Conformal Mapping in Linear Time

Christopher J. Bishop SUNY Stony Brook

copies of lecture slides available at www.math.sunysb.edu/~bishop/lectures

"But Holmes, how did you know that any simple n-gon has a quadrilateral mesh with O(n) pieces and all angles between 60° and 120°?"

"Surely you recall from *The Case of the Kleinian Groups* that the boundary of a hyperbolic 3-manifold is bi-Lipschitz equivlent to the boundary of its convex hull. I deduced that the Riemann map from a polygon to the disk can be computed in linear time and the rest is quite elementary my dear Watson."

(My talk, in the style of Arthur Connan Doyle.)

The **dome** of Ω is boundary of union of all hemispheres with bases contained in Ω .

Equals boundary of hyperbolic convex hull of Ω^c . Similar to Euclidean space where complement of closed convex set is a union of half-spaces.

A convex polygon:

A non-convex polygon:

Hyperbolic half-plane: Metric on \mathbb{R}^2_+ ,

 $d\rho = |dz|/\operatorname{dist}(z, \mathbb{R}^2).$

Geodesics are circles or lines orthogonal to \mathbb{R} . Hyperbolic disk: Metric on \mathbb{D} ,

$$d\rho = |dz|/1 - |z|^2.$$

Geodesics are circles or lines orthogonal to $\partial \mathbb{D}$.

The hyperbolic metric on a simply connected domain plane Ω is defined by transferring the metric on the disk by the Riemann map.

Important Fact: $\rho \simeq \tilde{\rho}$ where

$$d\tilde{\rho} = \frac{|dz|}{\operatorname{dist}(z,\partial\Omega)},$$

is pseudo-hyperbolic metric.

Hyperbolic space: Metric on \mathbb{R}^3_+ , $d\rho = |dz|/\text{dist}(z, \mathbb{R}^2).$

Geodesics are circles or lines orthogonal to \mathbb{R}^2 .

The dome of Ω is boundary of hyperbolic convex hull of Ω^c .

Sullivan-Epstein-Marden found bi-Lipschitz map from base to dome, fixes boundary.

Used to be hard; now is easy.

Each point on $\text{Dome}(\Omega)$ is on dome of a maximal disk D in Ω . Must have $|\partial D \cap \partial \Omega| \geq 2$. The centers of these disks form the **medial axis**.

For polygons is a finite tree with 3 types of edges:

- point-point bisectors (straight)
- edge-edge bisectors (straight)
- point-edge bisector (parabolic arc)

For applications see:

www.ics.uci.edu/ eppstein/gina/medial.html+

In CS is attributed to Blum (1967), but Erdös proved $\dim(MA) = 1$ in 1945.

Goggle("medial axis") = 26,300Goggle("hyperbolic convex hull") = 71 Medial axis is boundary of Voronoi cells:

Chin-Snoeyink-Wang (1998) gave O(n) algorithm. Uses Chazelle' theorem (1991): an *n*-gon can be triangulated in O(n) time.

They use this to divide polygon into almost convex regions ("monotone histograms"); compute for each piece (Aggarwal-Guibas-Saxe-Shor, 1989) and merge results.

Merge Lemma: Suppose n sites $S = S_1 \cup S_2$ are divided by a line. Then diagram for S can be built from diagrams for S_1, S_2 in time O(n).

Finitely bent domain (= finite union of disks).

Let ρ_S be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ι from (S, ρ_S) to the hyperbolic disk.

For finitely bent domains rotate around each bending geodesic by an isometry to remove the bending (more obvious if vertices are 0 and ∞).

Elliptic Möbius transformation is conjugate to a rotation.

Elliptic transformation determined by fixed points and angle of rotation θ . It identifies sides of a crescent of angle θ : think of flow along circles orthogonal to boundary arcs. Visualize ι as a flow: Write finitely bent Ω as a disk D and a union of crescents. Foliate crescents by orthogonal circles. Following leaves of foliation in $\Omega \setminus D$ gives $\iota : \partial \Omega \to \partial D$.

Has continuous extension to interior: identity on disk and collapses orthogonal arcs to points.

• ι can be evaluated at n points in time O(n).

Theorem: ι has a K-QC extension to interior.

Corollary (Sullivan, Epstein-Marden): There is a K-QC map $\sigma : \Omega \to$ Dome so that $\sigma = \text{Id on } \partial \Omega = \partial S$.

Result comes from hyperbolic 3-manifolds. If Ω is invariant under Möbius group $G, M = \mathbb{R}^3_+/G$ is hyperbolic manifold,

 $\partial_{\infty} M = \Omega/G, \quad \partial C(M) = \text{Dome}(\Omega)/G.$

Thurston conjectured K = 2 is possible. Best known upper bound is K < 7.82. Epstein and Markovic showed K > 2.1 for some example. A mapping is *K*-quasiconformal if either: **Analytic definition:** $|f_{\overline{z}}| \leq \frac{K-1}{K+1}|f_z|$

 $f_z = \frac{1}{2}(f_x - if_y), \ f_{\bar{z}} = \frac{1}{2}(f_x + if_y).$

Metric definition: For every $x \in \Omega$, $\epsilon > 0$ and small enough r > 0, there is s > 0 so that

 $D(f(x),s) \subset f(D(x,r)) \subset D(f(x),s(K+\epsilon)).$

Notation for today: ϵ -conformal = e^{ϵ} -quasiconformal.

• The map is determined (up to Möbius maps) by $\mu_f = f_{\bar{z}}/f_z,$

For μ with $\|\mu\|_{\infty} < 1$, there is a f with $\mu_f = \mu$.

•
$$\|\mu\|_{\infty} \le k, k = (K-1)/(K+1)$$
 iff f is K-QC.

- $\mu = 0$ iff f is conformal.
- K-QC maps form a compact family.

• f is a **bi-Lipschitz** if $\frac{1}{A}\rho(x,y) \le \rho(f(x),f(y)) \le A\rho(x,y).$

• f is a **quasi-isometry** if $\frac{1}{A}\rho(x,y) - B \le \rho(f(x), f(y)) \le A\rho(x,y) + B.$

- QI=BL at "large scales".
- On hyperbolic disk, $BL \Rightarrow QC \Rightarrow QI$.

Theorem: $f : \mathbb{T} \to \mathbb{T}$ has a QC-extension to interior iff it has QI-extension (hyperbolic metric) iff it has a BL-extension.

Nearest point retraction $R : \Omega \to \text{Dome}(\Omega)$: Expand ball tangent at $z \in \Omega$ until it hits a point R(z) of the dome.

normal crescents = R^{-1} (bending lines) gaps = R^{-1} (faces)

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasiisometry. This follows from three easy facts.

Fact 1: If $z \in \Omega$, $\infty \notin \Omega$, $r \simeq \operatorname{dist}(z, \partial \Omega) \simeq \operatorname{dist}(R(z), \mathbb{R}^2) \simeq |z - R(z)|.$

Fact 2: R is Lipschitz.

 Ω simply connected \Rightarrow

$$d\rho \simeq \frac{|dz|}{\operatorname{dist}(z,\partial\Omega)}.$$

$$z \in D \subset \Omega \text{ and } R(z) \in \operatorname{Dome}(D) \Rightarrow$$

$$\operatorname{dist}(z,\partial\Omega)/\sqrt{2} \leq \operatorname{dist}(z,\partial D) \leq \operatorname{dist}(z,\partial\Omega)$$

$$\Rightarrow \quad \rho_{\Omega}(z) \simeq \rho_{D}(z) = \rho_{\operatorname{Dome}}(R(z)).$$

Fact 3: $\rho_S(R(z), R(w)) \leq 1 \Rightarrow \rho_\Omega(z, w) \leq C$.

Suppose dist $(R(z), \mathbb{R}^2) = r$ and γ is geodesic from z to w.

$$\Rightarrow \qquad \operatorname{dist}(\gamma, \mathbb{R}^2) \simeq r \\ \Rightarrow \qquad \operatorname{dist}(R^{-1}(\gamma), \partial\Omega) \simeq r, \\ R^{-1}(\gamma) \subset D(z, Cr) \\ \Rightarrow \qquad \rho_{\Omega}(z, w) \leq C$$

Moreover, $g = \iota \circ \sigma : \Omega \to \mathbb{D}$ is locally Lipschitz. Standard estimates show

$$|g'(z)| \simeq \frac{\operatorname{dist}(g(z), \partial \mathbb{D})}{\operatorname{dist}(z, \partial \Omega)}$$

Use Fact 1

$$dist(z, \partial \Omega) \simeq dist(\sigma(z), \mathbb{R}^2)$$
$$\simeq \exp(-\rho_{\mathbb{R}^3_+}(\sigma(z), z_0))$$
$$\gtrsim \exp(-\rho_S(\sigma(z), z_0))$$
$$= \exp(-\rho_D(g(z), 0))$$
$$\simeq dist(g(z), \partial D)$$

Fast Almost Riemann Mapping Theorem:

Can construct a K-QC map from n-gon Ω to disk in O(n) time, and K independent of n and Ω .

- Has simple geometric definition
- Only requires a "tree-of-disks" to define.
- Is stable; limit exists as disks fill in polygon.
- Fast to compute using medial axis.
- Is uniformly close to Riemann map.
- Can be used to compute Riemann map quickly.
- Definition motivated by hyperbolic 3-manifolds.
- Extends to Lipschitz map of interiors.

Riemann Mapping Theorem: If Ω is a simply connected, proper subdomain of the plane, then there is a conformal map $f : \Omega \to \mathbb{D}$.

The Schwarz-Christoffel formula gives the Riemann map onto a polygonal:

$$f(z) = A + C \int_{k=1}^{z} \prod_{k=1}^{n} (1 - \frac{w}{z_k})^{\alpha_k - 1} dw.$$

 α 's are known (interior angles) but z's are not (preimages of vertices).

If we plug in ι -images of vertices we almost get the correct polygon (center). Using uniformly spaced points is clearly worse (right).

Theorem: If $\partial \Omega$ is an *n*-gon we can compute a $(1 + \epsilon)$ -quasiconformal map between Ω and \mathbb{D} in time $O(n \log \frac{1}{\epsilon} \log \log \frac{1}{\epsilon})$.

Maps are stored as O(n) power series. Need $p = O(|\log \epsilon|)$ terms to get accuracy ϵ . Need time $O(p \log p)$ to multiply, *p*-long series.

Theorem allows O(1) such operations per vertex of polygon.

Proof of theorem is in two steps:

Step 1: Given $\epsilon < \epsilon_0$ and ϵ -QC $f_n : \Omega \to \mathbb{D}$ construct $C\epsilon^2$ -QC map $f_{n+1} : \Omega \to \mathbb{D}$. Construction takes time $C(\epsilon) = C + C \log^2 \frac{1}{\epsilon} \log \log \frac{1}{\epsilon}$.

Step 2: Build domains and finite boundary sets $(\Omega_0, V_0), \ldots, (\Omega_N, V_N)$

so that

•
$$\Omega_0 = \mathbb{D}$$
,

•
$$\Omega_N = \Omega, V_N = V$$

• δ -QC maps $g_k : \Omega_k \to \Omega_{k+1}, V_k \to V_{k+1}.$

If $\delta < \epsilon_0/2$ then find conformal maps by induction (use previous map as starting point of Step 1 to find next map).

Amazing Fact 1: Can take ϵ_0 independent of Ω and n.

Amazing Fact 2: Can take N independent of Ω and n.

Consequence: Get ϵ_0 approximation in time O(n) (independent of Ω). Then just repeat Step 1 until get desired accuracy :

$$\epsilon_0, C\epsilon_0^2, \dots C^k \epsilon_0^{2^k}.$$

About $\log \log \epsilon$ iterations suffice and time for kth iteration is $O(k2^{2k})$, so work dominated by final step.

Idea for Step 1: Suppose $f: \mathbb{H} \to \Omega, \quad g: \mathbb{H} \to \mathbb{H}, \quad \mu_f = \mu_g.$ Then $f \circ g^{-1}: \mathbb{H} \to \Omega$ is conformal.

Can't solve Beltrami equation $g_{\bar{z}} = \mu g_z$ exactly in finite time, but can quickly solve

$$g_{\overline{z}} = (\mu + O(\|\mu\|^2))g_z.$$

Then $f \circ g^{-1}$ is $(1 + C\|\mu\|^2)$ -QC.

Cut \mathbb{H} into O(n) pieces on which f, f^{α} or $\log f$ has nice series representation. Need $p = O(|\log \epsilon|)$ terms on each piece to get ϵ accuracy.

Idea for step 2: Use angle scaling.

There are at least two ways to decompose a finite union of disks using crescents.

We call these **tangential** and **normal** crescents. A finitely bent domain can be decomposed with either kind of crescent.

Another idea inspired by hyperbolic geometry: Thick/Thin decompositions.

Standard technique in hyperbolic manifolds is to partition the manifold based on the size of the injectivity radius. Thin parts often cause problems, there are only a few possible types and each has a well understood shape.

M = interesting thick parts + annoying thin parts

There is analogous decomposition of polygons.

An ϵ -thin part corresponds to two edges whose extremal distance in Ω is $< \epsilon$.

Parabolic thin parts occur at every vertex. Hyperbolic thins parts correspond to non-adjacent edges.

- At most O(n) thin parts.
- Can be located in linear time using iota map.
- Conformal maps onto thin parts "explicitly known".

• Remaining thick components have good approximations by O(n) disks.

• Can mesh thick part into O(n) pieces Q_j so map is conformal on $100Q_j$. Hence small angle distortion on thick parts.

Application to meshing:

Marshall Bern and David Eppstein showed any n-gon has quadrilateral mesh with all angles ≤ 120 which can be found in time $O(n \log n)$.

They asked if lower bound on angles is possible. Fast Riemann mapping theorem implies

Theorem: Any *n*-gon has quadrilateral mesh with all new angles between 60° and 120° which can be found in time O(n).

Both angle bounds are sharp.

Idea of proof

- Decompose polygon into thick and thin parts.
- Find explicit meshes in thin parts (known shapes).

• Find preimages on unit circle of vertices under conformal map.

• Remove disks around prevertices, tile remainder by hyperbolic pentagons, quadrilaterals, triangles.

• Mesh each hyperbolic polygon using angles in [60, 120].

• Map mesh forward to Ω by conformal map. Straighten sides.

• Gives $60 - \epsilon$, $120 + \epsilon$. Extra work to remove $\pm \epsilon$.

If you understand the figures, you understand the book.

> John Garnett, Bounded Analytic Functions, 1981

"Ah!" replied Pooh. He'd found that pretending a thing was understood was sometimes very close to actually understanding it. Then it could easily be forgotton with no one the wiser...

Winnie-the-Pooh

I wouldn't even think of playing music if I was born in these times... I'd probably turn to something like mathematics. That would interest me.

Bob Dylan, 2005

