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200 step random walk.



1000 step random walk.



Get Brownian motion in limit.



Harmonic measure = hitting distribution of Brownian motion

Suppose Ω is a planar Jordan domain.



Harmonic measure = hitting distribution of Brownian motion

Let E be a subset of the boundary, ∂Ω.



Harmonic measure = hitting distribution of Brownian motion

Choose an interior point z ∈ Ω.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.
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Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) ≈ 35/100. What if we move starting point z?



Harmonic measure = hitting distribution of Brownian motion

Different z gives ω(z, E,Ω) ≈ 10/100.
Slow to compute each path (≃ ǫ−2 steps on ǫ-grid). Can we go faster?





















This walk will get within ǫ of boundary in about O(log 1/ǫ) steps.
Takes about ǫ−2 steps on an ǫ-grid.



10, 100 and 1000 steps of walk inside a polygon. This illustrates the
difficulty Brownian motion has in penetrating narrow corridors.

This is called the crowding phenomena (name to be explained later).



10, 100, 1000 and 10000 walks inside a 1× 10 polygon.

Illustrates exponential difficulty of penetrating corridors.



Harmonic measure of short sides of 1×R rectangle is ≈ exp(−πR/2).



Consider harmonic measure as a function of starting point z.

Path started at z is equally likely to hit anywhere on circle around z.

Then restart until it hits domain boundary.

Harmonic measure at z is average of harmonic measures on small circle.

Harmonic measure satisfies the mean value property.

⇒ Harmonic measure is a harmonic function of z.



Harmonic measure of E ⊂ ∂Ω is the harmonic function of base point with
boundary values 1 on E and 0 elsewhere.

Harmonic functions are conformally invariant.



Riemann Mapping Theorem: If Ω ( R2 is simply connected, then
there is a conformal map f : D → Ω.

Conformal = angle preserving

f
θθ



Georg Friedrich Bernhard Riemann
Stated RMT in 1851



William Fogg Osgood
First proof of RMT

Transactions of AMS, vol. 1, 1900



The proof of Osgood represented, in my opinion, the “coming of age”

of mathematics in America. Until then, . . . the mathematical pro-

ductivity in this country in quality lagged behind that of Europe, and

no American before 1900 had reached the heights that Osgood then

reached.

J.L. Walsh, “History of the Riemann mapping theorem”, Amer. Math.
Monthly, 1973.







Numerical conformal mapping:
• Koebe
• Theodorsen
• Fornberg
• Wegman
• Gaier
• Symm
• Kerzman-Stein
• Integral equations via fast multipole, Rokhlin
• Circle packing, Sullivan, Rodin, Stephenson
• CRDT, Driscoll and Vavasis
• SCToolbox, Trefethen, Driscoll
• ZIPPER, Marshall



Standard textbook proof of RMT by normal families gives an algorithm:

• Choose similarity map of Ω into D.
• Choose image boundary point closest to origin.
• Move this point to origin by Möbius transformation σ.
• Take square root (well defined on simply connected region).
• Move

√

σ(0) back to 0 by Möbius transformation.
• Repeat.

dn = dist(∂Ωn, 0)

Lemma: If d0 ≥ 1/2 then dn = 1−O(1/n).



0th iteration



1th iteration



2nd iteration



10th iteration



20th iteration



50th iteration



First 80 iterations. Converges, but is slow.



We want to measure computational complexity of conformal mapping.

Want finite input and finite output.

We will consider conformal maps between polygons and unit disk.

Input = vertices = n-tuple of complex numbers (plus base point)

Output = harmonic measures of edges = n-tuple of reals summing to 1
= conformal prevertices = n-tuple on circle



Schwarz-Christoffel formula (1867):

f (z) = A + C

∫ z n
∏

k=1

(1− w

zk
)αk−1dw,

πα1

πα2

παn

z1

z2

zn

α’s known

z’s unknown (= SC-parameters = pre-vertices)



Schwarz-Christoffel formula (1867):

f (z) = A + C

∫ z n
∏

k=1

(1− w

zk
)αk−1dw,

Christoffel Schwarz



Problem: given n-gon, compute the SC-parameters.

How fast can we do this?



Davis’ method:
• Guess initial parameter values (all equal?).
• Plug guesses in SC-formula, get a polygon (correct angles, wrong lengths).
• If an edge is too long, shorten corresponding parameter arc.
• If too long, lengthen the gap.

new gap =
old gap× (target side/guessed side)

sum of new gaps

Does Davis’ method always converge?



20 iterations of Davis’ method - QC error.
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30 iterations of Davis’ method - QC error.
We hit machine error ≈ 10−15.





50 iterations of Davis’ method.
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QC error for 400 iterations of Davis’ method.



Cross Ratios and Delaunay Triangulations (Driscoll and Vavasis)

Identifies n-tuples on T with Rn−3 using cross ratios.

Uses standard high-dimensional root finding. Different versions based in
different approximations of the derivative matrix:
• Full CRDT: discrete approximation (samples all directions)
• Simple CRDT: assume derivative = Identity
• Shortcut CRDT: use Broyden updates
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Comparison of Davis and CRDT



A 98-gon and its Delaunay triangulation.



10 iterations of shortcut CRDT applied to a 98-gon.
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QC error of shortcut CRDT applied to the 98-gon.



Davis, CRDT give conformal maps onto approximate domains.

Instead, guess “approximately conformal” map onto correct polygon.

Iteration makes the map more conformal.



Theorem: Can compute ǫ-conformal map onto n-gon in time Cǫ · n.



Theorem: Can compute ǫ-conformal map onto n-gon in time Cǫ · n.

ǫ-conformal = 1 + ǫ quasiconformal.

Cǫ = O(log 1
ǫ log log

1
ǫ).

Data held as O(n) Laurent series of length p = log 1
ǫ .

Bottleneck is doing O(1) FFTs per vertex of polygon.

Gives O(ǫ) approximation of SC-parameters.

“Scale invariant approximation” = still ǫ-good after rescaling by Möbius
transformations = relative gap sizes are ǫ-accurate.



Quasiconformal maps: bounded angle distortion

Roughly, a K-QC map multiplies angles by ≤ K.

More precisely: tangent map sends circles to ellipses a.e.

K1

1-QC = conformal

For n-tuples z, w on unit circle,
dQC(z, w) = inf logK s.t. ∃ K-QC map h(z) = w.

QC approximation implies “scale invariant” Euclidean approximation.



QC maps are differentiable almost everywhere.

fz = fx − ify fz = fx + ify.

complex dilatation µ = µf = fz/fz.

µ encodes amount and direction of stretching.

f is K-QC iff |µ| ≤ k = K−1
K+1 < 1.

Homeomorphic solutions of Beltrami equation

fz = µfz

where |µ| < k < 1.



Measurable Riemann Mapping Theorem:
Given QC g : D → Ω, there is f : D → D so that g ◦ f is conformal.

gf

conformal 

QCQC



Measurable Riemann Mapping Theorem:
Given QC g : D → Ω, there is f : D → D so that g ◦ f is conformal.

gf

conformal 

QCQC

Need to solve Beltrami equation fz = µgfz.

Explicit exact solution by power series of singular integral operators.

Linearization can be solved by convolution with 1/z.

Iteration converges quadratically to solution (Newton’s method).



Measurable Riemann Mapping Theorem:
Given QC g : D → Ω, there is f : D → D so that g ◦ f is conformal.

gf

conformal 

QCQC

• Find initial QC map g to polygon.

• Solve a PDE for f : D → D.

I will only address finding a good g.



Want g to be fast to compute and guaranteed close to correct answer.



Want g to be fast to compute and guaranteed close to correct answer.

• fast comes from computational geometry.

• close comes from hyperbolic geometry.



Medial axis:
centers of disks that hit boundary in at least two points.



Medial axis:
centers of disks that hit boundary in at least two points.

Medial axis of a polygon is a finite tree.

Computable in O(n), Chin-Snoeyink-Wang (1999).

Related to Voronoi diagrams: divides polygon according to nearest edge.



Medial axis:
centers of disks that hit boundary in at least two points.

Claim: there is a “natural” choice of conformal map between any two
medial axis disks.



A Möbius transformation is a map of the form

z → az + b

cz + d
.

Conformally maps disks to disks (or half-planes).

Form a group under composition.

Uniquely determined by images of 3 distinct points.



Intersecting circles:

b

a

d c

Fix intersection points a, b and map c → d as shown.

Determines unique Möbius map between disks.

Part of 1-parameter symmetric family fixing a, b.















Points follow circular paths, perpendicular to boundary.



How does this give a map from polygon P to a circle?



• Fix a “root” MA disk D.



• For any z ∈ P , take MA disk Dz touching z.



• Connect Dz to D on MA.



















We discretize only to draw picture.

Limiting map has formula in terms of medial axis.



Similar flow for any simply connected domain.

















Theorem: Mapping all n vertices takes O(n) time.

Uses linear time computation of MA (Chin-Snoeyink-Wang) and book-
keeping with cross ratios.



How close is medial axis map to conformal map?



How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoffel formula.

Target Polygon MA Parameters



How close is medial axis map to conformal map?
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Target Polygon MA Parameters

Looks pretty close. How do we measure error?



How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoffel formula.

Target Polygon MA Parameters

Looks pretty close. How do we measure error?

By minimal K-QC map mapping vertices to vertices.

Any example gives upper bound, e.g., piecewise linear.



Upper bound for QC-distance:
• Find compatible triangulation
• Compute affine map between triangles
• Take largest K.

The most distorted triangle is shaded. Here K = 1.24.



Upper bound for QC-distance:
• Find compatible triangulation
• Compute affine map between triangles
• Take largest K.

The most distorted triangle is shaded. Here K = 1.24.

Bounds QC-error of guessed parameters without needing to
know the true SC-parameters.



Theorem: Medial axis map gives QC-error < 8.



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?

Short answer: hyperbolic 3-manifold theory
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Why is this theorem true?

Longer answer: because MA-map has conformal extension to different
region with same boundary.



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?

Longer answer: because MA-map has conformal extension to different
region with same boundary.

• Other region is a surface in upper 3-space.

• The surface can be mapped conformally to disk.

• Medial axis map = boundary values of this map.



The dome of Ω is upper envelope of all hemispheres with base in Ω.

Suffices to take medial axis disks (= maximal disks).













Every dome has conformal map to disk by “flattening”.



Medial axis map = boundary of flattening map (iota)

= boundary of conformal map of dome to hemisphere



Map dome to hemisphere by makings sides flush.



Planar version of previous figure.



How are these connected?



How are these connected? By projection.



Nearest point map in Rn is Lipschitz.
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Nearest point map in Rn is Lipschitz.



Nearest point map in Rn is Lipschitz.



Nearest point map in Rn is Lipschitz.



Region below dome is union of hemispheres

Hemispheres = hyperbolic half-spaces.

Region above dome is hyperbolically convex.

Consider nearest point retraction onto this convex set.



Hyperbolic metric on disk given by

dρ =
ds

1− |z|2 ≃
ds

dist(z, ∂D)
.

• Geodesics are circles perpendicular to boundary.
• Shaded region is hyperbolically convex.
• Metric transfers via conformal maps to other domains.
• For simply connected regions dρ ≃ ds/dist(z, ∂Ω).



In the upper half-space R3
+ = {(x, y, t) : t > 0}, metric is dρ = ds/2t.

Geodesics in R3
+ are vertical rays or semi-circles perpendicular to R2.



Region below dome is union of hemispheres

Hemispheres = hyperbolic half-spaces.

Region above dome is hyperbolically convex.

Consider nearest point retraction onto this convex set.



















Need not be a homeomorphism, but . . .



Need not be a homeomorphism, but it is a quasi-isometry

1

A
≤ ρ(R(x), R(y))

ρ(x, y)
≤ A, if ρ(x, y) ≥ B.

i.e., R is bi-Lipschitz on large scales.

Metrics are hyperbolic metrics on Ω and S.



“Smoothing” gives K-QC map fixing boundary points.

Sullivan’s theorem: K is independent of domain.

Dennis Sullivan, David Epstein and Al Marden, C.B.

Best value unknown, 2.1 < K < 7.82.



Dennis Sullivan David Epstein Al Marden



Riemann =
        conformal 

        conformal 

iota = conformal

QC

Iota = conformal from dome to disk.

Medial axis flow = boundary values of iota

Riemann map = conformal from base to disk

Sullivan’s thm ⇒ MA-map has K-QC extension



Sketch of proof that R is quasi-isometry

One direction: R is Lipschitz.

Other direction: R−1 is Lipschitz at distances ≥ 1.



Fact 1: If z ∈ Ω, ∞ 6∈ Ω,

r ≃ dist(z, ∂Ω) ≃ dist(R(z), R2) ≃ |z −R(z)|.

r

z

R(z)



Fact 2: R is Lipschitz.

• Ω simply connected ⇒ dρ ≃ |dz|/dist(z, ∂Ω).
• z ∈ D ⊂ Ω and R(z) ∈ Dome(D) ⇒ z in hyperbolic convex hull of
∂Ω ∩ ∂D in D.

⇒ dist(z, ∂Ω)/
√
2 ≤ dist(z, ∂D) ≤ dist(z, ∂Ω)

⇒ ρΩ(z) ≃ ρD(z) = ρDome(R(z)).



Fact 3: ρS(R(z), R(w)) ≤ 1 ⇒ ρΩ(z, w) ≤ C.

Suppose dist(R(z), R2) = r.

Suppose γ is geodesic on dome from R(z) to R(w).

⇒ dist(γ,R2) ≃ r

⇒ dist(R−1(γ), ∂Ω) ≃ r, R−1(γ) ⊂ D(z, Cr)

⇒ ρΩ(z, w) ≤ C



Moreover, g = ι ◦ σ : Ω → D is locally Euclidean Lipschitz.

|g′(z)| ≃ dist(g(z), ∂D)

dist(z, ∂Ω)
.

Use Fact 1

dist(z, ∂Ω) ≃ dist(R(z), R2)

≃ exp(−ρR3
+
(R(z), z0))

& exp(−ρS(R(z), z0))

= exp(−ρD(g(z), 0))

≃ dist(g(z), ∂D)



The factorization theorem: Riemann map f = h ◦ g where
• g : Ω → D is Lipschitz in Euclidean path metrics,
• h : D → D is biLipschitz in hyperbolic metric

Euclidean
Lipschitz

Hyperbolic
biLipschitz

conformal 

Cor: Any s.c. domain can be mapped 1-1, onto a disk by a contraction
for the internal path metric.



Crescents in base can map to geodesics on surface.

Gray collapses to bending lines, “width = angle”.

White maps isometrically to dome.



Angle scaling family - crescent angles decrease

“Morphs” region to disk. Intermediate regions need not be planar.

Gives continuation method to apply Newton’s method.









Application to computational geometry:
Quadrilateral meshes



Marshall Bern and David Eppstein, 2000.

• n-gons have O(n) quad-mesh with angles ≤ 120◦.

• O(n log n) work.

• Regular hexagon (and Euler’s formula) shows 120◦ is sharp.



Marshall Bern David Eppstein



David Epstein David Eppstein

P = hyperbolic geometry, University of Warwick

P 2 = computational geometry, UC Irvine



Bern asked: can we bound angles from below?
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Theorem: Every n-gon has O(n) quad-mesh with all angles ≤ 120◦ and
new angles ≥ 60◦. O(n) work.



Bern asked: can we bound angles from below?

Theorem: Every n-gon has O(n) quad-mesh with all angles ≤ 120◦ and
new angles ≥ 60◦. O(n) work.

Original angles < 60◦ remain unchanged. 60◦ is sharp.

Proof uses conformal mapping, plus an idea from hyperbolic manifolds:
thick/thin decompositions.



Idea of proof: transfer mesh from disk



Idea of proof: transfer mesh from disk

But number of boxes depends on geometry (not just n).



Obvious idea: subdivide disk into boxes until preimages are separated.

Gives too many boxes (≫ n) if pre-vertices cluster tightly.

A cluster is a set S ⊂ V so that

diam(S) ≪ dist(S, V \ S).



Subdivide until boxes separate points.

Gives ≫ n boxes if pre-vertices cluster tightly.

Fact: can find all clusters in O(n) using medial axis.



“Cover” each cluster by a half-annulus.

Maps to a hyperbolic thin piece dividing polygon.



Surface thin part is union of short non-trivial loops.

parabolic = puncture, hyperbolic = handle



Thick and Thin parts of a polygon

Thin part is union of short curves between edges.

Parabolic = adjacent, Hyperbolic = non-adjacent

Rough idea: sides I, J so dist(I, J) ≪ min(|I|, |J |).

Thick parts = remaining components (white)



More examples of hyperbolic thin parts.

Inside thick regions (white) conformal pre-vertices are well separated on
circle (no clusters).

Implies good estimates for conformal map.



Idea for quad-mesh theorem:

• Decompose polygon into O(n) thick and thin parts.

• Mesh thin parts “by hand”.

• Conformally map mesh on disk to thick parts.



Thin parts are meshed by explicit construction (easy).

v

γ



Thick parts: transfer mesh from disk





Conformal map from polygon to disk takes thick and thin parts to disk.
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Draw (hyperbolic) convex hull of thin regions.
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Take pentagons from tesselation hitting convex hull but missing thin parts.
Extend pentagon edges to boundary.



Conformal map from polygon to disk takes thick and thin parts to disk.

Draw (hyperbolic) convex hull of thin regions.

Take pentagons from tesselation hitting convex hull but missing thin parts.
Extend pentagon edges to boundary.

Analog of Whitney or quadtreee construction.



Conformal map from polygon to disk takes thick and thin parts to disk.

Draw (hyperbolic) convex hull of thin regions.

Take pentagons from tesselation hitting convex hull but missing thin parts.
Extend pentagon edges to boundary.

Pentagons, quadrilaterals, triangles and half-annuli.



Meshes designed to match along common edges.



So far, we have been meshing simple polygons.

Harder case: mesh PSLGs.



A Planar Straight Line Graph (PSLG) is a finite point set plus a
set of disjoint edges between them.



A Planar Straight Line Graph (PSLG) is a finite point set plus a
set of disjoint edges between them.

Size = number of vertices = n.



A Planar Straight Line Graph (PSLG) is a finite point set plus a
set of disjoint edges between them.

Mesh convex hull conforming to PSLG.



More PSLGs



Theorem: Every PSLG of size n has O(n2) quad-mesh with all angles
≤ 120◦ and all new angles ≥ 60◦.

Angles and complexity sharp.



The O(n2) is sharp because any mesh with maximum angle ≤ θ < 180◦

sometimes requires n2 elements.
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The O(n2) is sharp because any mesh with maximum angle ≤ θ < 180◦

sometimes requires n2 elements.



Theorem: Every PSLG of size n has O(n2) quad-mesh with all angles
≤ 120◦ and all new angles ≥ 60◦.

I won’t discuss proof of this here. Uses results several ideas:

• Thick/thin decomposition

• Sinks = a polygon that can be quad-meshed with angles between 60◦

and 120◦ using a given (even) set of boundary vertices, without adding
any extra boundary vertices.
Square is not a sink, regular octagon is.
For sinks, every “even boundary meshing problem” has a solution.
Sinks stop propagation of vertices as in previous example.

• optimal triangulations of PSLGs



Theorem: Every PSLG of size n has O(n2) quad-mesh with all angles
≤ 120◦ and all new angles ≥ 60◦.

Cor (of proof): All vertex degrees are 4 with O(n) exceptions.

Cor: Mesh is a disjoint union of O(n) combinatorial rectangular grids.

Cor: All angles are in [89◦, 91◦] with O(n) exceptions.
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Theorem: Every PSLG of size n has O(n2) quad-mesh with all angles
≤ 120◦ and all new angles ≥ 60◦.

Every quad-mesh gives a triangulation: add diagonals.

Corollary: Every PSLG has a O(n2) triangulation, all angles ≤ 120◦.



Theorem: Every PSLG of size n has O(n2) quad-mesh with all angles
≤ 120◦ and all new angles ≥ 60◦.

Every quad-mesh gives a triangulation: add diagonals.

Corollary: Every PSLG has a O(n2) triangulation, all angles ≤ 120◦.

Previous: S. Mitchell 1993 (157.5◦), Tan 1996 (132◦).

Can we improve the 120◦ upper bound?

Can we get a positive lower bound on angles?



Theorem: Every PSLG of size n has O(n2) quad-mesh with all angles
≤ 120◦ and all new angles ≥ 60◦.

Every quad-mesh gives a triangulation: add diagonals.

Corollary: Every PSLG has a O(n2) triangulation, all angles ≤ 120◦.

Previous: S. Mitchell 1993 (157.5◦), Tan 1996 (132◦).

Can we improve the 120◦ upper bound? Yes

Can we get a positive lower bound on angles? No



No lower angle bound. For 1×R rectangle

number of triangles & R× (smallest angle)

So, bounded complexity ⇒ no lower angle bound.



Upper bound < 90◦ implies lower bound > 0:

α

β

γ

α, β < (90◦ − ǫ) ⇒ γ = 180◦ − α− β ≥ 2ǫ.



Upper bound < 90◦ implies lower bound > 0:

α

β

γ

α, β < (90◦ − ǫ) ⇒ γ = 180◦ − α− β ≥ 2ǫ.

So 90◦ is best uniform upper bound we can hope for.
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Is NOT=“non-obtuse triangulation” possible?



Upper bound < 90◦ implies lower bound > 0:

α

β

γ

α, β < (90◦ − ǫ) ⇒ γ = 180◦ − α− β ≥ 2ǫ.

So 90◦ is best uniform upper bound we can hope for.

right obtuse

nonobtuse

acute

Is NOT=“non-obtuse triangulation” possible? Yes



Brief history of NOTs:

• Always possible (no bound): Burago, Zalgaller 1960.

• Rediscovered: Baker, Grosse, Rafferty, 1988.

• O(n) for points sets: Bern, Eppstein, Gilbert 1990

• O(n2) for polygons: Bern, Eppstein, 1991

• O(n) for polygons: Bern, Mitchell, Ruppert, 1994

• PSLG’s: exist, n2 lower bound

Do a polynomial number of triangles suffice?



Applications of nonobtuse triangulations:

• Discrete maximum principle (Ciarlet, Raviart, 1973)

• Convergence of finite element methods (Vavasis, 1996)

• Fast marching method (Sethian, 1999)

• Meshing space-time (Ungör, Sheffer, 2002)

• Machine learning (Salzberg, et. al., 1995)





Voronoi cells (think of cell phone connecting to closest tower).



If country boundaries conform to cell boundaries, then a phone always
connects to a tower in the same country.



Given polygonal countries, can we place towers so this happens?

Do a polynomial number of towers suffice?



Salzberg, Delcher, Heath, Kasif, 1995, Best-case results for nearest-

neighbor learning.

Given polygon Γ find sets I, O so that

int(Γ) = {z : dist(z, I) < dist(z, O)},
(Voronoi diagram of I ∪O covers Γ.)

Easy for nonobtuse triangles. Reduces problem to finding a NOT.



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.

O(n2) is best known lower bound, so a gap remains.
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Cor: Any PSLG has a conforming Delaunay triangulation of size O(n2.5).
(see Edelsbrunner, Tan 1993 for O(n3))



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.

Cor: Any PSLG has a conforming Delaunay triangulation of size O(n2.5).
(see Edelsbrunner, Tan 1993 for O(n3))

Cor: Every PSLG has a triangulation with all angles ≤ 90◦ + ǫ and
O(n2/ǫ2) elements.

Follows from proof of NOT-theorem.



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.

Cor: Any PSLG has a conforming Delaunay triangulation of size O(n2.5).
(see Edelsbrunner, Tan 1993 for O(n3))

Cor: Every PSLG has a triangulation with all angles ≤ 90◦ + ǫ and
O(n2/ǫ2) elements.

Cor: Every triangulation of a simple n-gon has a nonobtuse refinement
with O(n2) elements.

This improves O(n4) result of Bern and Eppstein (1992).
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The segment [v, w] is a Gabriel edge if it is the diameter of a disk con-
taining no other points of V .

Gabriel graph contains the minimal spanning tree.

Gabriel and Sokol, A new statistical approach to geographic variation

analysis, Systematic Zoology, 1969.
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Gabriel edge is a special case of a Delaunay edge: [v, w] is a chord of
an open disk not hitting V .

Delaunay edges triangulate.

DT minimizes the maximum angle, among all triangulations.

Thus, if a point set has a NOT, then DT = NOT.



Known: If we can add N points to a triangulation of n points so that
every edge becomes Gabriel, then there is a O(n +N) NOT.

Follows from work of Bern, Mitchell, Ruppert (1994).



Known: If we can add N points to a triangulation of n points so that
every edge becomes Gabriel, then there is a O(n +N) NOT.



Known: If we can add N points to a triangulation of n points so that
every edge becomes Gabriel, then there is a O(n +N) NOT.



Known: If we can add N points to a triangulation of n points so that
every edge becomes Gabriel, then there is a O(n +N) NOT.

Theorem: Given a triangulation, we can add O(n2.5) points to the edges
so that every new edge is Gabriel.
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BMR Lemma: Add k vertices to sides of triangle (at least one per side)
so all edges become Gabriel, then add all midpoints. Resulting polygon
has a O(k) NOT, with no additional vertices on boundary.



Gabriel edges ⇒ non-obtuse triangulation

Bern-Mitchell-Ruppert (1994)

BMR Lemma: Add k vertices to sides of triangle (at least one per side)
so all edges become Gabriel, then add all midpoints. Resulting polygon
has a O(k) NOT, with no additional vertices on boundary.



Gabriel edges ⇒ non-obtuse triangulation

Bern-Mitchell-Ruppert (1994)

BMR Lemma: Add k vertices to sides of triangle (at least one per side)
so all edges become Gabriel, then add all midpoints. Resulting polygon
has a O(k) NOT, with no additional vertices on boundary.

Building a NOT for a PSLG:

• Replace PSLG by triangulation of itself.

• Add vertices to make all edges Gabriel.

• Apply BMR lemma. Done.
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Proof of BMR:

• Pack with disjoint disks so only 3-sided and 4-sided regions remain.
• Connect centers.
• Divides triangle into triangles and quadrilaterals.

Nonobtusely triangulate each region without new boundary vertices. Sev-
eral cases.
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Proof of BMR:

The 4-regions are similar (but several cases arise).

So Gabriel covering implies a nonobtuse triangulation.
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Break every triangle into thick and thin parts.

Thin parts = corners, Thick part = central region



Construct Gabriel points:

Divide triangle into thick and thin parts.

Thick sides are base of half-disk inside triangle.

Thick version prevents infinite propagation.



Construct Gabriel points:

Then vertices of thick part give Gabriel edges.



Construct Gabriel points:

But, adjacent triangle can make Gabriel condition fail.



Construct Gabriel points:

Idea: “Push” vertices across the thin parts.



Construct Gabriel points:

Thin parts foliated by circles centered at vertices.

Push vertices along foliation paths.



• Start with any triangulation.
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• Start with any triangulation.
• Make thick/thin parts.
• Propagate vertices until they leave thin parts.
• Intersections satisfy Gabriel condition. Why?



Tube is “swept out” by fixed diameter disk.

Disk lies inside tube or thick part or outside convex hull.



In triangulation of a n-gon, adjacent triangles form tree.
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In triangulation of a n-gon, adjacent triangles form tree.

Hence foliation paths never revisit a triangle.

O(n) starting points, so O(n2) points are created.

Thm: Triangulation of a n-gon has a O(n2) NOT.

Improves O(n4) by Bern and Eppstein (1992).



Delaunay triangulation of 10 random points,



The boundary of the triangulation



The central regions.



Propagation lines starting at all cusp points.



Propagation lines identify boundary points; induces tree.
Discontinuous, but piecewise length preserving.



60 points



The central regions.



Propagation lines starting at all cusp points.



A ring of equilateral triangles.



The in-circles are tangent.



The the cusps touch; for a closed flow line.



No matter how we triangulate interior, flow lines never exit.



No matter how we triangulate interior, flow lines never exit.



No matter how we triangulate interior, flow lines never exit.



Idea: perturb paths to terminate sooner.



If a path returns to same thin edge at least 3 times it has a sub-path that
looks like one of these:

C-curve, S-curve, G-curves



Return region consists of paths “parallel” to one of these.
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There are O(n) return regions and every propagation path enters one after
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Return region consists of paths “parallel” to one of these.

There are O(n) return regions and every propagation path enters one after
crossing at most O(n) thin parts.

IDEA: bend paths to terminate before they exit.

Gives O(n2) if it works.





If path bends too fast, Gabriel condition can fail.



Bend slowly enough to satisfy Gabriel condition.



Bend slowly enough to satisfy Gabriel condition.



x∆

y∆

r

r2

1

∆y ≈ (∆x/r)2r = (∆x)2/r.

r = max(r1, r2).



1

k

k × 1 region crossing n (equally spaced) thin parts,

r ≈ 1, ∆x ≈ k/n, ⇒ ∆y ≈ k2/n2

Need 1 ≤ ∑

∆y = n∆y = k2/n.

Bent path hits side of region if k ≫ √
n.



Easy case: return region length > width.

• Show there are O(n) return regions.
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Easy case: return region length > width.

• Show there are O(n) return regions.
• Divide each region into O(

√
n) long parallel tubes.

• Entering paths can be bent and terminated.
Total vertices created = O(n2), but . . .

• Each region has O(
√
n) new vertices to propagate.

Vertices created is O(
√
n · n2) = O(n2.5).



Hard case is spirals:



Hard case is spirals:

Curves may spiral arbitrarily often.

No curve can be allowed to pass all the way through the spiral. We stop
them in a multi-stage construction.
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Terminate entering paths (1 spiral).
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• Start with
√
n parallel tubes at entrance of spiral.

Terminate entering paths (1 spiral).

• Merge
√
n tubes to single tube (n1/3 spirals).

(spirals get longer as we move out.)

• Make tube edge self-intersect (n1/2 spirals)

• Loops with increasing gaps (n1/2 loops, n spirals)
• Beyond radius n spiral is empty.

Careful estimates needed to get O(n2.5) vertices.



Almost Nonobtuse Triangulation: Replace cusps by cones of angle
ǫ. Same construction in thick parts.

ε

Paths can be terminated inside a 1× 1
ǫ tube.

Thm: Uses angles ≤ 90◦ + ǫ and O(n
2

ǫ2
) triangles.



Summary:

Delaunay triangulation (DT) is easy to compute but is non-conforming
and allows large angles.

We can add O(n1.5) new points and perturb foliation paths to end quickly.
Gives O(n2.5) Gabriel edges.

From this we get a O(n2.5) conforming NOT-DT.



DT or NOT-DT, that is the question.

Whether ’tis nobler in the mind to suffer

the slings and arrows of obtuse angles,

or take arms against a sea of paths,

and by perturbing end them?



Questions:

• Implementable?

• Average versus worst case bounds?

• Improve 2.5 to 2 in NOT theorem?

• Relation to closing lemma for vector fields?

• 3-D meshes? The eightfold way? Ricci flow?

• Polynomial meshes using acute tetrahedra? Even cube is hard.

• Other applications for thick/thin pieces?

• Applications of Mumford-Bers compactness?

• Best K for medial axis map? (2.1 < k < 7.82)

• Can we do better than medial axis map?



More Questions:

• Does Davis’ method converge?

• Does CRDT converge?

• Classify sinks.

• Do NOTs and Delaunay triangulations have same complexity?

• Are rectangular grid sub-meshes good for anything?


