i,..., fm} is a finite collection of real valued
functions on the unit disk such that the common level sets

Ea = {zeΌ: fi{z) = au i = 1,..., m},

(where a = (alη... αm) G Em) are countable. Then

dist(0,2Γ°°(Ωjr(α,ί,m))) = limdist (g,H°° (Ωτ (a, δ, ra)\Ω^(α, η,ra))) .

Proof. First we claim that

A = limdist (#, fί0 0 (Ω^(α, δ,m)\Ωjr(α,77,m)))

The "A < 5 " direction is clear since

To prove the other direction take a sequence

gn 6 H°°(ίlr(a,δ,

with \\g — gn\\ -> A. Since the gn are defined on a increasing sequence of
sets, normal families implies they converge uniformly on compact sets to
goo E H°°(QT(a,6,m)\Ea) and that \\g - ffooll < A. Thus we get B < A.

But by hypothesis, Ea is a countable subset of Ωjr (α, 5, m) and hence
removable for bounded analytic functions. Thus

distfo, /r°(Ω^ (α, 5, m))) = dist^, ίΓ°°(Ω^ (α, 5,

and we are done. D

Theorem 9.3. If U is a countable collection of bounded harmonic func-
tions on the unit disk (at least one of which is not holomorphic), then
(H°°(Ό)[U])b = H°°(B)[U] (in both L°°(Ώ>) and C(M)).

Proof: We may as well assume U contains no holomorphic functions. In
Lemma 6.1 we proved that the algebra generated by ff°°(D) and a count-
able collection of bounded harmonic, non-holomorphic functions can also be
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generated by i?°°(D) and a countable collection of non-constant real val-
ued functions. Let T = {fijiei be the collection of real valued functions
corresponding to U. Thus it is enough to show ί P ^ D ) ^ ] = (ί

By a result in [5], A C Ab in general, so H^p)^] C (
To prove the opposite inclusion suppose g φ H°°^S)[J^\. We will con-
struct a sequence {Fn} C H00^)^] converging weakly to zero so that
dist^F^iϊ^QD)^]) /> 0. By Theorem 4.1 there exists an a = {αj G R1

and an e0 > 0 such that

for every δ > 0 and m e I. For each n G N let mn = min(n, | / | ) . By

Lemma 9.2, given any δn > 0 there must be an ηn > 0 so that

dist (g,H°° (Ω^(α, ίn,mn)\Ω^(α,r/n,mn))) > ~ .

We may also assume that ηn < δn. To apply Lemma 9.2 we need to know
the common level sets of {/i,..., fmn } (in the disk) are at most countable.
Using the definition of {/n} from the {un} given in Section 6, it is clear
that the common level sets of / I , . . . , / * (the functions which correspond
to Uι) is a countable set; in fact it is a countable union of level sets for a
certain holomorphic function in the disk which is non-constant if uλ is not
holomorphic. Thus taking m > 4 implies Lemma 9.2 may be applied.

Now choose a sequence {δn} by induction tending to zero and so that the
corresponding sequence {ηn} satisfies 4Jn +i < ηn. Let ψn be a continuous
function on Rmn so that ψn(x) = 1 on {x = ( # i , . . . , x m n ) : ηn ^ \&i — <*>i\ ^
δn} and VVι(̂ ) = 0 on {x : |xf - o^ > 2δn} and {̂  : 1̂ ^ - α^ < 77 /̂2}. Then
by Theorem 4.1, Fn = V n ( / i , . . . , / m J e ί ί ^ ί D ) ^ ] . (We don't really need
Theorem 4.1: see the argument in the paragraphs following (7.4).) Observe
that

(9.1) Fn(z) = l,zeilr(a,Sn,n

Prom equations (6.1) and (6.2) it is clear that the functions in T are all
non-constant (if the functions in U are not holomorphic). Thus the range of
any function in T is connected and not a single point. So if we are considering
a point a G KJ with (θχ,... αm n) in the closure of the range of (/i,..., fmn)
in Rmn, the functions Fn will be non-constant for all large enough n (since
the support of ψn hits the range but does not contain the range).

Since the Fn 's are uniformly bounded and have disjoint supports, they
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tend weakly to zero. Recall that δn < ^ and use (9.1) to deduce

dist (gFn, Ω^ (α, - , mn ) ) > dist (gFn, H°°{ίlτ{a, δn, mn))\Ωτ(a,ηn,mn))
\ \ n J J \ /

""^ J I o i - I -_ 117*00 (C~\ f s\ Jΐ \\\ C*i (s\ / κ y ) \

" 2 " '

Thus

lim sup dist (gFn, Ω^ f α, —, mn ) ) > eo/2.
n->oo a Y y γι J J

By Remark 3.1 this shows

and so by Theorem 4.1,

for all n. Therefore g £ (H°°(D)[J*])6 and the Theorem 9.3 is proven. D

One interesting feature of Theorem 9.3 is that the Bourgain closure of
#°°(D) is strictly larger than that of H°°(Ώ>)[z] (as subalgebras of L°°(D);
they are equal as subalgebras of C(Λΐ)). Comparing the calculation of
H°°(D)b in [4] to the proof of Theorem 9.3 shows that this disparity is due to
the fact that weak convergence to 0 in H°°(Iή implies uniform convergence
on compacta. Thus if {/n} E jff°°(D) converges weakly to 0, {gfn} converges
uniformly on compacta to 0 and we get no restrictions on g on compacta.
However, there are sequences fn e H°°(JDi)[z] which converge weakly to 0 but
not uniformly on compacta and these impose restrictions on g at all points
of the disk.

10. Another application: the Axler-Shields theorem.

Theorem 2.1 was originally motivated by trying to understand the following
result of Axler and Shields [1]:

Theorem 10.1. /// is bounded and harmonic on D; but not holomorphic,
then H°°(Ώ>)[f] contains C(D), the uniformly continuous functions on D.

Proof. Here we give a short proof using Corollary 2.3. Suppose g G C(D).
Let h = f + if*. Then h is holomorphic but not constant (because / is not
holomorphic). We claim that the Euclidean diameter of the components of
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Ω/^α, δ) = {z £ D : \h(z) — a\ < δ} tend to zero with δ. If not, then there
are connected sets {Fn} in D with diam(Fn) > e0 > 0 and constants an

such that \h(z) — an\ < e~n for z G Fn. The harmonic measure of the Fn 's
from any point in D (0,1/2) is clearly bounded away from zero, so by the
subharmonicity of log \h(z) — a\ we deduce log \h(z) — an \ < C log e~n = —Cn
for all z E D (0,1/2). We deduce h is constant on the disk, contrary to
assumption, and so have proved the claim that all components are small.
Since g is uniformly continuous on the disk, g is close to a constant on each
component. Thus g G #°°(B)[/] by Corollary 2.3. D

Let A(Iή = H°°(O) Π C(D) denote the disk algebra. As a consequence
of the result above, Axler and Shields deduced the following corollary: if
/ G C(B) is harmonic but not holomorphic on D then J4(O)[/] = C(D).
However, there seems to be no direct proof of the corollary (without using
Theorem 10.1) and they asked for an explanation of this. One possible
reason is that the behavior of the algebra depends on the behavior of the
level sets of h = f + i/*, not those of /. To prove the distance formula for
continuous / reduces to showing H(E) = ^ ^ ( D ) ! ^ for level sets of functions
in QA = H°° Π VMO instead of H°°, but this does not seem significantly
easier. Thus although the introduction of h makes our formula look more
complicated, it explains this observation of Axler and Shields.
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