WEIL-PETERSSON CURVES, TRAVELING SALESMAN THEOREMS, AND MINIMAL SURFACES

Christopher Bishop, Stony Brook

Quasiworld Seminar, Tuesday, 1/12/21

www.math.sunysb.edu/~bishop/lectures

Goals for today:

(1) Define Weil-Peterson class of curves.

(2) Give motivation and connections to various areas.

(3) State half a theorem, sketch parts of the proof.

(4) Mention lots of open problems.

First motivation:

- (1) String theory studies spaces of loops.
- (2) Physicists like Hilbert spaces.
- \Rightarrow Physicists want the space of loops to look like a Hilbert space.

- (1) Universal Teichmüller space = T(1) = space of quasicircles.
- (2) Teichmüller metric = L^{∞} on dilatations.
- (3) L^{∞} is not a Hilbert space. T(1) is Banach manifold.
- \Rightarrow Teichmüller metric not good for string theory.
- \Rightarrow We should replace it by an L^2 metric.

Takhtajan and Teo make T(1) a (disconnected) Hilbert manifold. $T_0(1) =$ Weil-Petersson class = component containing the circle = closure of smooth curves = ∞ -dim Kähler-Einstein manifold.

Question: What non-smooth curves are in $T_0(1)$?

David Mumford asked me how to characterize WP curves in a Dec 1017 email.

"Riemannian geometries on spaces of plane curves, Michor and Mumford, J. Eur. Math. Soc. (JEMS), 2006.

Jan 2019 IPAM workshop: Analysis and Geometry of Random Sets.

Lecture by Yilin Wang:

"Loewner energy via Brownian loop measure and action functional analogs of SLE/GFF couplings"

So the Weil-Petersson class is linked to:

- String theory
- Kähler-Einstein manifolds
- Teichmüller theory
- Pattern recognition
- Brownian motion, SLE, Gaussian free fields, ...

So the Weil-Petersson class is linked to:

- String theory
- Kähler-Einstein manifolds
- Teichmüller theory
- Pattern recognition
- Brownian motion, SLE, Gaussian free fields, ...

In today's talk I will discuss further connections to:

- Geometric function theory
- Sobolev spaces
- Knot theory
- Geometric measure theorem (Peter Jones's TST)
- Convex hulls in hyperbolic space
- Minimal surfaces
- Isoperimetric inequalities
- Renormalized area

Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity $\leq K$

Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity $\leq K$

Ellipses determined a.e. by measurable dilatation $\mu = f_{\overline{z}}/f_z$ with

$$|\mu| \le \frac{K-1}{K+1} < 1.$$

Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity $\leq K$

A special case of QC maps are biLipschitz maps (all we need):

$$\frac{1}{C} \le \frac{|f(x) - f(y)|}{|x - y|} \le C.$$

Any smooth curve is a quasicircle.

Some fractals are quasicircles.

 Γ is a quasicircle iff diam $(\gamma) = O(\operatorname{crd}(\gamma))$ for all $\gamma \subset \Gamma$.

 $\operatorname{crd}(\gamma) = |z - w|, z, w, \text{ endpoints of } \gamma.$

 Γ is a **chord-arc** iff $\ell(\gamma) = O(\operatorname{crd}(\gamma))$ for all $\gamma \subset \Gamma$.

Chord-arc curves = biLipschitz images of circle.

A Weil-Petersson curve is $\Gamma = f(\mathbb{T})$ where f is quasiconformal on the plane, conformal outside \mathbb{D} , and $\mu \in L^2(dA_\rho)$.

 $dA_{\rho} = \frac{dxdy}{(1-|z|^2)^2}$ = hyperbolic area. Clearly Möbius invariant.

Quasicircles = { $\|\mu\|_{\infty} < 1$ }. WP = { $\|\mu\|_2 < \infty$ } \cap { $\|\mu\|_{\infty} < 1$ }.

Informally: $T_0(1)$ is to L^2 , as T(1) is to L^{∞} .

A Weil-Petersson curve is $\Gamma = f(\mathbb{T})$ where f is quasiconformal on the plane, conformal outside \mathbb{D} , and $\mu \in L^2(dA_\rho)$.

 $dA_{\rho} = \frac{dxdy}{(1-|z|^2)^2}$ = hyperbolic area. Clearly Möbius invariant.

Define $F(z) = f(1/\overline{f^{-1}(z)}).$

F is biLipschitz involution fixing Γ , and swaps the two sides of Γ .

A Weil-Petersson curve is $\Gamma = f(\mathbb{T})$ where f is quasiconformal on the plane, conformal outside \mathbb{D} , and $|\mu| \in L^2(dA_\rho)$.

 $\Leftrightarrow \quad \Gamma \text{ is fixed by QC involution with } \mu \in L^2 \text{ for hyperbolic area on } \mathbb{S}^2 \setminus \Gamma.$

This extends to higher dimensions using biLipschitz involutions.

A Weil-Petersson curve is $\Gamma = f(\mathbb{T})$ where f is quasiconformal on the plane, conformal outside \mathbb{D} , and $|\mu| \in L^2(dA_\rho)$.

Every smooth curve is Weil-Petersson. Every WP curve is chord-arc.

Weil-Petersson curves are almost C^1 (but not quite).

WP \Rightarrow Asymptotically smooth $= \gamma \subset \Gamma, \, \ell(\gamma) \to 0 \text{ implies } \frac{\ell(\gamma)}{\operatorname{crd}(\gamma)} \to 1.$

Weil-Petersson curves need not be C^1 . $z(t) = \exp(-t + i \log t)$, infinite spiral.

Not Weil-Petersson

Theorem: Γ is Weil-Petersson iff $\Gamma = f(\mathbb{T})$ where f is conformal map on \mathbb{D} so that $u = \log f'$ is in the Dirichlet class.

Dirichlet class = $\{u : |\nabla u| \in L^2(dxdy)\} = \{u \in W^{1,2}(\mathbb{D})\}.$

Theorem: Γ is Weil-Petersson iff $\Gamma = f(\mathbb{T})$ where f is conformal map on \mathbb{D} so that $u = \log f'$ is in the Dirichlet class.

Dirichlet class = $\{u : |\nabla u| \in L^2(dxdy)\} = \{u \in W^{1,2}(\mathbb{D})\}.$

Yilin Wang proved $u \in W^{1,2}$ iff **Loewner energy** of Γ is finite (as defined by her and Steffen Rohde). Her talk gave connections to large deviation theory of SLE and the Brownian loop soup of Lawler and Werner.

Theorem: Γ is Weil-Petersson iff $\Gamma = f(\mathbb{T})$ where f is conformal map on \mathbb{D} so that $u = \log f'$ is in the Dirichlet class.

Dirichlet class = $\{u : |\nabla u| \in L^2(dxdy)\} = \{u \in W^{1,2}(\mathbb{D})\}.$

In 1990's Astala, Zinsmeister invented "BMO-Teichmüller theory" where $\log f' \in BMO$.

Jones and I characterized such Γ .

Theorem: Γ is Weil-Petersson iff $\Gamma = f(\mathbb{T})$ where f is conformal map on \mathbb{D} so that $u = \log f'$ is in the Dirichlet class.

Dirichlet class = $\{u : |\nabla u| \in L^2(dxdy)\} = \{u \in W^{1,2}(\mathbb{D})\}.$

Corollary: Γ is WP iff $u = \log f' \in H^{1/2}(\mathbb{T})$ (Sobolev trace thm).

 $H^{1/2}$ = Sobolev space = half a derivative in L^2 .

$$u(e^{i\theta}) = \sum a_n e^{in\theta}, \quad \text{where } \sum n|a_n|^2 < \infty.$$
$$\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{|u(z) - u(w)|^2}{|z - w|^2} |dz| |dw| < \infty,$$

Theorem: Γ is Weil-Petersson iff $\Gamma = f(\mathbb{T})$ where f is conformal map on \mathbb{D} so that $u = \log f'$ is in the Dirichlet class.

Dirichlet class = $\{u : |\nabla u| \in L^2(dxdy)\} = \{u \in W^{1,2}(\mathbb{D})\}.$

Corollary: Γ is WP iff $u = \log f' \in H^{1/2}(\mathbb{T})$ (Sobolev trace thm).

Since
$$\arg z = \operatorname{Im}(\log z)$$
, we have:
 $\log f' \in H^{1/2} \Rightarrow \arg f' \in H^{1/2}$
 $\Rightarrow \exp(i \arg f') \in H^{1/2}$
 $\Rightarrow f'/|f'| \in H^{1/2}$

Theorem: Γ is WP iff the arc-length parameterization is in $H^{3/2}(\mathbb{T})$.

Theorem: Γ is WP iff the arc-length parameterization is in $H^{3/2}(\mathbb{T})$.

This was proven implicitly in early version of my paper, but I didn't notice. David Mumford pointed out it followed from other characterizations.

Takhtajan and Teo proved tangent space of $T_0(1)$ is $H^{3/2}$.

 $H^{3/2}$ curves arise naturally in other areas, e.g., knot theory.

The Möbius energy of a curve $\Gamma \in \mathbb{R}^n$ is

$$\operatorname{M\"ob}(\Gamma) = \int_{\Gamma} \int_{\Gamma} \left(\frac{1}{|x-y|^2} - \frac{1}{\ell(x,y)^2} \right) dx dy.$$

Blows up if curve self-intersects. Is "renormalized" inverse-cube force.

Hadamard renormalization of divergent integral. Connects to SLE?

Möbius energy is one of several "knot energies" due to Jun O'Hara.

Studied by Freedman, He and Wang. They showed:

- $M\ddot{o}b(\Gamma)$ is Möbius invariant (hence the name),
- that finite energy curves are chord-arc,
- and in \mathbb{R}^3 they are topologically tame.

Möbius energy is one of several "knot energies" due to Jun O'Hara.

Studied by Freedman, He and Wang. They showed:

- $M\ddot{o}b(\Gamma)$ is Möbius invariant (hence the name),
- that finite energy curves are chord-arc,
- and in \mathbb{R}^3 they are topologically tame.

Theorem (Blatt): $M\"ob(\Gamma) < \infty$ iff arclength parameterization is $H^{3/2}$.

Thus WP curve = finite Möbius energy.

Teichmüller spaces, $H^{3/2}$, and knot theory are pretty sophisticated.

How can you describe WP curves to a calculus student?

Dyadic decomposition. Choose a base point $z_1^0 \in \Gamma$ and for each $n \geq 1$, let $\{z_j^n\}, j = 1, \ldots, 2^n$ be the unique set of ordered points with $z_1^n = z_1^0$ that divides Γ into 2^n equal length intervals (called the *n*th generation dyadic subintervals of Γ).

Let Γ_n be the inscribed 2ⁿ-gon with these vertices. Clearly $\ell(\Gamma_n) \nearrow \ell(\Gamma)$.

Let Γ_n be the inscribed 2ⁿ-gon with these vertices. Clearly $\ell(\Gamma_n) \nearrow \ell(\Gamma)$.

Theorem: Γ is Weil-Petersson if and only if

$$\sum_{n=1}^{\infty} 2^n \left[\ell(\Gamma) - \ell(\Gamma_n) \right] < \infty$$

with a bound that is independent of the choice of the base point.
Peter Jones's β -numbers: $\beta_{\Gamma}(Q) = \inf_{L} \sup\{\frac{\operatorname{dist}(z,L)}{\operatorname{diam}(Q)} : z \in 3Q \cap \Gamma\},$

where the infimum is over all lines L that hit 3Q.

Jones invented the β -numbers as part of his traveling salesman theorem: $\ell(\Gamma) \simeq \operatorname{diam}(\Gamma) + \sum_Q \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q),$

where the sum is over all dyadic cubes Q in \mathbb{R}^n .

Previous theorem on length should have translation into β -numbers.

Jones invented the β -numbers as part of his traveling salesman theorem: $\ell(\Gamma) \simeq \operatorname{diam}(\Gamma) + \sum_{Q} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q),$

where the sum is over all dyadic cubes Q in \mathbb{R}^n .

Theorem: Γ is Weil-Petersson iff

$$\sum_{Q} \beta_{\Gamma}(Q)^2 < \infty,$$

where the sum is over all dyadic cubes.

WP curves have "curvature in L^2 , integrated over all positions and scales".

Jones invented the β -numbers as part of his traveling salesman theorem: $\ell(\Gamma) \simeq \operatorname{diam}(\Gamma) + \sum_{Q} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q),$

where the sum is over all dyadic cubes Q in \mathbb{R}^n .

Theorem: Γ is Weil-Petersson iff

$$\sum_{Q}\beta_{\Gamma}(Q)^{2}<\infty,$$

where the sum is over all dyadic cubes.

Proof requires improvement of TST for curves:

$$\ell(\Gamma) - \operatorname{crd}(\Gamma) \simeq \sum_{Q} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q),$$

The Weil-Petersson class is Möbius invariant.

The β -numbers are not: lines ($\beta = 0$) can map to circles ($\beta > 0$).

What is a Möbius invariant version of the β -numbers?

First idea: let $\varepsilon_{\Gamma}(Q)$ be smallest ϵ so that there are disks D, D' of radius $\ell(Q)/\epsilon$ separated by Γ with $\operatorname{dist}(Q \cap D, Q \cap D') \leq \epsilon \ell(Q)$.

Easy to check $\beta(Q) \leq \varepsilon(Q)$. Converse can fail, but

Theorem: $\sum_{Q} \varepsilon^{2}(Q) < \infty$ iff $\sum_{Q} \beta^{2}(Q) < \infty$ iff Γ is WP.

Each disk is the base of a hemisphere in the upper half-space $\mathbb{H}^3 = \mathbb{R}^3_+$.

The hyperbolic distance between these hemispheres is $\leq \varepsilon(Q)$.

This connects WP class to convex sets in hyperbolic upper half-space.

Usual definition of convex: contains geodesic between any two points.

More useful for us: complement is a union of half-spaces.

The hyperbolic length of a (Euclidean) rectifiable curve in the unit disk \mathbb{D} or in the n-dimensional ball \mathbb{B}^n is given by integrating

$$d\rho = \frac{ds}{1 - |z|^2},$$

along the curve. In the upper half-space \mathbb{H}^n we integrate $d\rho = ds/2t$.

Geodesics are circles (or lines) perpendicular to boundary.

Hyperbolic convex hull of a boundary set

The hyperbolic convex hull of $\Gamma \subset \mathbb{R}^2$, is the smallest convex set containing all geodesics with endpoints in Γ .

 $= CH(\Gamma) = complement of all open half-spaces that miss \Gamma.$

For a circle in plane, hyperbolic convex hull is a hemisphere.

Otherwise, $CH(\Gamma)$ has non-empty interior and 2 boundary components.

A hyperbolic half-space missing $CH(\Gamma)$ has boundary disk missing Γ . This disk is inside or outside Γ . Dome(Ω) is union over "inside" disks.

Region above dome is intersection of half-spaces, hence convex. $CH(\Gamma)$ is region between domes of "inside" and "outside" of Γ .

The medial axis. Equidistant from at least two boundary points. Corresponding hemispheres give the dome. Medial axis is widely studied in computational geometry.

We define $\delta(z)$ to be the maximum distance from z to the components of $\partial CH(\Gamma)$. Can show $\delta(z) \leq \varepsilon_{\Gamma}(Q)$, for some Q.

Theorem: Γ is Weil-Petersson iff $\int_{\partial CH(\Gamma)} \delta^2(z) dA_{\rho} < \infty$.

Easy to see: Quasicircle $\Rightarrow \delta \in L^{\infty} \not\Rightarrow$ Quasicircle.

Let S be a surface in \mathbb{H}^3 that has asymptotic boundary Γ .

We let K(z) denote the Gauss curvature of S at z.

Gauss equation says $K(z) = -1 + \kappa_1(z)\kappa_2(z)$ (principle curvatures).

S is a **minimal surface** if $\kappa_1 = -\kappa_2$ (the mean curvature is zero).

In that case, $K(z) = -1 - \kappa^2(z) \le -1$.

Theorem (Seppi, 2016): Principle curvatures satisfies $\kappa(z) = O(\delta(z))$.

 $\sinh(\operatorname{dist}(z, P))$ satisfies $\Delta_S u - 2u = 0$. Use Schauder estimate $\|\nabla^2 u\|_{\infty} \leq C \|u\|_{\infty}$.

Theorem (Seppi, 2016): Principle curvatures satisfies $\kappa(z) = O(\delta(z))$.

Theorem: Γ is WP iff it bounds a minimal disk with finite total curvature $\int_{\mathcal{C}} |K+1| dA_{\rho} = \int_{\mathcal{C}} \kappa^2(z) dA_{\rho} < \infty.$

Gauss map: follow normal geodesic from surface S to $\mathbb{R}^2 = \partial \mathbb{H}^3$. Two directions. Defines reflection across Γ .

Theorem (C. Epstein, 1986): If S is a surface with |K| < 1, then the Gauss maps G_j , j = 1, 2 define a quasiconformal reflection across Γ with dilatation $|\mu(G(z))| = O(|\kappa_1|(z) + |\kappa_2|(z))$.

If S is has finite total curvature, then $\int_{\mathbb{C}\setminus\Gamma} |\mu|^2 dA_{\rho} < \infty$.

 $\Rightarrow \Gamma$ is fixed by a QC involution with $\mu \in L^2(dA_\rho) \Rightarrow$ Weil-Petersson.

Truncate $S \subset \mathbb{R}^3_+$ at a fixed height above the boundary, i.e., $S_t = S \cap \{(x, y, s) \in \mathbb{R}^3_+ : s > t\}, \quad \partial S_t = S \cap \{(x, y, s) \in \mathbb{R}^3_+ : s = t\}$

Truncate $S \subset \mathbb{R}^3_+$ at a fixed height above the boundary, i.e., $S_t = S \cap \{(x, y, s) \in \mathbb{R}^3_+ : s > t\}, \quad \partial S_t = S \cap \{(x, y, s) \in \mathbb{R}^3_+ : s = t\}$ Surfaces with curvature $K \leq -1$, such as minimal $S \subset \mathbb{H}^3$, satisfy $L(\partial S_t) \geq A(S_t) + 4\pi\chi(S).$

Truncate $S \subset \mathbb{R}^3_+$ at a fixed height above the boundary, i.e., $S_t = S \cap \{(x, y, s) \in \mathbb{R}^3_+ : s > t\}, \quad \partial S_t = S \cap \{(x, y, s) \in \mathbb{R}^3_+ : s = t\}$

Surfaces with curvature $K \leq -1$, such as minimal $S \subset \mathbb{H}^3$, satisfy

$$L(\partial S_t) \ge A(S_t) + 4\pi\chi(S).$$

Additive upper bound? (Cheeger constant = $1 + O(\frac{1}{A})$, asymptotically.)

Renormalized area: $\mathcal{A}_R(S) = \lim_{t \searrow 0} \left[A_\rho(S_t) - \ell_\rho(\partial S_t) \right].$

Graham and Witten proved well defined.

Related to quantum entanglement, AdS/CFT correspondence.

Theorem: S has finite renormalized area iff Γ is Weil-Petersson.

Use isoperimetric inequalities for curved surfaces to show

$$\mathcal{A}_R(S) < \infty \quad \Rightarrow \quad \int_S \kappa^2 dA_\rho < \infty.$$

Two proofs of Weil-Petersson $\Rightarrow \mathcal{A}_R(S) < \infty$.

- Use Gauss-Bonnet, Seppi's estimate and $\int \delta^2 < \infty$.
- Use "dyadic cylinder", a discrete version of minimal surface S.

Using the Gauss-Bonnet theorem

$$\begin{aligned} \mathbf{A}_{\rho}(S_{t}) &= \int_{S_{t}} 1 d\mathbf{A}_{\rho} - \int_{\partial S_{t}} 1 d\ell_{\rho} \\ &= \int_{S_{t}} (1 + \kappa^{2}) d\mathbf{A}_{\rho} - \int_{S_{t}} \kappa^{2} d\mathbf{A}_{\rho} - \int_{\partial S_{t}} 1 d\ell_{\rho} \\ &= -\int_{S_{t}} K d\mathbf{A}_{\rho} - \int_{S_{t}} \kappa^{2} d\mathbf{A}_{\rho} - \int_{\partial S_{t}} 1 d\ell_{\rho} \\ &= -2\pi \chi(S_{t}) + \int_{\partial S_{t}} \kappa_{g} d\ell_{\rho} - \int_{S_{t}} \kappa^{2} d\mathbf{A}_{\rho} - \int_{\partial S_{t}} 1 d\ell_{\rho} \\ &= -2\pi \chi(S_{t}) - \int_{S_{t}} \kappa^{2} d\mathbf{A}_{\rho} + \int_{\partial S_{t}} (\kappa_{g} - 1) d\ell_{\rho} \end{aligned}$$

Can prove $\kappa_g(z) = 1 + O(\delta^2(z))$, so WP implies last term $\rightarrow 0$.
Theorem: For any closed curve $\Gamma \subset \mathbb{R}^2$ and for any minimal surface $S \subset \mathbb{R}^3_+$ with finite Euler characteristic and asymptotic boundary Γ ,

$$\mathcal{A}_R(S) = -2\pi\chi(S) - \int_S \kappa^2(z) dA_\rho,$$

Theorem: For any closed curve $\Gamma \subset \mathbb{R}^2$ and for any minimal surface $S \subset \mathbb{R}^3_+$ with finite Euler characteristic and asymptotic boundary Γ ,

$$\mathcal{A}_R(S) = -2\pi\chi(S) - \int_S \kappa^2(z) d\mathbf{A}_\rho,$$

Due to Alexakis and Mazzeo assuming that Γ is $C^{3,\alpha}$.

Definition	Description
1	$\log f'$ in Dirichlet class
2	Schwarzian derivative
3	QC dilatation in L^2
4	conformal welding midpoints
5	$\exp(i\log f')$ in $H^{1/2}$
6	arclength parameterization in $H^{3/2}$
7	tangents in $H^{1/2}$
8	finite Möbius energy
9	Jones conjecture
10	good polygonal approximations
11	β^2 -sum is finite
12	Menger curvature
13	biLipschitz involutions
14	between disjoint disks
15	thickness of convex hull
16	finite total curvature surface
17	minimal surface of finite curvature
18	additive isoperimetric bound
19	finite renormalized area
20	dyadic cylinder

Weil-Petersson curves

André Weil

Hans Petersson

THANKS FOR LISTENING. QUESTIONS?

An idea connecting Euclidean and hyperbolic results.

Define a dyadic cylinder in the upper half-space:

$$X = \bigcup_{n=1}^{\infty} \Gamma_n \times [2^{-n}, 2^{-n+1}),$$

where $\{\Gamma_n\}$ are inscribed dyadic polygons in Γ .

Discrete analog of minimal surface with boundary Γ .

Our earlier estimate

$$\sum_{n} 2^{n} (\ell(\Gamma) - \ell(\Gamma_{n})) < \infty$$

is equivalent to the dyadic cylinder having finite renormalized area.

Our earlier estimate

$$\sum_{n} 2^{n} (\ell(\Gamma) - \ell(\Gamma_{n})) < \infty$$

is equivalent to the dyadic cylinder having finite renormalized area.

Obvious "normal projection" from the dyadic cylinder to minimal surface, distorts length and area each by a bounded additive error.

We can deduce finite renormalized area for the minimal surface from the same result for the dyadic cylinder.

 $F(z) = \sum_{1}^{\infty} a_n z^n \text{ is Dirichlet class iff } \sum_{n \mid a_n \mid^2} < \infty.$ If $\log f' = \sum_{n \mid \lambda \mid^k} \sqrt{\frac{b_k}{\lambda^k}} z^{\lambda^k}$ then $\Gamma = f(\mathbb{T})$ is WP iff $\sum_{n \mid \lambda \mid^k} b_k < \infty.$

Easy to see $\sum \beta^2 < \infty$ implies Weil-Petersson.

• Triangulate one side of Γ (e.g., triangulate Whitney squares).

Easy to see $\sum \beta^2 < \infty$ implies Weil-Petersson.

- Triangulate one side of Γ (e.g., triangulate Whitney squares).
- Use approximating lines to reflect vertices.

Easy to see $\sum \beta^2 < \infty$ implies Weil-Petersson.

- Triangulate one side of Γ (e.g., triangulate Whitney squares).
- Use approximating lines to reflect vertices.
- Define piecewise linear map.
- $|\mu| = O(\beta).$
- Get involution fixing Γ with $|\mu| \in L^2(dA_\rho) \Rightarrow$ Weil-Petersson.

Theorem (Anderson, 1983): Every closed Jordan curve $\Gamma \subset \mathbb{R}^2$ bounds a minimal disk $S \subset CH(\Gamma) \subset \mathbb{H}^3$.

Theorem (Anderson, 1983): Every closed Jordan curve $\Gamma \subset \mathbb{R}^2$ bounds a minimal disk $S \subset CH(\Gamma) \subset \mathbb{H}^3$.

Theorem (Anderson, 1983): Every closed Jordan curve $\Gamma \subset \mathbb{R}^2$ bounds a minimal disk $S \subset CH(\Gamma) \subset \mathbb{H}^3$.

