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 The Annals of Probability
 1992, Vol. 20, No. 2, 631-651

 BROWNIAN MOTION IN DENJOY DOMAINS'

 BY CHRISTOPHER J. BISHOP

 University of California, Los Angeles

 A planar domain whose boundary E lies in the real line is called a
 Denjoy domain. In this article we consider some geometric properties of
 Brownian motion in such a domain. The first result is that if E has zero
 length (IEI = 0), then there is a set F c E of full harmonic measure such
 that every Brownian path which exits at x E F hits both (- 00, x) and (x, mo)
 with probability 1, verifying a conjecture of Burdzy. Next we show that if
 dim(E) < 1, then almost every Brownian path forms infinitely many loops
 separating its exit point from Xo and we give an example to show dim(E) < 1

 cannot be replaced by JEl = 0.

 1. Introduction. Suppose E is a closed proper subset of lR and let
 f 2= R2\E. Such a domain is called a Denjoy domain. The purpose of this
 article is to consider two properties of Brownian motion in Denjoy domains.
 The first concerns the way in which a Brownian path hits the real line
 immediately before hitting E. The second concerns the probability that a
 Brownian path will form a "loop" separating one component of E from
 another. The proofs are mainly classical potential theory and real analysis.
 Our first result is the following theorem.

 THEOREM 1. Suppose fl = 1 2 \E is a Denjoy domain. Then for almost
 every x E E (with respect to harmonic measure, a) and every E > 0, a Brown-
 ian motion in fl conditioned to exit at x will hit the interval [x - E, x) with
 probability 1 if and only if it hits the interval (x, x + e] with probability 1.

 Theorem 1 says that a Brownian path does not have a preferred "direction

 of approach" to x. Let REx denote the cone of positive harmonic functions on
 fl which vanish on E \ {x} and at oo. In [3] Benedicks showed that Ex always
 has dimension 1 or 2. The proof of Theorem 1 will show that whether the path
 hits the intervals with probability less than or equal to 1 depends on whether

 E has dimension 1 or 2; for a.e. x in the first case a Brownian path hits both
 [x - a, x) and (x, x + E] almost surely and in the second it does not. In Section
 3 we will state and prove a version of this when E c Rn, f = Rn+1 \ E and
 the line segments are replaced by cones.

 In [3] Benedicks gives several criteria for determining the dimension of qE.
 For example, Ex is one dimensional if every h E Ex is symmetric with
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 632 C. J. BISHOP

 respect to R and satisfies h(y) = o(jx - yI 1) and dim(J) = 2 if there is an

 h E Ex satisfying h(x, t) ? C/t for some C > 0 and t small. Also dimQ#E) =
 2 implies c([x - t, x + t]) = 0(t), but dim(9^) = 1 implies w([x - t, x + t])/

 t -m oo. If JEl = 0, that is, E has zero Lebesgue measure, then it is easy to see
 that the set F of x e E for which dim(x) = 2 has harmonic measure 0. This
 is because by Benedicks' theorem and the Vitali covering lemma, we can cover

 F by intervals {I) such that w(Ij) < ClIjl and E 11jl is as small as we wish.
 Thus if 1El = 0 the first alternative holds in Theorem 1 for w a.e x E E.

 Theorem 1 can also be stated in terms of a Cauchy process on the real line

 (see [15] and [18]). This is a process Cs with independent increments given by
 t dx

 P(Cs+t - Cs E A) =AW7r(t2 + x2)

 This process is not continuous and can also be defined as follows. If B1 and B2

 are independent one-dimensional Brownian motions and Ts = inf{t ? 0: Bt -
 s}, then Cs = B1(T5). The trace of this process is the same as that of a
 two-dimensional Brownian motion hitting the real line, only time has been
 rescaled. Thus Theorem 1 says that if E has zero length and x E E is the

 point where the process Cs first hits E, then almost surely the process hits
 every interval of the form [x - s, x) and (x, x + eI. This had been conjectured
 by Burdzy.

 For x E R and t > 0 let Qt denote the square (x - t, x + t) x (-t, t) and let
 ,8(x, t) = w(x, dQt, Qt \ E), that is, p is the harmonic measure at x of the sides
 of Qt in Qt\E. Benedicks proved that dim(E) = 2 if and only if for any
 o < a <1,

 1 dt
 (1.1) ff31(x + t, altl) -t, < ?.
 Benedicks' theorem is only stated in [3] for the point x = 0o, but this case
 easily implies the result stated above. We will show that a Brownian motion
 conditioned to exit at x will hit (x, x + E) with probability 1 if and only if

 1 dt
 f /3(x + t, at) - = 00

 0 ~~~~t

 [and similarly for (x - E, x)] so Theorem 1 reduces to proving the following
 theorem.

 THEOREM 2. For almost every x E E (with respect to harmonic measure
 on

 1 dt
 (1.2) f ,8(x + t, at) - < ??

 Jo ~~~~t
 if and only if

 dt
 (1.3) 13(x - th at) - < m0.

 Now we come to the second topic of this paper. Suppose E c R 2 is compact.
 We will say a Brownian path y in fl = fR2\E separates E if there are
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 BROWNIAN MOTION IN DENJOY DOMAINS 633

 o < s < t < X (a is the time the path hits E) such that y(s) = y(t) and so that
 the closed curve F = y([s, t]) separates E (i.e., has points of E in more than
 one of its complementary components). We will also refer to this as "making a
 loop around E." A path is said to surround a point x E E if there are s, t such
 that x is in a bounded component of '2 \ F. We shall call a set E Brownian
 disconnected if almost every Brownian path surrounds its exit point. This is
 stronger than saying E is a.s. separated by Brownian paths. Indeed any
 compact set can be given the latter property by adding a countable set [e.g.,
 construct a set {zn} such that for every z 4 E there is an n with Iz - zn I <
 dist(z, E)/2].

 Burdzy and Lyons have pointed out that if the set E has small enough
 Hausdorff dimension (definition in Section 4), then Brownian motion necessar-
 ily separates E. To see this, consider a Brownian path starting at distance E
 from the origin and let it run until the first time it hits the unit circle. Let
 P(E) denote the probability that the origin and oo are in the same connected
 component of the path's complement, and suppose that it satisfies P(E) < Car
 for some fixed a > 0. If E has finite a-dimensional Hausdorff measure, then
 an application of the Borel-Cantelli lemma shows that E is necessarily
 separated by Brownian paths hitting it. It is easy to see that P() < Ea for
 some a and in [8] Burdzy and Lawler show that P(E) < ,r . Thus dim(E) <

 2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7T-2 implies E is almost surely separated. It is also true that if dim(E) < 2,
 then E is Brownian disconnected (see Section 6).

 The idea of a Brownian path separating the boundary is related to another
 problem: characterizing the compact sets E in R 2 such that E n dA has zero
 harmonic measure in fl for any simply connected fQ. We shall call such a set a
 SC-null set. If fl = jR2 \ E and Brownian paths separate E a.s., then E has
 this property, since Brownian paths will have to hit Al \ E a.s. before hitting
 E. Conversely, if E is a set which a Brownian motion is unlikely to separate,
 then fl = 1R2 \ E should "look" simply connected. The result that dim(E) < 2
 implies E is Brownian disconnected is the analog of a result of Beurling that if
 fl is simply connected and E c fl satisfies A1/2(E) = 0, then W(E) = 0 (here
 Aa denotes a-dimensional Hausdorff measure and w is harmonic measure on
 W). The result of Beurling has been dramatically improved by Makarov [21]
 who showed that if Ah(E) = 0, then (E) = 0, where Ah is the Hausdorff
 measure corresponding to the function

 h(t) = t exp(C/log(1/t)logloglog(1/t))

 and that this is sharp except for the choice of C > 0. In particular, this shows
 that dim(E) < 1 implies E is SC-null. Therefore it is appropriate to conjecture
 that E is Brownian disconnected whenever dim(E) < 1. Our next result is to
 verify this for Denjoy domains.

 THEOREM 3. If E c UR and dim(E) < 1, then E is Brownian disconnected.

 If a path makes infinitely many loops around x, then it certainly hits both
 (x - ?, x) and (x, x + E) for every E so Theorem 3 is consistent with Theorem
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 634 C. J. BISHOP

 1. Indeed, on the basis of Theorem 1 one might think that "dim(E) < 1" in
 Theorem 3 could be replaced by "IEI = 0," but this is not the case.

 THEOREM 4. There is a E c OR with IEI = 0 which is not almost surely
 separated by Brownian motion.

 This example points out a distinction between SC-null sets and Brownian
 separated sets. This is because a theorem of 0ksendal [25] says that a subset of
 OR is SC-null iff it has zero length, so the set constructed in Theorem 4 is
 SC-null even though it is not Brownian separated. 0ksendal had conjectured
 that a subset of a rectifiable curve is SC-null iff it has zero length and this is
 proven in [5]. It follows from an example of Lavrentiev [20] that a general set
 with zero Al measure need not be SC-null. Also see [19] and [22].

 The term "Denjoy domain" is based on the theorem of Denjoy [13] that if
 E c DR, then C \ E supports a nonconstant bounded holomorphic function iff E
 has positive Lebesgue measure. Denjoy domains provide interesting examples
 of multiply connected plane domains which are easier to deal with than a
 general domain because of the symmetry with respect to lR. See, for example,
 the papers of Rubel and Ryff [27], Carleson [10], Garnett and Jones [17] and
 Zinsmeister [30]. Some papers involving Brownian motion and the Martin
 boundary of Denjoy domains include [1], [3], [7], [11], [16] and [28]. Some
 related results are also discussed in [4] and [23]. Classical estimates on
 harmonic measure and problems related to harmonic measure on simply
 connected domains are discussed in the excellent survey [2].

 In the next section we prove Theorems 1 and 2. In Section 3 we will state
 the higher-dimensional version of this result (Theorem 5) and indicate the
 (minor) modifications needed in the proof. In Section 4 we prove Theorem 3
 and in Section 5 we prove Theorem 4. We finish with some remarks in Sec-
 tion 6.

 2. Proof of Theorems 1 and 2. First some notation. As usual, B(x, r)
 denotes the disk of radius r centered at x and C will denote a constant (whose
 value may change from line to line). For E c OR, 1EI denotes the Lebesgue
 measure of E. If I is an interval, AI denotes the concentric interval of length
 AIII. E will be a compact subset of the line and Q = R2 \ E its complement.
 w(z, F, fl) denotes the harmonic measure of the set F n DfQ with respect to
 point z e fl. For convenience we will often only write w(F, fl) or w(F) when
 the basepoint or domain are clear from context. The letters z and w will
 represent points in R2 while x and y will denote real numbers. Thus for a
 function h defined on the plane, we will write either h(z) or h(x,y). The
 notation a b means that the ratio a/b is bounded and bounded away from
 0. Given a point x E E, the function h(z) will denote an element of 9gE.
 Brownian motion conditioned to exit at x E E is the process with transition
 probability P,(z, dw)h(w)/h(z), where P[1 is the transition probability for
 ordinary Brownian motion in fQ. We may always assume h is symmetric with
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 BROWNIAN MOTION IN DENJOY DOMAINS 635

 respect to R (under this assumption the conditioned process is uniquely
 defined). See [14, 26] for details.

 Our first goal is to deduce Theorem 1 from Theorem 2. The main part of
 this argument is to establish the following lemma.

 LEMMA 1. Suppose that 0 E E, I = [r, 2r1, I = [r/2, 4r] and let u(z)
 denote the probability that a Brownian path starting at z and conditioned to
 exit at {O} will hit I. If IzI ? 8r, then

 dt dt
 C-1 f(t, at)- < u(z) < Cf f8(t, at)-.
 It I

 If we only consider Izi = 8r and let u be the probability of hitting I before
 leaving B(O, 16 r) \ B(O, r/4), we get the same estimate (except for the value
 of C).

 The proof of Lemma 1 will be given at the end of this section. Clearly the
 right-hand side implies that the probability that a Brownian path starting at z
 (with Izi ? 8r) will hit the interval (0, r) is less than

 Cf (t, at) - .

 Thus the finiteness of this integral implies that (0, r) will be hit with probabil-
 ity less than 1 if r is small.

 On the other hand, suppose the integral in (1.2) diverges. Then we can
 choose a sequence of dyadic intervals {I) = {rj, 2rj) such that rj > 64rj~j but
 such that the sum of the corresponding 83-integrals diverges. By considering
 the first time the Brownian path hits 8rj and using the extended Borel-Cantelli
 lemma [6], Corollary 5.29, we see that the path must hit infinitely many of the

 {I)} (the last sentence of the lemma gives us an estimate of the probability of
 hitting Ij which does not depend on whether we hit any other interval).

 A path conditioned to exit at x will hit (x, x + e) almost surely iff the
 integral in (1.2) is infinite. For such a point Theorem 2 implies the integral
 (1.3) also diverges (except for an exceptional set of harmonic measure 0).
 Hence the path also hits (x - a, x) with probability 1. Thus Theorem 2 implies
 Theorem 1. E

 Now we turn to the proof of Theorem 2. It is enough to show that if the
 integral in (1.2) is finite on a set of positive harmonic measure, then the
 integral in (1.3) is finite on some subset of positive measure. Fix a point in Ql,
 say oo, and let w be harmonic measure on Al with respect to this point. Let 81,
 82 and 63 be small positive numbers to be chosen later. Let
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 636 C. J. BISHOP

 By hypothesis E0 has positive harmonic measure. Choose El > 0 so that
 ( E~~l dt

 E1= (x E EO: |3(x + t, at) - < 81

 also has positive harmonic measure. Since points of density have full measure
 (e.g., [29], Theorem 10.49), there is an E2 such that

 l w(E nI) >1 x- A2, IIII
 E a= {eiw(E1 a I))

 has positive measure. Similarly,

 E w(E2n I) }
 3 w(E n I) > 1J83,XEI

 has positive harmonic measure for some E3> 0. (Passing to points of density
 twice may seem redundant, but is necessary for the proof of Lemma 3.)
 Finally, if we set

 E4 = {x eE3: 3 y e E2, X - E3 <Y <X -EJ
 this set has positive harmonic measure for some E4> 0. Otherwise, E3 would
 be the union of a set of zero measure and a countable set (right endpoints of
 intervals in R \ E2).

 We will show that the integral (1.3) is finite a.e. on the set E4. It is
 convenient to record the following simple lemmas which will be proven at the
 end of this section.

 LEMMA 2. There exists C > 0 so that if s < t < 2s, then /(x, t) < /3(x, s) <
 Cp3(x, t).

 LEMMA 3. There exists C, 8 > 0 so that if I c J and

 dx
 f13(xI II)T < 8

 then

 w( E n I, fl) 2 C(III IIJI) w( J. fl \ J) 2 C(IIIIIJI) w( E n J, l) .

 In particular, for any 'q > 0, there are 8, C > 0 such that if 81 < 8, x E El,
 J = [x, x + r], r < El and I c J has length at least -qIJI, then w(E n I, fl) 2
 Cw(E n J, fl).

 LEMMA 4. For any i > 0 there is a 8 > 0 such that if 81,82, 83 < e, X E E4
 and 0<r<E4, then there is a y eE2suchthatx-r<y<x-r(l -q).

 Assuming these for the moment, let us complete the proof of Theorem 2. By
 Lemma 2 it is clear that the convergence of the integrals in question does not
 depend on a. For convenience we set a = 2. Without loss of generality we may
 also assume that E0 c [-1, 1]. Choose an integer N so that 2-N < 84 and for
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 BROWNIAN MOTION IN DENJOY DOMAINS 637

 n ? N let en denote the collection of dyadic intervals in [- 1, 1] of length 2-n
 which meet E4. Let e = U en. To each I E an we associate another interval
 J = [2-n, 2 -n +. Note that

 (2.1) f 2Ni dt dt
 (2.1) | | I3(x - t, at) - dw(x) = E f1|(x -t, at) - dw(x),

 E40 ~~~~t ' IE4J t

 and that to prove Theorem 2, it suffices to show the integral on the left is
 finite. Given I = [a, b] EE en, we also associate an interval I' = [a', b'] = I -
 411 (translate I to the left). Now observe that if x e I, y E I' and t e J, then
 x - t = y + s for some s t. Thus by Lemma 2 there is a C > 0 such that

 1 3(x - t, at)
 C-38(y+s,as)

 so for any x E I and y E I',

 dt ds
 f13(x - tat) - < Cf (y + sas)-,

 t ~~~S

 where J' = [C `2-n, C2n+1] is chosen so t E J implies s E J'. By Lemma 4
 (with small enough qr), there is a point y E E2 in I", the left half of I'. By the
 definition of E2,

 o(El q I') 2 Cw(E n I') ? Cw(E n (I'\I")).

 By Lemma 3,

 w(E n (I'\I")) ? Cco(E n [a',b]) ? Cw(E nI) ? C&o(E4 qI).

 Therefore

 dt dt
 ft f1/3(x-t, at)-dco(x) <? C f | 3(y + t, at)-d d(y).
 EniJ t E1 nI' JI t

 Moreover, any pair (y, t) E I' x J' is used at most a bounded number of times
 as I ranges over all of W. Thus summing these integrals over all of e, using

 (2.1) and the definition of El,

 2-N+1 dt dt
 f f1 3(X - t,at)-dco(x) < CE J J (y + t,at)-do(y)

 E4 o t v I'rat E, t

 E4 dt
 < Cf f1(y + t, at)- do(y)

 1.~0 t

 < Cw(E1)81
 < 00,

 as required. This completes the proof of Theorem 2, except for the proofs of
 the lemmas. E

 PROOF OF LEMMA 1. We begin by reviewing some facts about harmonic
 measure on Q from [3]. Let x EE , t > 0, J = (x - t, x + t), Q = J x (-t, t)
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 638 C. J. BISHOP

 and K the two sides of Q parallel to R. Then [3], Lemma 7, says that
 w(x, K, Q \ E) ? c&(x, aQ, Q \ E) (just as we would expect). Let L be the
 vertical segment with endpoints x, z0 = (x, t) and suppose f is a bounded,
 positive, symmetric, harmonic function on fl which vanishes on E n Q. We
 claim that

 maxf(w) < Cf(zo).
 weL

 On the top half of L this follows from Harnack's inequality. For w in the
 bottom half the maximum principle gives an arc y connecting w to aQ on
 which f(z) ? f(w). By symmetry we may assume y lies in the upper half
 plane H so

 f(z0) 2 f(w)w(O(z0, y, H \ y) 2 Cf(w),

 as desired.

 We now prove the lemma. The function u is h-harmonic, that is, it is of the
 form u = v/h, where v is a harmonic function in fl and is given by the
 formula [14, page 672],

 v(z) h(w)
 (2.2) u (z) = | dw(zi lo%)

 where %0 = Q \ I (one can also check that v is harmonic and has the correct
 boundary values). We will first prove the case z = zo = (0, 8r). Consider a
 point x c R and let Q be the square with center x and sidelength 2aIxI [i.e.,
 the square in the definition of ,8(x, a IxI)]. Harnack's inequality and the preced-
 ing paragraph imply that h(z) < Ch(zo) for z E aQ and h(z) ? Ch(zo) for z
 on K, the "top" and "bottom" sides of Q. Thus, using [3], Lemma 7,

 (2.3) h(x, O) = h(w) dw(x, Q\ E) -h(z0)P(x, aIxI).
 aQ

 If w0 denotes the harmonic measure on fo with respect to the point z0, then
 using the observation H C QO c R2 \ I (H is the upper half plane), shows that
 on I,

 dx {dist(x,R\ I) -11/2dx
 (2.4) C ?I < dcio < C> dI

 By the left-hand side of (2.4) and Harnack's inequality,

 dt
 u(z) ? ff(t, at) dwo(z) ? Cf (t, at) -y.

 To prove the right-hand side of the inequality, let Js = [s, 4s]. Then for
 r/2 < s < r we have I c J, c f. So if us is the probability of hitting J, we
 have u < aS. Set l = Q \ Js and let Xs denote the indicator function of Js
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 BROWNIAN MOTION IN DENJOY DOMAINS 639

 and note that for all t E R,

 2 (dist(x, R \J)/s)2X(t) ds < C. r r/2

 Using this, (2.3), (2.4) and Fubini's theorem, we get

 2 r
 u (z) <-j us(z) ds

 r r/2

 < C-| (|(t, at) dco(zq ), ) ds

 2 r \s)1S-1 /2Xs dt < C| ( (dist( t, R \J)/5) X(t) ds 8( t, a/t) JIkr /2
 dt

 < Cf (t,at)-.
 I t

 If Izi = 8r, simply note that since v vanishes on E n {4r < Izi < 16r), the
 argument which proved (2.3) applies to v and shows

 (2.5) v(x, O) - v(zo)/3(xa aIx) - h(zo)u(z0)P(x aIxI),

 for, say, x E S = {6r < IxI < lOr}. If P. denotes the Possion kernel for the
 upper half plane and Izi = 8r, then clearly

 PZ(t) < CPZO(t) + PZ(t)Xs(t)

 This, (2.5), /3 < 1 and the facts h(z)u(zo) - v(z) for z E S and z = zo imply

 v(z) < Ch(zo)u(zo) + Ch(zo)u(zo)f 8(x, alxl)Pz(x) dx ? Ch(z0)u(z0).

 [Since h is unbounded, one should consider H \ B(O, E) for some E << r
 instead of H, but the argument is the same.] Reversing the roles of v and h
 gives v(z) h(z)u(zo) for all Izi = 8r. Thus u(z) - u(zo) for such z. The case
 IzI 2 8r follows immediately.

 To prove the final claim, we merely repeat the proof with QO = ( \ I) n

 {r/4 < Izi < 16r}. The estimate (2.4) for wo on I still holds, so the proof is
 unchanged. O

 PROOF OF LEMMA 2. If s < t, then 18(x, t) < ,8(x, s) by the maximum
 principle. If s < t < 2s let K denote the two sides of Qs parallel to DR (as
 above). There is clearly a C > 0 such that

 w(z, Qt, Qt \E) > C, z e K.

 Also by [3], Lemma 7, to(x, K, QS \E) 2 lw(x, dQ,, QS \ E). Therefore by the
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 maximum principle,

 C
 w(x, aQt, Qt \ E) ? 2 (x, aQ, Q, \ E)X

 which is the desired inequality. E

 PROOF OF LEMMA 3. Let I c J = [x, x + r] and let I' = 'I be the middle
 third of I. By hypothesis and Lemma 2,

 (2.6) f13(x, II'I) dx ? C8JI'I.

 By Tchebyshev's inequality there is an A c I' with JAl ? lI'J/2 and
 ,8(t, lI'l) < 2C8 < 2 for t E A (if 8 is small enough). This implies wO(z, E n
 I, f) ? 2 for z c A. Let Qo = fl \ J and note that dco ? Cw(J) dx/lJI on I'.
 Our remark above implies w(z, E n I, fl) ? w(z, A, Qo)/2 for every z E MO
 and hence for all z E Qo by the maximum principle. Thus

 1 JAl III
 w(E n I, f) ? 2w(A, fo) ? C-w(J (fJo) ? CjFj cw(E n J, f ),

 which is the desired inequality. To prove the second statement, note that these

 hypotheses and Lemma 2 imply (2.6) with 8 = 81 and a constant C = C07).
 Thus the conclusion still holds if 8 is small enough. E

 PROOF OF LEMMA 4. Suppose x E E4. First, we show there is a sequence

 {zj} c E2 with zn -* x and x - Zn 2(x - zn1). By the definition of E4,
 1

 there is a y e E2 with x - E3 <Y <x - 84. Now set s = 2X71 = . Let w-
 x - s(x - y) and I = [w, w + 7q(x - y)]. By Lemma 3, if 81 is small enough,
 then w(E n I) ? Cc(E n [y, x]) > 0. If 83 is small enough, then the defini-
 tion of E3 implies w)(E2 n I) > 0 and so E2 n I # 0. (This is where we use
 the definition of E3; otherwise, the sequence would only lie in E1, not in E2.)

 By induction we obtain a sequence of points z1 < Z2 < ... <x in E2 with
 1< (X - Zn+1)/(x - zn) ? 2. With r as in the lemma, choose n so that

 X - zn > r x - zn+1 and then apply the argument above with s = r/(x -
 Zn), Y = Zn and the desired -q. This gives a point z E E2 with the correct
 estimate. E

 3. Higher dimensions. For 0 > 0 and a E {z E R n: lzl = 1}, let C(r, 0)
 denote the spherical cap with center oa and subtended angle 0. Let R(a, 0, 8) =
 {r * z: 0 < r < 8, z c C(=-, 0)) c R n be the cone of radius 8 subtended by this
 spherical cap.

 THEOREM 5. Suppose E c Rn is a proper closed subset and let f =
 Rn+1 \ E. Then for almost every x E E (with respect to harmonic measure) a
 Brownian motion conditioned to exit at x hits every cone R(, 0, 8) with
 probability 1 if and only if it hits any such cone with probability 1. In
 particular, this happens if An(E) = 0.
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 Benedicks' results all hold in R' except that the integral in (1.1) is replaced
 by

 (3.1) f f3(x + Y, alyl) -dy

 The argument to deduce Theorem 1 from Theorem 2 goes through just as
 before, so to deduce the theorem all we need do is show that

 dy
 (3.2) f f3(x + y, alyl) Iyn

 F(0-,0, 1)

 on a set of positive harmonic measure implies (3.1) is finite on a subset of
 positive harmonic measure. The proof goes exactly as before until the defini-
 tion of E4. We now set

 E4= (x E E3: 3 y c E3 n (x - F(cr, 0/2, E3)), jy - xI > E4J.
 To prove E4 has positive harmonic measure, note that if x E E3 is not in E4
 for any choice of E4 then x is the vertex of a cone in Rn \ E3. The set of such
 points is well known to have sigma finite (n - 1)-dimensional Hausdorff
 measure and so has zero Newtonian capacity in RWn +l . Therefore E4 must have

 positive harmonic measure for some E4. The proof now proceeds as before,
 replacing intervals by cones or cubes. The only other remark which is needed
 is that

 f3(x+ ayl)dy dy | lNx + Y, alyl) - _< M| 8(Z + Y. I, r<IyI<2r YI yeF(o-, 0, 2Cr)\B(x, r) + ly)I.'YIn

 for some C, M > 0 and any z E x - r(o, 0/2, Cr) with Iz - xl 2 r. Details are
 left to the reader.

 4. Proof of Theorem 3. Given an increasing continuous function h:
 1R+ R+ with h(O) = 0, we set

 Ah(E) = lim (inf{ E h (rj): E c U B (xj rj), rj <})

 This is called the Hausdorff measure associated to h and for h(t) = ta we
 simply write Aa. See [91 for details. We also define

 dim(E) = inf{a: Aa(E) = o}.

 To prove Theorem 3, we will show that there is a subset F c E of positive
 harmonic measure which satisfies

 c(B(x, r) n F) < CrlV
 for every x E F, where C depends only on v. Then for any covering {B(xj, rj)}
 of the set F by disks, we have

 O < w(F) < ? w(B(xj, rj)) < CE rl-V,
 which implies dim(E) ? dim(F) ? 1 - v. Taking v -O 0, we obtain Theorem 3.
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 The idea is that if x E E is a point around which Brownian motion is
 unlikely to loop, then fl must look simply connected near x, that is, E must
 look like a line, a ray or a union of two rays. On such domains harmonic

 measure looks like linear measure except near the endpoint of a ray where it
 has a square-root-type singularity. A typical point will not lie too near the end

 of a ray, however, so harmonic measure will look usually like arclength.
 To make this precise, let F c E denote a subset of positive harmonic

 measure such that for each point x E F a Brownian path conditioned to exit at
 x loops around x with probability less than 1. By passing to a subset, we may
 also assume that given e > 0 (to be fixed later) there is a small e0 > 0 such
 that a Brownian path starting at a point z = (x, y) with x E F and IyI < 0
 and conditioned to exit at x has probability less than E of making a loop
 around x. Given a 81 > 0 (to be fixed later), define

 F, F: o(F nI) F1 = xeF: EI > 1-81,lIII<e1,xeIB.
 co(E nl I)

 We assume el < eo is chosen so this set has positive measure.
 An interval I will be called "good" if III < e0 and 'I contains a point of F1.

 Divide I into N subintervals, {Ij), all with length N-1lII < Ij < CN-1lII.
 Suppose 'q > 0 (to be fixed later) and call such a subinterval "bad" if w(Ij) >
 coM(I)N71 (i.e., if it has more harmonic measure than expected, assuming o
 looks like linear measure). Note that, despite the names, an interval may be
 both good and bad.

 LEMMA 5. Given 8 there is an integer N and 81, E > 0 such that the

 following holds. Suppose I is a good interval and that the {I)} are defined as
 above. Let K denote the union of the "bad" subintervals. Then co(K) < 5co(I).

 If Ij is a bad subinterval which hits F1, then co(Ij) < c(I)N-l4.

 [The assumption that I is good is necessary, as can be seen by considering
 E = [0, oo), I = [ - 1, N-1], that is, an interval which is mostly empty. Assum-
 ing I contains points of F1 near its center eliminates this problem.]

 PROOF OF LEMMA 5. To prove Lemma 5, we may assume I = [-1, 1].

 Suppose that [-2,2] has been divided into disjoint subintervals {I) with
 N-1 1< .l1 < CN-1. For each j let

 dx

 13P - 1? = I ,B(X, IIJI) j,

 Let 0= Q \ (R \ 3Ij). We claim that if B += B( i, 2) then

 (4.1) w(iaB_4 fl \B_) > CpJ/N2.

 To see this, suppose Ii = [a, b] and let zj = ((a + b)/2, IIjD) and Bj =
 B(2q 1II/2). Using the definition of 13, [3, Lemma 7], symmetry and the fact
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 that w(zj, Ij, H) 2 C > O,
 dt

 w (zj, Bj, Qj \ Bj ) 2 Cf P(x, IIjI ) dw (zj, H) 2 C P(x, Iji)jg-- = C3j .

 By standard estimates for the upper half plane H, we get H(I(i, Ij, H)
 (zj, B +, H) N- 1. Harnack's inequality, symmetry and the Markov prop-

 erty of Brownian motion imply (4.1).
 As in (2.2), the probability of hitting B - by a path starting at i and

 conditioned to exit at some x e E is given by (h C sOE)

 1 h(w) dw(i, Q\ B) 2 c? (i dB-, Qj \ B inf h ( w).
 h(i) _h (i) wE=B-

 Since by Harnack and the symmetry of h, h(w) h(i) for w E B_, we get the
 same estimate (except for C) for conditioned Brownian motion as for uncondi-
 tioned Brownian motion.

 Thus the probability that a conditioned Brownian path starting at i will

 cross DR through 3Ij, hit B_ then cross DR through 3Ik and hit B + is at least
 CPjJBk N4. Hence for any p > 0 there is an E = e(3, N) > 0 so that any two
 intervals Ij, Ik with non-overlapping triples and f3j, f3k 2 p cannot be sepa-
 rated by a point of F (otherwise the probability of looping around this point
 would be too large). Also, if f3j <? is small enough, then Ij must hit F
 [because f38 small implies w(oIj) has harmonic measure at least comparable to
 w(I)/N (Lemma 3) and so if 81 in the definition of F1 is small enough, 1Ij will
 contain a point of F]. Therefore the triples of two intervals with fBj ? 8
 cannot be separated by one with fpk < p. Let J be the minimal interval in
 [ - 2, 2] containing all the intervals with f3j ? 8. By the remarks above and the
 assumption that all the intervals have size approximately N1, we see that

 every Ij in J has f8j, ? p except possibly for a bounded number near each
 endpoint of J (i.e., there is a C such that CIj c J implies 1j 2 p). In
 particular, J does not hit F, except possibly within distance C/N of its
 endpoints. Since F1 n [- 3, 3] 0 we can deduce [-1, 1] \J has length at
 least 6 (if N is large).

 Now we verify that the collection of bad intervals in I\J has small
 harmonic measure. Let K = [ - 2, 2] \ J. QO = fQ \ K and let w 0 denote har-
 monic measure on QO (also with respect to oo). K consists of either one or two
 intervals, K1, K2, at least one of length greater than or equal to 1 and the
 other (if it exists) of length greater than or equal to N- 1 (since it is a union of
 Ii's). Since II \ JI 1, cw0(K) - wo(I \ J) - w0(I) (this is where we need that
 I is "good"). Furthermore, since p is small on most of I\J, W(I) O(I)
 (Lemma 3). Also note [as in (2.4)]

 (dist(x,DR\K) 1/2 dx
 (4.2) dtoo < Ca~(I)f dx xK e Ki12

 = wo(I) f (x) dx, X ei Kil i = 1, 2,
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 and f E LP(K, dx) for p < 2. In particular, it is in L4"3(K, dx) with norm at

 most max jKiI - 1/4 < N'4. We claim that for an interval Ij c [- 1, 1] \ J, then
 (Ij) < 2wo(3Ij). Clearly wo(Ij) < CwO(I)/N and the definition of f3(x, t)

 implies that the probability of first hitting A1o \ ( u 31.) and then hitting
 Ij is less than

 f :3(x, N-1) dw(x).
 K3 Ij

 Holder's inequality (with p = 4, q = 4) and the fact f3 < 1 give

 f13(x, N-1) dwo(x) < Ccoo(I)f 83(x, N-1) f(x) dx

 < CW(I) ( (x, N- 1)4 dx) (f (X)4/3 dx)

 < C(0o(i)( j3(x, N 1) dx) max JK I-1/4

 1/4

 < C)(ojI) B /jlIjl N 1/4
 Ij cK

 < Cct)O( I ) P14N 1/4

 < &Jmo(II)

 if 13 < N-5/C. Thus wo(Ij) < 2oo(3Ij).
 Suppose r> 0 (to be chosen below) and suppose dist(Ij, J) ? r N-.

 Since Ij c I \ J it is in a component of K of length at least 1, so by (4.2),

 ow( Ij ) < Cwo)(3Ij ) < Cw^0( I )Ijlr- 1/ < Cc9( I )N-1lr- 1/ < @(I)I 1 -71

 if N is large enough (depending on C, r, -q). If dist(Ij, J) < r, then woo(Ij) <

 Ccw(I)IIjI1/2 <wcj(I)IIj1/4 (if N is large enough, depending on C). Moreover,
 the total harmonic measure of the intervals satisfying dist(Ij, J) < r is less
 than CX/ which is less than 8 (if r is small enough).

 Now we show that J must have small harmonic measure. If ID, I2 are the
 intervals of length r at the ends of J, then these have small harmonic
 measure by an argument similar to the previous paragraph. The rest of J
 contains no points of F (if N-' << r) so must have harmonic measure less
 than 51w(I) by the definition of F1 and the fact that I contains a point of F1.
 This completes the proof of the lemma. El

 Now we use the lemma to deduce Theorem 3. We claim that there is an

 interval Io, a collection of subintervals {Ij) and a set F2 c F1 n Io so that the
 following conditions hold. First F2 has positive harmonic measure. For each n

 the {Ijn} are disjoint (except for endpoints), U jIjn = Io, and N <IIjI?I <
 2ON 0II0. Furthermore, the intervals are nested (i.e., Iji c Ikn1 for some k).
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 Finally, I17 n F2 # 0 implies 'IjJ n F1 # 0 (i.e., if an interval hits F2 it must
 be good). Assuming all this for the moment, we continue with the proof.

 By resealing we assume Io = [0, 1]. Given 8, 'q (to be chosen below), let
 N. El 81 be as in Lemma 5. Consider the process which successively chooses
 subintervals of the current interval according to their relative harmonic
 measures and stops whenever an interval not hitting F2 is chosen. The process

 is naturally parameterized by Io. Let x E F2 (so we never stop) and suppose IP
 is the nth-generation interval containing x. Let Tn(x) be the number of bad
 intervals in {I1,.. ., In). We claim that for w a.e. x, Tn(x) < 38n for all n
 large enough (depending on x). This is almost the strong law of large numbers
 except that we do not quite have independent events. We shall prove it below
 using martingale convergence. Given the claim, we easily see that if I n is an
 nth-generation interval hitting F2,

 (D( I n) < ctD( IO) N-n3,1(1/4)-n(1 -33xl-,q) =_ (,(I )N-(1-Po)n

 Since IInI = N-n this implies W(In) < W(I0)IInI1_ and clearly if 'q and 8 are
 small, then v is also small. If J is an arbitrary interval, choose k so that

 N-k ? IJI < N+l. Then J intersects at most N + 1 intervals {IU) of the
 nth-generation so

 w(J) < E wj(Ij) < (N + l)IJI1_.
 Thus we have a set F c E of positive t measure and a v > 0 such that if J is
 any small enough interval, w(J n F) < CIJI1 >. By our earlier remarks we see
 that dim(F) 2 1 - v.

 Now we prove the claim that Tn(x) < 38n for w a.e. x. For each n define a
 function fn on Io as follows. Let I be a (n - 1)st-generation interval. If I
 does not hit F2, then fn is 0 on I. Otherwise, let K be the union of the bad
 subintervals of I and let fn = 1 on K and equal - WK)/W(I \ K) ? - 2 on
 I \ K. Doing this for every (n - 1)st-generation interval defines fn. Clearly fn
 has mean 0 (with respect to w) on each (n - 1)st-generation interval and is
 constant on each nth-generation interval so that Sn = E k 1 fk is a martingale
 with respect to the sigma algebras generated by the intervals {Ijn), n = 1, 2, . ..
 and the measure w. Since II fII. < 1, Xn= E f=1fk/k, is a martingale uni-
 formly bounded in L2 (and hence in L1). Thus it converges a.e. (W) [12,
 Theorem 9.4.4]. Therefore by Kronecker's lemma,

 n n )(k )

 tends to 0 a.e. as n -X oc (this is just Lebesgue dominated convergence on the
 integers). Thus for n large enough (depending on x), Sn < an. Since fn = 1
 on the bad intervals and is greater than or equal to -28 elsewhere, we see
 that Tn - 25(n - Tn) < 8n, hence Tn < 38n/(1 + 28) < 38n, as desired.

 Finally, we must construct the set F2 and the intervals {Ijn. Given 82 (to be
 fixed below), let

 F2 =x EFl. w(F1 - I) > 1- 2,1 < 2, XE I}
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 Let Io be an interval of length less than or equal to 62 which hits F2 in
 positive measure. By resealing we assume Io = [0, 1]. Now suppose I is an
 nth-generation interval which has already been constructed, that it has length
 N-n < III < 15N-n and that its length is an integer multiple of N-n-'. Divide

 I into subintervals {I) of length N-n- l. If we have a subinterval Ii such that
 Ij n F2 # 0 but 'Ij n F1 = 0, we replace Ij by the union of itself and the two
 adjacent intervals of the same length. The new interval J = 3Ij obviously
 satisfies 'J n F1 # 0. If two such modified intervals overlap, then we take the
 union and triple it to obtain an interval at most 15 times as long as the
 originals. We claim that this new interval does not meet any other modified
 intervals (so that this procedure does not go on forever). Otherwise, there

 would be two distinct intervals of length 3 IIjI at most distance 301Ij apart so
 that neither contains a point of F1 but which are separated by a point of Fl.
 By an argument in the proof of Lemma 5, since the intervals are separated by
 a point of F, at least one of the two ,3-integrals corresponding to these
 intervals must be very small. This implies (Lemma 3) that the harmonic
 measure of the interval is bounded below by approximately w(I)/N. This
 contradicts the definition of F2 if 82 is small enough (say 82 <<N), so the
 overlapping does not occur if I hits F2.

 One remaining problem is that the modified intervals are not quite nested.
 One simple way to fix this to modify all the preceding generations of intervals
 when we construct nth-generation intervals and pass to the limit. The result-
 ing intervals are nested and intervals of the same generation still have
 comparable length, as desired. This completes the proof of Theorem 3. El

 5. Proof of Theorem 4. To construct E, we first describe a method of

 replacing a given interval I by a union of subintervals {Inj Suppose q > 0 is
 small and N is large. Assume that I = [-1, 1]. Let

 A = E -) N.

 Let c0 = 0 and for n > 0 let

 n 1

 Cn =A E k 2
 k=N

 and let cn = -cn for n < 0. Note that the two-sided sequence {(cn accumu-
 lates at (-1, 1). For n > 0 let On = -Cn1 -CnI and Jn = (Cn - q3n Cn + q13n)
 and define Jn for negative n by symmetry. Let F = I \ U n J,. F is compact
 and F=I\{-1})u ... I_2U I-, U I, ** U {1), where (I14 n 0, are the
 closed intervals complementary to the {JnJ. One easily checks that

 (5.1) IFI = E [In < (1 - q)III,
 n
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 Now suppose we are given sequences {qn), 0 < qn < 1, and {Nj) C NJ. We
 define E as follows. Let E0 = [-1, 1] and let E1 = F, F as constructed above
 with q = q1, N = N1. In general, En-1 is a compact set consisting of a
 countable collection of closed intervals and their accumulation points. En is
 constructed by replacing each interval by a scaled copy of F using the

 parameters q = qn and N = Nn. The sets {En} are compact and nested so
 there is a nonempty compact set E defined by their intersection.

 It is clear that IEI < IHn>1(1 - q ), so that IEI = 0 if 2n qn = oo. However,
 it is fairly easy to prove directly that E has Hausdorff dimension 1 (as
 required by Theorem 3) and so is not a polar set. We will show that if the

 numbers (NnJ are chosen large enough (depending on {qJ), then the probabil-
 ity that a Brownian path starting at the origin never separates E is larger
 than

 (5.4) H (1 - Cq2),
 n> 1

 where C > 0 is some absolute constant. Thus, to build the desired example, it

 is enough to take qn = 1/(Cn).
 We now begin the proof of (5.4). First we group the open intervals of DR \ E

 into generations in the obvious way, that is, J is in the nth-generation iff it is

 a component of DR \ En but not of BR \ En l. Let Sn denote the collection of
 nth-generation intervals. Given a J E an with center x, we define a disk
 D = B(x, q -2Jl). Such a disk is called an "nth-generation disk." Let H
 denote the upper half plane.

 LEMMA 6. Suppose J is an nth-generation interval, D is the associated

 disk, x E J and Nn > C/(Anq ). Let (I' = D \ (R \ J). Then there is an abso-
 lute constant C such that

 (o x , En \ Es Q' ) 2 1-_Cq2

 Furthermore, if z = (xy) E dD, Nn 2 q -3 and I is the interval of En_
 containing x, then

 cwotz, R \I, H) < Cq2

 The first inequality implies that a Brownian motion starting in an n th-gen-
 eration interval has a probability less than or equal to Cq' of hitting an
 nth-generation interval or AD before hitting a k th-generation interval for
 some k > n. The second inequality says that a path starting in an nth-genera-
 tion disk has probability less than or equal to Cq' of first hitting DR in a
 jth-generation interval for j < n. Thus with probability greater than or equal
 to 1 - Cq', a Brownian path starting in an nth-generation interval I first hits
 DR \ I in a k th-generation interval for some k > n without ever having hit a
 jth-generation disk for any j < k.

 Suppose y is a Brownian path and let ID, 12, 13, ... be the sequence of
 (distinct) intervals in DR \ E it hits and D1, D2, ... the associated disks. Using
 the lemma, the Markov property of Brownian motion and induction, we see
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 that with probability greater than

 00

 Hl (1 _ Cq2) > 0,
 j=1

 each In+1 belongs to a strictly higher generation than In does, that y never
 leaves Dn after hitting In (so Dn + 1 c DO) and it never hits any Dk, k > n,
 before hitting In. But such a path never separates E, for if there were
 0 < s < t such that F = y([s, t]) separated E, y would have to cross R at least
 twice between times s and t and in different intervals In and Ik (say n < k).
 If y is as above, then it hits In before hitting I*k never hits Dk before hitting
 In and it never leaves Dk after hitting Ik*. Therefore y(s) cannot equal y(t).
 This finishes the proof of Theorem 4 except for proving Lemma 6.

 To prove the first inequality in the lemma, let Fn be the union of all
 nth-generation intervals. Since Nn > C/(Anqn), (5.3) implies there are no
 (n - 1)st- or lower-generation intervals in D n R. Thus it suffices to show
 both

 w(x,dD,f') ? Cqn, w(xFnQf) < Cq.

 The first estimate is easy (apply the mapping z -* 1/z and compare with the
 complement of a line segment). To prove the second inequality, rescale so
 J = [-1, 1]. By the maximum principle the harmonic measure for 0' is
 dominated (on DR) by the measure for the larger domain fl = R2\ (R \ J).
 This domain is the image of the upper half plane by the mapping z -

 (z + i)(z - i)/2z so the harmonic measure on fl can be explicitly computed.
 In particular, one easily shows

 Cdx

 ( rp ( -1 + X2 ' I I?2
 (with respect to the point {O}). The harmonic measure of Fn at x is dominated
 by a constant times the measure at 0, so it is enough to estimate it there. The

 set Fn n D is a union of intervals {J). By (5.2) the two closest of these to J
 have length approximately equal to 1 and distance approximately l/qn from
 J. Thus their harmonic measure is at most Cq -2. To each of the other

 intervals Jj, we associate the adjacent complementary interval I, which is
 closer to J. Ij has length approximately equal to IJjl/q . Therefore w(I ) 2
 Cq- w(Ji). Since the {I ) are disjoint,

 ( X9 nF ) ? Cqn(o 0 3 U Ik Qf) < CqnW(0 {IYI > C/qjflh) < Cq .

 This proves the first part of the lemma.
 The second estimate is a simple consequence of the well-known estimate

 (t l(ie R\m -R. R]S H) < CR-1

 (just apply the Poisson formula). Since we have z = (x ,y) with I yI < q -21jl
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 and [by (5.3)], dist(x, R \ I) > A N JJjq- I I-jJjq ', we get by resealing

 ,,(z, \ I, H) < Cdist(x, RR\I) - n n < n
 This proves Lemma 6 and completes the proof of Theorem 4. J

 6. Remarks. Lemma 1 can be extended to include estimates when IzI <
 r/4. The correct estimate then becomes

 C'fp~t~ dty (h(O IzI) 2dt
 C- 1 8(t, at) - < u (z)( (( 5 Cf f3(t,at) -

 The extra factor measures how unlikely it is for the path to greatly increase its
 distance from the origin. Using this, one can find a necessary and sufficient
 condition in terms of (3-integrals for a Brownian path conditioned to exit at 0
 to loop around 0 infinitely often.

 We mentioned in Section 1 that any compact set E with dim(E) < 2 is
 Brownian disconnected. We will not give a complete proof here, but since it is
 not recorded elsewhere, we will sketch the idea. The proof breaks down into
 two lemmas. The first shows that if E is not Brownian disconnected, then
 there is a set F c E of positive harmonic measure such that E intersects
 "most" annuli centered at points of F. More precisely, given x E DR2 and
 r, - > 0, let A(x, r, ?) = ((1 - O)r < Iz - xI < r}. Let "cap" denote logarithmic
 capacity.

 LEMMA 7. There is a 8 > 0 such that if for a.e. co point x E E there are
 ro, ? > 0 such that cap(A(x, ?, r) n E) < 8cr, r < ro, then E is Brownian
 disconnected.

 LEMMA 8. Given v, 8> 0 there exists ? > 0 such that the following holds.
 Suppose x E E satisfies cap(A(x, r, ?) n E) ? 8cr for some 8 > 0 and all
 r < rO. Then w(B(x, r)) < Crl/2'-. The constant C depends only on P-, 8
 and roI

 Taken together, the two lemmas imply that any set E which is not
 Brownian disconnected must contain a subset of positive harmonic measure on
 which harmonic measure satisfies wo(B(x, r)) < Crl/2v. This set must have
 Hausdorff dimension greater than 2 - V, so it suffices to prove the lemmas.

 The idea behind Lemma 7 is that if A(x, r, ?) n E has small capacity
 (compared to r), then a Brownian path in the annulus has a small but positive
 chance of making a loop around the annulus and crossing itself, thus separat-
 ing the point x from oo. If there are infinitely many such annuli around x,
 then the probability of making such a loop is 1. Thus we need only verify the
 claim that if 8 is small enough, then cap(A(x, r, ?) n E) < 8Er implies the
 probability of making a loop around the annulus is greater than or equal to
 (?, 8).
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 To prove Lemma 8, we fix a point in F, which we may assume is 0, and
 change E by replacing An = A(O,(1 - E)nro, E) n E with an interval [rn, rn +
 Al c R+ of the same capacity. First we show that the harmonic measure of a
 small disk around 0 is not decreased by this procedure. This is a fairly
 standard symmetrization argument due to Beurling (see [24], Section 4.5, for
 example). Then we show the many small intervals can be replaced by larger

 intervals of the form [2 n, (1 - -q)2 -n+l] ['q = -q(5, ?) is small if 8, ? are small],
 again without decreasing the harmonic measure of small disks around 0.
 Finally, we use a standard estimate on harmonic measure (e.g., Tsuji's inequal-
 ity as in [2]) to show w)(B(x, r)) < Crl/2v where v is small if 'q is small.
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 discussions concerning Theorem 1 and to Mike Cranston for introducing me to
 conditioned Brownian motion. I am also thankful to Chris Burdzy for his
 comments on this paper and discussing his work related to Theorem 3. It will
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