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No Steiner Points With Steiner Points Dissection

Three types of triangulations



Good Bad
Goal: make pieces as close to equilateral as possible.
Minimize the maximum angle (compute MinMax angle).

“Good” meshes improve performance of numerical methods.



Defn: ¢-triangulation = all angles < ¢.
Defn: ®(P) = inf{¢ : P has a ¢-triangulation}.



Defn: ¢-triangulation = all angles < ¢.
Defn: ®(P) = inf{¢ : P has a ¢-triangulation}.

Angles of a triangle sum to 180° =

(9 :
d(P) > 90° — “21”1 > 60°.

0,in = minimum interior angle of P.

Taking & — 0 = no angle bound < 90° works for all polygons.



Thm (Burago-Zalgaller, 1960): ®(P) < 90° all polygons.
“Every polygon has an acute triangulation.”
Rediscovered by Baker-Grosse-Rafferty, 1988.

Much work on acute and non-obtuse triangulations by Bern, Edelsbrunner,
Eppstein, Erten, Gilbert, Hirani, Itoh, Kopczynski, Maehara, S. Mitchell
Pak, Przytycki, Ruppert, Saraf, Shewchuk, Tan, Ungor, VanderZee, Vava-
sis, Yuan, Zamfirescu, ...

Remaining questions:
e Compute ®(P) for a given P?
e [s optimal angle bound attained?
e Can dissections do better than triangulations?

e Give simple estimates of ¢(P)?



Theorem (MinMax angle with Steiner points):
(1) ®(P) can be computed in linear time.
(2) Bound is always attained except for some 60°-polygons.
(3) Optimal bound for triangulations is same as for dissections.
(4) ®(P) < 72° unless O, < 36°; then ®(P) = 90° — 01,
(5) Oy > 144° = P(P) = 72°.

60°-polygon = all angles multiples of 60° = ®(P) = 60°.



Theorem (MinMax angle with Steiner points):
(1) ®(P) can be computed in linear time.
(2) Bound is always attained except for some 60°-polygons.
(3) Optimal bound for triangulations is same as for dissections.
(4) ®(P) < 72° unless O, < 36°; then ®(P) = 90° — 01,
(5) Oy > 144° = P(P) = 72°.

60°-polygon = all angles multiples of 60° = ®(P) = 60°.

Analogous result holds for computing MaxMin angle; see paper.

If no Steiner points, then Delaunay triangulation gives MaxMin angle.
Algorithms for MinMax without Steiner points by Bern, Eppstein, Edels-
brunner, S. Mitchell, Tan, Waupotitsch. O(n2 logn).



Idea of Prootf:
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Given P, construct a 60°-polygon P’ that “approximates” P.
Conformally map a nearly equilateral triangulation from P’ to P.
Conformal = 1-1, holomorphic = preserves angles infinitesimally.
Problems: must map vertices to vertices, bound angle distortion, ...

Also, Euler’s formula sometimes forces vertices of degree 5 or 7.



Let L(v) = number of triangles with v as vertex.



Curvature of boundary vertex v: k(v) =3 — L(v).

Curvature of interior vertex v: k(v) =6 — L(v).



Fuler’s formula can be rewritten to look like Gauss-Bonnet:

Z k(v) =6 — Z k(V)

vEinterior vEboundary

k(T)=6—r(0T)



Define curvature of labeling L of vertices V' of P (omit Steiner points):

K(L)=6— ) K(v).
velP
Makes sense for any L : V' — N, not just triangulations.



For acute triangulations (angles < 90°) it is easy to see
k(L) < k(T)
since omitted boundary Steiner points have L(v) > 3 = k(v) < 0.



If a triangle has all angles < ¢, then all angles are > 180° — 2¢.

[f a ¢-triangulation has L(v) triangles at vertex v € P of angle 6,,, then
L(v) - (180° — 26) < 6, < L(v) -



If a triangle has all angles < ¢, then all angles are > 180° — 2¢.

[f a ¢-triangulation has L(v) triangles at vertex v € P of angle 6,,, then
L(v) - (180° — 26) < 6, < L(v) -

Deftn: A labeling L of P is a ¢-labeling if these inequalities hold, i.e.,
% < L)y < —
0 180° — 2¢

Every ¢-triangulation gives a ¢-labeling. Converse true? Not quite.
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Suppose labeling L corresponds to a ¢-triangulation. Easy to check that:
o If ¢ < 72° then x(L) < k(T) <0.
o If p < (450/7)° ~ 64.28°, then k(L) = k(T) = 0.

Remarkably, these necessary conditions are also sufficient.



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. % - 90° < ¢ < 72°, and P has a ¢-labeling with k(L)
3.60° < ¢ < % - 90°, and P has a ¢-labeling with x(L) =

VAN

0,



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. % - 90° < ¢ < 72°, and P has a ¢-labeling with k(L) < 0,
3.60° < ¢ < % - 90°, and P has a ¢-labeling with x(L) = 0.

VAN

Gerver (1984) proved necessity when P has ¢-dissection.

Corollary: For ¢ > 60°, the following are equivalent:
(1) P has a ¢-dissection.
(2) P has a ¢-triangulation.

= Dissections and triangulations give same angle bound.



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. % - 90° < ¢ < 72°, and P has a ¢-labeling with k(L)
3.60° < ¢ < % - 90°, and P has a ¢-labeling with x(L) =

VAN

0,
Corollary: If ®(P) > 60° this bound is attained.

Corollary: ®(P) = 60° iff P = 60°-polygon. Attained iff all side length
ratios are rational.




Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,
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Cor: For an N-gon ®(P) can be computed in time O(N).

However, 1 X R rectangle needs 2> R triangles.

AN ASK N AN >

= no bound for number of triangles in terms of V.



Idea for O(N) computation of ¢(P):

If O < 36° then &(P) = 90° — 6p5,/2. Find 05, in O(N).

Otherwise, finding ®(P) (eventually) reduces to computing
¢ = inf{¢ : I ¢-labeling with x(L) =0} < 72°
= inf{¢ : min(f(¢),0) + max(g(¢),0) =0}

where f, g are the monotone step functions:

f(@) = inf{k:180 — 2¢ < % < ¢}

veP

0,
9(¢) = > _ sup{k : 180 — 2¢ < —= < ¢}

veP

Note that ¢g € J = the O(N) (known) jump points of f, g.
O(N?) work to find ¢g? Evaluate N-sums for O(N) values?



However, we can find ¢g € J in time O(N) as follows:
e F'ind smallest, largest elements of J. Evaluate f,g.
e ['ind median of J by median-of-medians algorithm. Evaluate f, g.
e Decide if ¢q is > or < median. Delete half of J.

e Repeat last two steps until ¢q is found.
e Monotonicity implies new evaluations only use remaining points.

= Work diminishes geometrically. Total is O(V).



Idea behind main theorem: conformal maps
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Given P, build P’ with angles wk = L(k ) - 60° ~ 6}, and

D = . 180°.

This requires the labeling of P’ to have curvature zero.

If this is a ¢-labeling of P, the conformal transfer idea works.



Idea behind main theorem: conformal maps
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In this situation, interior vertices of all have degree 6.
= This doesn’t work if all ¢-labelings have non-zero curvature k.

E.g., acute triangulation of regular pentagon must contain degree 5 vertex.



Map f : P’ — P can identify boundary segments.
Boundary vertices of P/ become interior vertices of P.

In this figure, a degree 5 interior vertex is created.



Technical difficulty: slit is not straight (within 3°).
Triangulations must match up across slit.
This occurs if | f/(w)| = |f'(2)| whenever f(w) = f(z).

Differential equation can be solved explicitly (= conformal welding).



Creating a degree 7 vertex requires P’ to be Riemann surface.

All cases can be handled with these “tricks”.



Thanks for listening

Lecture, slides and related papers are posted at
https://www.math.stonybrook.edu/ " bishop

Email questions to lastname@math.stonybrook.edu




Open Problems

e Proof doesn’t give “practical” meshes. Benchmark existing methods?
e Construct triangulations within a bounded factor of optimal size?”

e Minimal number of triangles needed to get optimal angles? NP hard?
e Compute optimal angle bound for conforming triangulation of a PSLG.

e [f a PSLG has minimal angle 6 does it have a ¢-triangulation with
¢ = max(72°,90° — 0/2)? (Yes, if 72° is replaced by some 6y < 90°.)

e Two equal area polygons can be dissected into isometric sets of triangles
(Wallace-Bolyai-Gerwien Thm). Compute the optimal angle bounds.

e An open set of polygons has optimal bound 72°. What is the probability
a random polygon has this bound? What is a random polygon?



