
An Introduction to

Besicovitch-Kakeya Sets

Christopher J. Bishop

Stony Brook

Rainwater Seminar
Dept. of Math., University of Washington

November 12, 2013

lecture slides available at
www.math.sunysb.edu/~bishop/lectures



A Kakeya set is a set in which a unit segment can be
continuously rotated 180◦.

Such a set contains unit segments in all directions.

Such a set cannot have zero area.



Soichi Kakeya (1886-1947)

In 1917 Kakeya and Fujiwara asked what is smallest area
that a unit needle can be continuously rotated 180◦.
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This is optimal among convex shapes (Pal, 1921)



Area =
1√
3
≈ .57735

In general, arbitrarily small area is needed.



Perron triangles construction:

• Start with triangle with base on real line.

• Cut triangle from midpoint of base to top vertex.

• Expand subtriangle by k+1
k , fixing outer endpoint.

• Get 2n triangles, base (n + 1)2−n, height n + 1.

T2T1

ba

c

d



T

New area per triangle (1/k)2 · (k2−k) · k ≃ 2−k

Total new area ≃ 1.



Rescale to height 1. New total area ≃ k/k2 = 1/k.

Stages 1,2,3:



Stages 3,4,5:



Stages 6,7,8:



Stages 6,7,8:

After k steps we have 2k triangles, total area 1/k.

Each triangle contains unit segments in angle arc≃ 2−k.

Can order triangles so Tj, Tj+1 have a parallel edge.



Trick of Pal to move needle between parallel lines.

ε

ε

Works with any area ǫ > 0.
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Use this to move needle between Perron triangles.

Thus arbitrarily small area suffices to rotate needle.



In 1941 Van Alphen showed there are small Kakeya sets
inside a D(0, 2 + ǫ) for any ǫ > 0.

In 1971 Cunningham showed needle can be rotated in
simply connected region of arbitrarily small area.

Exercise: positive area is needed to rotate needle.



A Besicovitch set is a compact set of zero area that
contains a unit line segment in every direction.
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Perm 1917-1919

Petrograd 1919-1924

Copenhagen 1924-26

Liverpool 1926-27

Cambridge 1927-1970

Succeeded Littlewood in 1950
as Rouse Ball Chair of Math.

Abram Samoilovitch Besicovitch (1891-1970)



Question: If f (x, y) is Riemann integrable, is
∫∫

f (x, y)dxdy =

∫

[

∫

f (x, y)dx]dy?

If f is Riemann integrable on the plane, is it Riemann
integrable on every horizontal line?

Recall f is Riemann integrable iff f is continuous except
on a set of Lebesgue measure zero.



No.
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Let f (x, y) = 1 if x ∈ Q, y = 0, and f = 0 otherwise.

This function is zero except on single line, so is Riemann
integrable on the plane.

It is not Riemann integrable on the real line.



No.

Let f (x, y) = 1 if x ∈ Q, y = 0, and f = 0 otherwise.

This function is zero except on single line, so is Riemann
integrable on the plane.

It is not Riemann integrable on the real line.

It is Riemann integrable on all non-horizontal lines, so
we can still evaluate integral by rotating coordinates.



Is there a function f (x, y) that is Riemann integrable on
the plane, but fails to be Riemann integrable on some
line in every possible direction?



Is there a function f (x, y) that is Riemann integrable on
the plane, but fails to be Riemann integrable on some
line in every possible direction?

Yes, if a Besicovitch set K of zero area exists.



Construction of a Besicovitch set:

Build f : [0, 1] → [0, 1] so that fa(t) = f (t) + at maps
[0, 1] to zero length for all a.

Given this, let K = {(a, at + f (t)) : a, t ∈ [0, 1]}.

a

t



a

t

K = {(a, at + f (t)) : a, t ∈ [0, 1]}.

Fix t, vary a ⇒ K contains a line of slope t.

Vertical slices of K are of the form Ka = fa([0, 1]).

All vertical slices have zero length, so K has zero area.



Recall:

g(t) = t− ⌊t⌋



Fix {ak} dense in [0, 1] and |ak+1 − ak| ≤ ǫ(k) ց 0.

fk(t) =

k
∑

m=1

(am−1 − am)
g(2mt)

2m
,

If a0 = 0, then by telescoping series f ′k(t) = −ak on

each component I of [0, 1] \ 2−kZ.

f (t) = lim
k→∞

fk(t) = fk(t) + rk(t),

|rk(t)| ≤ ǫ(k) · 2−k,



k

slope = ε

f  (t)+at

Given a choose k so |a− ak| < ǫ(k) .

fk(t) + at is piecewise linear with slopes ≤ ǫ(k).

fk([0, 1]) is covered by 2k intervals of length ǫ(k) · 2−k.

Total image length = ǫ(k).



  f(t)+at

ε|Ι|+2−k

fa(t) = f (t) + at = (fk(t) + at) + rk(t)

fa([0, 1]) covered by 2
k intervals of size ǫ(k)2−k+ǫ(k)2−k.

Thus fa maps [0, 1] to zero length.



Sample paths of the Cauchy process have this property.
Used by Babichenko, Peres, Peretz, Sousi and Winkler
to produce random Besicovitch sets.

My example was inspired by these random examples.



Special choice of {ak} gives explicit estimate.



Special choice of {ak} gives explicit estimate.

Take ǫ(k) ≃ 1/k.

For example, take ǫ(k) = 2−n, k ∈ [2n, 2n+1).



Previously showed that |a − ak| < ǫ(k) implies the
vertical slice of K through a was covered by 2k sets of
diameter dk ≃ ǫ(k)2−k ≃ 2−k/k.

Consider vertical strip S = {(a, t) : |a− ak| < ǫk}.



Previously showed that |a − ak| < ǫ(k) implies the
vertical slice of K through a was covered by 2k sets of
diameter dk ≃ ǫ(k)2−k ≃ 2−k/k.

Consider vertical strip S = {(a, t) : |a− ak| < ǫk}.
Subdivide S into 2k sub-strips T of width dk = ǫk2

−k.



Each K ∩ T is covered by 2k squares of size dk.

Thus K ∩ S is covered by 22k squares of size dk.

area(S ∩K) ≤ 22k · (ǫk2−k)2 ≃ ǫ2k.

area(K) ≤ ǫk ≃ 1

| log dk|
.



Each K ∩ T is covered by 2k squares of size dk.

Thus K ∩ S is covered by 22k squares of size dk.

area(S ∩K) ≤ 22k · (ǫk2−k)2 ≃ ǫ2k.

area(K) ≤ ǫk ≃ 1

| log dk|
.



This implies

area(Kδ) = O(
1

log(1/δ)
)

where
K(δ) = {z : dist(z,K) < δ}.



This implies

area(Kδ) = O(
1

log(1/δ)
)

where
K(δ) = {z : dist(z,K) < δ}.

This is optimal (Antonio Cordoba)



Lemma: Suppose K ⊂ R2 contains unit line segment
in all directions. Then all ǫ small enough

area(K(ǫ)) ≥ 1

4 log(1/ǫ)
.



Let ǫ > 0 and n = ⌊ǫ−1⌋.
Suppose ℓi, i = 1, . . . , n are segments with angles ≥ π

n.



Let ℓ(ǫ) be ǫ-neighborhood of ℓ.



Let Ψi be the indicator function of ℓi(ǫ) and Ψ =
∑n

i=1Ψi.

Since supp(Ψ) ⊂ K(ǫ), it suffices to show

area({Ψ > 0}) ≥ C

log(1/ǫ)
.



By Cauchy-Schwarz

(

∫

R2
Ψ(x) dx)2 ≤

(
∫

R2
Ψ2(x) dx

)(
∫

Ψ>0
12 dx

)

which gives

area({Ψ > 0}) ≥
(∫

R2Ψ(x) dx
)2

∫

R2Ψ2(x) dx
.



By the definition of Ψ,
∫

R2
Ψ(x) dx =

n
∑

i=1

area(ℓi(ǫ)) ≥ 2ǫn ≥ 2.

and
∫

R2
Ψ(x) dx =

n
∑

i=1

area(ℓi(ǫ)) ≤ 2ǫn + πǫ2n = 2 + o(1).



Since Ψ2
i = Ψi for all i, we have

∫

R2
Ψ2(x) dx =

∫

R2
(

n
∑

i=1

Ψi)(

n
∑

k=1

Ψk)dx

=

∫

R2
Ψ(x) dx +

n
∑

i=1

∑

k 6=i
area(ℓi(ǫ) ∩ ℓi+k(ǫ))

≤ 2 + o(1) +

n
∑

i=1

∑

k 6=i
area(ℓi(ǫ) ∩ ℓi+k(ǫ)).



The angle between the lines ℓi and ℓi+k is kπ/n.

A simple calculation shows that if kπ/n ≤ π/2, then

area(ℓi(ǫ) ∩ ℓi+k(ǫ)) ≤
4ǫ2

sin(kπ/n)
≤ 2ǫ

k

with a similar estimate for kπ/n > π/2.



Hence

n
∑

i=1

n−1
∑

k=1

area(ℓi(ǫ) ∩ ℓi+k(ǫ)) = 8
∑∑ ǫ

k
= 8 log n.



Thus

area({Ψ > 0}) ≥
(∫

R2Ψ(x) dx
)2

∫

R2Ψ2(x) dx
≥ 2

8 log n
≥ 1

4 log(1/ǫ)
.



If K is compact, let N(K, ǫ) be the minimal number of
ǫ-balls that are needed to cover K.

The upper Minkowski dimension is

d = lim sup
ǫ→0

N(K, ǫ)

log 1/ǫ
.

Says ǫ−d balls are needed.

Also called box counting dimension.

Lower Minkowski dimension defined using liminf.

Hausdorff dimension allows different sized balls.

H-dim ≤ lower-M-dim ≤ upper-M-dim



Besicovitch sets have Minkowski dimension 2.

They also have Hausdorff dimension 2.

Sharp guage is unknown.



Kakeya Conjecture: A Besicovitch set in Rd has
Hausdorff dimension d.



Lemma: If K is a Besicovitch set in Rd, then the
Minkowski dimension is ≥ (d + 1)/2.



Sketch:

• If M-dim < α then vol(K(δ)) ≪ δd−α.

• Consider δ1−d tubes with angles ≥ δ.

• Each tube has volume δd−1; sum of volumes ≃ 1.

• Some point is in ≥= 1/vol(K(δ)) = δα−d tubes.

• Tubes hitting this point have roughly disjoint volumes.

• Thus

δd−α ≥ vol(K(δ)) ≥ vol(∪kTk) ≥ N · δd−1 = δα−1.

α− 1 ≥ d− α,

α ≥ (d + 1)/2.



Similar, but more involved argument by TomWolff gives
Minkowski dimension ≥ (d + 2)/2.

Katz and Tao proved ≥ (2−
√
2)(d− 4) + 3.

Can pass from Minkowski to Hausdorff dimension using
maximal functions.



Bourgain’s maximal function on Rd:

Mδ
Bf (u) = sup

R

∫

R
|f (y)|dxdy,

where u is a unit vector in Rd and the supremum is over
all δ-neighborhoods of unit line segments parallel to u.



Jean Bourgain conjectured:

‖Mδ
Bf (u)‖Lp(Sd−1) = O(δ(d/p)−1+ǫ)‖f‖Lp(Rd),

for all ǫ > 0 and 1 ≤ p ≤ d. a

If true for some p ∈ [1, d], then any Kakeya set K in
Rd has Hausdorff dimension at least p.



Sketch:

• Cover K by open dyadic boxes let Bj be the (finite)

union of boxes of size 2−j.

• If δ = 2−j0−1 is small enough,
∑

j≥j0

Mδ
B1Bj

(u) ≥ c > 0

• Hence
∑

j

∫

Sn−1
Mδ

B1Bj
(u) ≥

∫

Sn−1
Mδ

B

∑

k

1Bj
(u) ≥ A > 0.



• Choose j < j0 so that
∫

DMδ
B1Bj

(u) ≥ A
100j

−2.

• Bourgain’s conjecture implies

A

100
j−2 ≤ ‖Mδ

B1Bj
‖p . 2−j((d/p)−1+ǫvol(Bj)

1/p.

• This implies the number of cubes in Bj is

≥ 2j(p−ǫ)j−2p.

• Hence Hdim(K) ≥ p.



Kakeya conjecture is related to a number of other fa-
mous conjectures:
• Fourier restriction conjecture
• Bochner-Riesz conjecture
• Local smoothing conjecture

Also to problems in finite fields and arithmetic geometry.



If f ∈ L2 then f̂ ∈ L2 is not defined on sets of measure
zero.

But if f ∈ L1, then f̂ is continuous; it makes sense to
restrict to any set (and is bounded there).

If f ∈ Lp and E has measure zero does f̂ |E makes
sense? Is it in a Lq space?

Restriction Conj: If E is the unit sphere in Rn and
f ∈ Lp then f̂ ∈ Lq(E) whenever p < 2n/(n + 1) and
q > 2n/(n− 1).

Implies Bourgain’s conjecture, Kakeya conjecture.
Partially reverses.



Charlie Fefferman used Besicovitch sets to disprove a
famous conjecture about the Fourier transform.

Disk multiplier: define a operator T by taking the
Fourier transform, multiplying by the indicator function
of the disk, and taking the inverse Fourier transform.

Clearly L2 bounded in all dimensions.

Lp bounded on R1 for 1 < p < ∞.

Fefferman (1971): if n ≥ 2, not bounded on Lp, p 6= 2.



Fefferman’s proof uses four ideas:

• Construction of a Besicovitch set

• Fatou’s lemma

• A simple estimate of the Hilbert transform

• Randomization



• Geometric fact from Besicovitch sets:

Lemma: there are k disjoint 1 × 1
k rectangles so that

translating each by distance 1 in “long” direction gives
set of area O(1/ log k).

Proof is by modified Perron triangles method.



Start with a triangle with base on real line.



Extend sides by factor of 1 + 1/k.



Connect new endpoints to midpoint of base.



Sub-triangles of earlier construction. Thus smaller area.



Extend triangles below real line. Gives disjoint regions.



Extensions are subset of extension of original triangle.



There are rectangles in each triangle and its extension
that are translates parallel to longer side.















Top half tends to zero area; bottom has area ≥ 1.



• Fatou’s lemma:

A half-plane is a limit of an expanding sequence of disks.
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• Fatou’s lemma:

A half-plane is a limit of an expanding sequence of disks.

Fatou’s lemma implies Lp boundedness of half-plane
multiplier from boundedness of the disk multiplier.

Half-plane multiplier is essentially 1-dimensional Hilbert
transform in coordinate perpendicular to half-plane.



• A simple estimate of the Hilbert transform:

If f is indicator of [−1, 1], then |Hf | > c > 0 on [2, 3].

If f is indicator of R then |THf | > c on R̃.

R ~
R



• Lemma: if ‖Tf‖p ≤ A‖f‖p, then
‖(
∑

|Tfj|2)1/2‖p ≤ ‖(
∑

|fj|2)1/2|‖p.
This standard fact. Follows from randomization method,
such as Kinchine’s inequality.

Lp boundedness of disk multiplier implies that if {Tj}
are half-plane multipliers, then

‖(
∑

|Tjfj|2)1/2‖p ≤ ‖(
∑

|fj|2)1/2|‖p.



Rj, R̃j as above:
∑

area(Rj) = 1,
∑

area(R̃j) → 0.

Let fj be indicator of Rj.

Let Tj the half-plane multiplier parallel Rj.

Since |Tjfj| > c > 0 on R̃j.

∫

E
(
∑

j

|Tjfj|2)dx =
∑

j

∫

E
|Tjfj(x)|2dx

≥ c2
∑

j

area(R̃j)

≥ c2
∑

j

area(Rj)

≥ c2



By Hölder with p/2 and q = p/(p− 2),
∫

E
(
∑

j

|Tjfj|2)dx

≤ area(E)(p−2)/p‖(
∑

j

|Tjfj(x)|2)1/2‖2p

≤ B · area(E)(p−2)/p‖(
∑

j

|fj(x)|2)1/2‖2p

≤ B · area(E)(p−2)/p(
∑

j

area(R))2/p

≤ B · (1/ log n)(p−2)/p → 0

Contradiction ⇒ disk multiplier is not Lp bounded.



We present another construction of a Besicovitch set,
due to Kahane, based on random projections of a self-
similar Cantor set.



The “Four Corner” Cantor set:

Is product K×K where K is “middle-half” Cantor set.
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The “Four Corner” Cantor set:

Is product K×K where K is “middle-half” Cantor set.



Fact 1: Projection along slope 2 covers interval.
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Fact 1: Projection along slope 2 covers interval.



Fact 2: A.e. projection has length zero

Cantor set is Besicovitch irregular.



Length of projection of nth generation.



K = middle-half Cantor set.

Place copy of K in [0, 1].

Place copy of 12K in [i, i + 1/2].

Make all straight connections.



Horizontal slice height t is (1− t)K + (t/2)K.

= K ×K projected along lines (1− t)x + (t/2)y = c.

So a.e. horizontal slice has zero length.



For x, y ∈ K, set contains segment from [(0, x), (1, y/2)],

This segment has slope 1/(x− y/2).

reciprocals of projection of K ×K along slope 2.



So interval of slopes occurs in E.

Hence union of rotates gives Besicovitch set.



A Nikodym set K has full measure in [0, 1]2 and for
every x ∈ K there is a line L so that L ∩K = {x}.

Cor: There is a union of open half-rays that has zero
area, but union of endpoints has full measure.



Otton Marcin Nikodym (1887-1974)



Let Πθ be orthogonal projection onto direction θ.

Lemma: Given any ǫ > 0, segment I in the plane and
disjoint closed arcs J1, J2 of directions, there is a finite
union of segments E so that
• E approximates I in the Hausdorff metric,
• ΠθI ⊂ ΠθE for θ ∈ J1.
• |ΠθE| < ǫ for θ ∈ J2.



For x ∈ R2, let C(x) = {z : |z − x/2| = |x|/2}.

x/2

x

0



For x ∈ R2, let C(x) = {z : |z − x/2| = |x|/2}.

x/2

x

0

C(x) is projection of x onto lines through the origin.

Let C(E) denote union of all C(x), x ∈ E.



Define base of open neighborhoods in R2 \ {0} using
radial lines and circles C(x), C(rx).



Each neighborhood is projection of a segment in R2 onto
an arc of lines through the origin.



Lemma: For each neighborhood set N and ǫ > 0,
there is finite union E of segments so that C(E) covers
N and C(E) \N has area < ǫ.

If V is open and N ⊂ C(V ) we can choose E ⊂ V .



Lemma: There is full measure K ⊂ R2 so that z 6∈ K
implies there is x ∈ K so that C(x) ∩K = z.

To get Nikodym set, invertK around unit circle. Circles
through 0 become lines.



Sketch of Lemma:

• For j = 1, 2, . . . write R2 \ {0} = ∪kN
j
k so for each

k N
j+1
k ⊂ N

j
p for some p.

• Choose {Ej
k} so that

N
j
k ⊂ C(E

j
k),

area(C(E
j
k) \N

j
k) ≤ 2−k−j

• Note that ∪kC(E
j
k) = R2.

• Can choose E
j+1
k as union of disks so each disk is

contained in a component disk of some E
j
p.



• Let Kj = ∪k(C(E
j
k) \N

j
k) and X = ∪n ∩j>n Kj.

• Since area(Kj) → 0, we have area(X) = 0.

• For any z 6= 0 choose N
j1
k1

⊃ N
j2
k2

⊃ · · · ⊃ {z}.

• Then z ∈ C(x) some x ∩j Kj.

• Also, C(x) \N jm
km

⊂ Km.

• Thus C(x) \ {z} ⊂ X , as desired.


