Conformal Mapping in Linear Time

Christopher J. Bishop
SUNY Stony Brook

copies of lecture slides available at
www.math.sunysb.edu/ "bishop/lectures
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e Fast to compute using medial axis.
e Close to Riemann map.

e Motivated by hyperbolic 3-manifolds.



Riemann Mapping: If () is simply connected,
then there is a conformal f : D — ).

Schwarz-Christoffel formula for polygons
z N "
f(z)=A+ C/ H(l — )% .
k=1 K

a’s are interior angles, z’s are pre-vertices.
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A mapping f is K-quasiconformal if either:

Analytic definition: |fz| < £=1|7|

A/ o (N
A 1/

fo=3lfe = ify), f2 = 3(fu+ify).

Metric definition: For every x € €2, ¢ > 0 and
small enough r > 0, there is s > 0 so that

D(f(z),s) C f(D(z,r)) C D(f(z), s(K+e¢)).
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Notation for today: e-conformal = e¢-quasiconformal.
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o f determined p s = fz/f.. Conformal iff y =0
o [f -QC and fixes 1, —1,4 then | f(z)—z| = O(e).
Theorem: If 0€) is an n-gon we can compute a €-
QC map between Q and I in time O(n log? % log log %)

Theorem: Suppose 0f) is an n-gon. We can
construct points w = {wy, ..., wy} C T so that:
1. requires at most O(n log? % log log %) steps.
2.dgc(w,z) <e

z = conformal pre-vertices.

doc(w,z) = inf{log K : 3h € QCg, h(w) = z}.
QCk = K-quasiconformal maps.



Proof is amusing because it involves (at least)
two results which don’t seem to involve conformal
mappings:

Theorem (Sullivan, Epstein-Marden): If
M is a hyperbolic 3-manifold and C (M) is the

convex core of M, then there is a biLipschitz map
between 0o M and 0C (M

Theorem (Chazelle): A simple n-gon can be
triangulated in time O(n).




Proof of theorem is in two steps:

Step 1: Given € < ¢gand e-QC fp, : €2 — DD con-
struct C'e>-QC map fna1: 2 — . Construction
takes time C(€) = C' + C'log? % log log %

Step 2: Build domains, maps and finite sets

(Q0,Vp) 2, .., 2Ly, Vi)

so that

o ()g =D,

e On =0, Vy=V,

® 5—QC maps g : Qk — Qk+17 Vk — Vk—l—l-

If 6 < €y/2 then find conformal maps by in-
duction (use previously found map f : D —
composed with g;. as starting point of iteration in
Step 1 to find next map f,; : D — g, with
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accuracy €/2).



Amazing Fact 1: ¢ is independent of €2, n.
Amazing Fact 2: N is independent of {2, n.

Consequence: Can build chain of domains and
maps and get € approximation in time O(n) (in-
dependent of §2). Then just repeat Step 1 until
get desired accuracy :

k
€0, Ce%, . C’keg .

About log log € iterations suffice and time for kth
iteration is O(k2%%), so work dominated by final
step.



Idea for Step 1: Suppose
fH — (), g: H — H, pf = pg.

Then fog~t:H — Q is conformal.

e | - - -

Can’t solve Beltrami equation g = ug, exactly
in finite time, but can quickly solve

gz = (1 + O(||ull")) gz,

using fast multipole method of Greengard and
Rokhlin. Then f o ¢t is (14 C||u||?)-QC.
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Cut H into O(n) pieces on which f, f¢ or log f
has nice series representation. Need p = O(] log€|)
terms on each piece to get € accuracy.
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The dome of () is boundary of union of all hemi-
spheres with bases contained in ).
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A convex polygon:
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A non-convex polygon:




Each point on Dome(2) is on dome of a maximal
disk D in €. Must have |0D N 09| > 2. The
centers of these disks form the medial axis.

For polygons is a finite tree with 3 types of edges:
e point-point bisectors (straight)

e edge-edge bisectors (straight)

e point-edge bisector (parabolic arc)

MA is boundary of Voronoi cells in polygon.

777777

For applications see:

www.ics.uci.edu/ eppstein/gina/medial.html+

MA can be computed in linear time (Chin, Snoeyink,
Wang, 1999): cut polygon into histograms, trian-
gulate using Chazelle’s method, compute Voronoi
diagrams for each and merge results.
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Finitely bent domain (= finite union of disks).
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Hyperbolic space: Metric on R”,
dp = |dz|/dist(z, R"™1).

Geodesics are circles or lines orthogonal to R?~1.

[~
/..

Dome of 2 bounds hyperbolic convex hull of €2€.
The hyperbolic metric on a simply connected plane
domain €2 is defined by transterring the metric on
half-plane by conformal map.

Fact: p ~ p (pseudo-hyperbolic metric)

dz|
dist(z, 092)’

dj =
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Let pg be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ¢
from (S, pg) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and oo)
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Elliptic Mobius transformation is conju-
gate to a rotation.

Elliptic transformation determined by fixed points
and angle of rotation 6. It identifies sides of a
crescent of angle 6: think of flow along circles
orthogonal to boundary arcs.
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Visualize : as a flow: Write finitely bent €2 as a
disk D and a union of crescents. Foliate crescents
by orthogonal circles. Following leaves of foliation

in 2\ D gives ¢ : 090 — 0D.

i

7]
YN
4

I %}
’."é

aitlling
— \\~
S
,llllll- ‘ﬁ\'\(\‘é X @i

7

o
U
dl

4\\\\‘

==
_—

Has continuous extension to interior: identity on
disk and collapses orthogonal arcs to points.

e  Is “Riemann map” from dome to disk.
e ; has K-QC extension to interior of base.
e , can be evaluated at n points in time O(n).
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There are at least two ways to decompose a finite
union of disks using crescents (with same angles
and vertices in both cases).

We call these tangential and normal crescents.
A finitely bent domain can be decomposed with
either kind of crescent.
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Nearest point retraction R : {2 — Dome((2):
Expand ball tangent at z € {2 until it hits a point

R(z) of the dome.

normal crescents = R~ '(bending lines)
gaps = R~ (faces)

collapsing crescents = nearest point retraction

e Get map from €2 to D by mapping {2 to dome,
tfollowed by ¢ map to disk.
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e f is a bi-Lipschitz if

%p(fc, y) < p(f(x), f(y)) < Ap(z,y).

e { is a quasi-isometry if

%p(x, y) — B < p(f(z), fy)) < Ap(z,y) + B.

o QI=BL at “large scales”.
e On hyperbolic disk, BL = QC = QI.

Theorem: f : T — T has a QC-extension to
interior iff it has QI-extension (hyperbolic metric)
iff it has a Bl-extension.
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Theorem: Nearest point retraction is a quasi-
isometry with constants independent of €).

Corollary (Sullivan, Epstein-Marden):
There is a K-QC map o : {2 — Dome so that
o = Id on 0f).

Corollary: ¢ : 0f) — 0D extends K-QC to €.

S-E-M theorem comes from hyperbolic 3-manifolds.
If ) is invariant under Mobius group G, M =
R?3 /G is hyperbolic manifold,

OocM = Q /G, 0C(M) = Dome(2)/G.

Thurston conjectured K = 2 is possible, but shown
talse by Epstein and Markovic. Best known upper
bound 1s K < 7.82.
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Fact 1: If z € Q, 0o &€ (),
r ~ dist(z, Q) ~ dist(R(2), R?) ~ |z — R(z)|.

28



Fact 2: R is Lipschitz.

(2 simply connected =>
dz|

dp ~

 dist(z, 09)
z€ D C Qand R(z) € Dome(D) =
dist(z, 90) /2 < dist(z,0D) < dist(z, 99)

= dpq(z) = dpp(z) = dppome(F(2))-
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Fact 3: pg(R(z), R(w)) <1 = pg(z,w) <C

Suppose dist(R(z),R?) = r and ~ is geodesic
from z to w.
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Moreover, g = 10 o : {) — D is locally Lipschitz.
Standard estimates show

_ dist(g(z), OD)
9(z)] = dist(z,00)

Use Fact 1
dist(z, )

~ dist(o(2), R?)
(0(2), 20))

(
~ exp(—
2 exp(—pg(o(z
= exp(

(

R
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