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Diffusion Limited Aggregation (DLA)

Harry Kesten: R ≤ CN2/3. Experiments ≃ N .585.

Harmonic Measure: ω(z, E, Ω) = Probability that
a Brownian motion started at z first hits ∂Ω in E.



Beurling’s estimate: If D = D(x, r) and
d = |z − x|, then ωz(D) ≤ C

√

r/d.
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Ω = outside of DLA, d = Nα, r = 1, ω = harmonic
measure of outermost disk. Consider times N, 2N .

(2α−1)Nα = (2N)α−Nα ≈ Nω ≤ Nd−1/2 ≃ N1−α/2.

⇒ α ≤ 1 − α/2 ⇒ α ≤ 2/3.



ℓ(E) = lim
δ→0

min
∑

diam(Qk) : E ⊂ ∪Qk, diam(Qk) < δ.

E is rectifiable if E ⊂ Γ, Γ connected, ℓ(Γ) < ∞.

F. and M. Riesz, 1916: If E ⊂ ∂Ω and ∂Ω is
rectifiable curve, then ℓ(E) = 0 ⇔ ω(E) = 0.

Think of Q as a device costing ϕ(Q) and detecting when
a Brownian path hits it. How expensive to detect exit
point a.s.? Riesz says linear cost = ∞ for rectifiable
domains and ϕ(t) = t. What about a fractal domain?



Cost = 0 for fractals! (Lavrentiev ‘36, Makarov ‘85).

lim sup
r→0

ω(D(x, r))

r
= ∞, ωa.e..



1000 walks per side, 9 of 768 sides hit from both sides.



Theorem: Harmonic measure for two sides of a closed
curve are mutually singular on the non-tangent points.

Brownian motions on different sides of a fractal curve
hit disjoint sets.

Detectors to find Brownian exit points on a fractal are
cheap to buy but expensive to install.



Detectors for snowflake may be cheap, but installing
them is expensive. They can’t lie along a rectifiable
path. Suppose Γ is rectifiable, E = Γ ∩ ∂Ω, ℓ(E) = 0.

“Flip” components of Γ∩Ω to outside to get rectifiable
Ω′ containing Ω and apply Riesz theorem:

ω(E, Ω) ≤ ω(E, Ω′) = 0.



Generalized Riesz Thm (Øksendal conjecture)

Bishop-Jones: If E ⊂ ∂Ω and E is rectifiable, then
ℓ(E) = 0 ⇒ ω(E) = 0.

In a fractal domain, Brownian motion a.s. exits on a
non-rectifiable set of zero length.

Proof uses:

• Covering map D → R
2 \ E.

• L2 theory for Schwarzian derivatives
• The traveling salesman theorem



Peter Jones β’s:

βE(x, t) = inf
L

max
z∈E∩D(x,3t)

dist(z, L)

t
,

where L = lines hitting D(x, t).
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Jones’ traveling salesman theorem:

E is rectifiable iff

diam(E) +

∫ ∞

0

∫

R2
βE(x, t)2

dxdt

t2
< ∞.
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β
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Build polygonal approximation. At scale r replace length
r by length r + O(β2r). Additional length is O(β2r).



Thm 1: If
∫ 1
0 βE(x, t)2 dt

t ≤ M for all x ∈ E, then E

lies on a curve of length ≤ CeMdiam(E).

Thm 2: x is tangent of γ a.e. iff
∫

βγ(x, t)2dt
t < ∞.

Thm 3: If E is connected and βE(x, t) > ǫ for all x ∈
E and 0 < t < diam(E) then dim(E) > 1 + Cǫ2 > 1.



ϕ-cost of E = min
∑

ϕ(Qk), E ⊂ ∪Qk.

ϕ(Q) = diam(Q) is length, ϕ(t) = t2 is area.

The tα-cost of covering E infinitely often is 0 or ∞.
Sharp α gives Hausdorff dimension.

Von Koch Snowflake
HD= log 4/ log 3

Brownian path, HD=2
t2 log 1

t log log 1
t



Frontier of Brownian motion

Mandelbrot conjectured it has dimension 4/3 based on
physical arguments (Flory ’49, Gennes ’91).

Bishop-Pemantle-Peres: dim(Frontier) > 1 + ǫ.

dim = 4/3 proven by Lawler-Schramm-Werner. Also
related to work of Aizenmann.



Möbius transformations are maps z → az+b
cz+d.

This group is generated by reflections in lines and circles.
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Mostow rigidity, Bowen Dichotomy

If ∂Ω is connected and Ω is preserved by a discrete
Möbius group, prove Ω = disk or dim(∂Ω) > 1.

Mostow, Agard, Bowen, Sullivan, Bishop-Jones, Astala-
Zinsmeister, Bishop



Theorem: Ω = disk or dim(∂Ω) > 1.
• True if R = Ω/G is compact (Rufus Bowen)
• True if R is finite area (Dennis Sullivan)
• False if Brownian motion is transient on R (A-Z).
• True iff Brownian motion is recurrent on R.

Compact Finite area

Brownian motion recurrent (divergence type)

Brownian motion transient (convergence type)



Hyperbolic metric on disk given by

dρ =
ds

1 − |z|2
≃

ds

dist(z, ∂D)
.

• Isometries are the Möbius transformations.
• Geodesics are circles perpendicular to boundary.
• Volume grows exponentially

Hyperbolic metric on other planar domains defined us-
ing conformal map from disk. Still have

dρ ≃
ds

dist(z, ∂D)
.



Reflections in R
2 extend to upper 3-space, R

3
+.

• Hyperbolic metric dρ = ds
dist(z,R2)

.

• Möbius transformations = Isometries.
• Geodesics are circles perpendicular to boundary.

Hyperbolic 3-manifold is M = R
3
+/G, G a discrete

group of isometries.



Convex hull of closed geodesics is the convex core.

Geometrically Finite, vol(core) < ∞

Geometrically Infinite, vol(core) = ∞



The limit set, Λ

Fix base point in M . Choose direction. Follow geodesic.
• stays in bounded region forever, Λb ⊂ Λ
• stays in convex core forever, Λ (= limit set)
• eventually leaves convex core, Ω = R

2 \ Λ.





Suppose G is finitely generated.

Sullivan: If G is geo. finite then dim(Λ) < 2.

Bishop-Jones: If G is geo. infinite then dim(Λ) = 2.

Cor: If Gn → G then lim sup dim(Λn) ≥ dim(Λ).

Cor: Λ is either a Cantor set, a circle or dim(Λ) > 1.



Kholodenko, Arkady L.
Boundary conformal field theories, limit sets of Kleinian
groups and holography.
Journal of Geometry and Physics.
35 (2000), no. 2-3, 193–238.

The concept of field theories being represented by observations at the bound-

ary of space-time is evident both in S-matrix theory and in the definition of

conserved quantities in gravity. The AdS/CFT correspondence, which provides

an interpretation of bulk field theories in anti-de Sitter space-times in terms of

boundary conformal field theories . . .
...

The Hausdorff dimension of the limit set, in turn, is known to

be equal to the value of the exponent separating convergence and

divergence of the Poincare series of the Kleinian group Γ.
...



Given M = R
3
+/G define critical exponent

δ = lim sup
1

n
log #{g ∈ G : ρ(x0, g(x0)) < n}



Theorem: For any non-trivial hyperbolic manifold

δ = dim(Λb) ≤ dim(Λ).

Equality for finitely generated groups.

Due to Sullivan in geo. finite case. Later generalized to
variable curvature, symmetric spaces, Gromov hyper-
bolic groups, quasiconformal groups . . . .

Used in proof of ‘Geometrically infinite’ ⇒ dim(Λ) = 2.

If δ = 2, done. Assume δ < 2. Show area(Λ) > 0.



k = heat kernel = Prob(B(t) = y : B(0) = x).

k(x, y, t) ≤ Cx,y ρ exp(−cρ2/t), t ≤ ρ

k(x, y, t) ≤ Cx,y exp(−t δ(2 − δ)), t > ρ.

where ρ = ρ(x, y). If dist(x, ∂C(M)) ≫ 1 then Brown-
ian path started at x doesn’t hit ∂C(M). ⇒ area(Λ) >
0 ⇒ dim(Λ) = 2.



Inside convex core of a geometrically infinite group.



In Euclidean space, a convex set is intersection of half-
planes. Same for hyperbolic space, but half-planes are
bounded by circles or hemispheres.

Take union of all hemispheres whose bases lie inside Ω.
Upper envelope is the “dome” of Ω. Is boundary of
hyperbolic convex hull of Ωc.





Medial Axis = centers of internal disks hitting bound-
ary in at least two points.



It is easy to map any dome conformally to a disk.



A polygon, medial axis, approximation by disks.





Angle scaling family



Instead of collapsing all crescents at once, we may do
one at a time, from leaves towards root.

Defines a flow from boundary to disk along foliation of
crescents by orthogonal arcs.

Taking limits, this flow exists for any domain.





Schwartz-Christoffel, 1867: conformal map to poly-
gon with interior angles {θk}

f ′(w) =

n
∏

k=1

(1 −
w

zk
)
θk
π −1,

where {zk} ⊂ ∂D map to vertices.

z2

z3

z1

3θ

θ2

1θ

Circular? How do we know {zk} without f? Use the
medial axis flow to guess parameters.



Target Polygons Guessed SC images

MA flow gives “formula” for SC-parameters {zk} which
is correct with uniformly bounded error.







distortion
bounded

Riemann =
        conformal 

iota = conformal



Nearest point map in R
n is Lipschitz.

NPM in hyperbolic space extends to boundary and is a
quasi-isometry (Sullivan, Epstein-Marden, Bishop)

ρ(x, y)/A − B ≤ ρ(R(x), R(y)) ≤ Aρ(x, y).



Fast Mapping Theorem: Given an n-gon we can
compute an ǫ-map f : D → Ω in time O(n log 1

ǫ log log 1
ǫ).

distorts angles by ǫ (same as (1 + ǫ)-quasiconformal)









Ideas in proof of FMT:
• Thick and thin parts of polygons
• O(n) domain decomposition
• Newton’s type iteration via fast multipole
• Angle scaling





Bern and Eppstein (1997): Any n-gon has a quadri-
lateral mesh with angles ≤ 120◦. At most O(n) points
are added. Runs in O(n log n).

B., 2008: Any n-gon has a O(n) quadrilateral mesh
so that all new angles are between 60◦ and 120◦ and
which can be computed in O(n).

Angle bounds are best possible.



Idea of optimal meshing:

Divide polygon into thick and thin parts. Thick parts
look piecewise smooth with 90◦ angles. Map to disk
minus hyperbolic half-planes.



Disk has tesselation by hyperbolic right pentagons. Fi-
nite approximation divides disk into pentagons, trian-
gles and quadrilaterals.



Each piece can be meshed consistently.


