Riemann Mapping Theorem: If Ω is a simply connected, proper subdomain of the plane, then there is a conformal map $f : \mathbb{D} \to \Omega$.

Conformal = angle preserving
Our Founder
William Fogg Osgood
First proof of RMT, 1900
Paul Koebe
Modern Proof of RMT,
• Assume \(\Omega \) is bounded, choose \(z_0 \in \Omega \).
• \(\mathcal{F} = \) conformal maps into \(\mathbb{D} \), \(z_0 \to 0 \)
• \(\mathcal{F} \neq \emptyset \): \((z \to z - z_0)/\text{diam}(\Omega) \in \mathcal{F} \).
• There is \(f \in \mathcal{F} \) that maximizes \(|f'(z_0)| \).
• This \(f \) is onto (hence Riemann map).

Last two steps are hard parts.

Next to last step uses compactness (normal families).

Last step is proof by contradiction.
General Möbius transformations (conformal, 1-1, group):

\[z \rightarrow \frac{az + b}{cz + d} \]

Special case:

\[z \rightarrow \frac{z - w}{1 - \bar{w}z} \]

maps unit disk to itself and maps \(w \rightarrow 0 \) and \(0 \rightarrow -w \).
Assume $|f'(z_0)|$ is maximal, but $f(\Omega) \neq \mathbb{D}$.

Choose $w \in \mathbb{D} \setminus f(\Omega)$.

Lemma: If $0 \in \Omega \subset \mathbb{D}$ is simply connected but not the whole disk then there is conformal map $g : \Omega \to \Omega' \subset \mathbb{D}$ with $|g'(0)| > 1$.

$g \circ f : \Omega \to \mathbb{D}$ is conformal and by chain rule

$$\frac{d}{dz} |g \circ f(z_0)| > |f'(z_0)|.$$

Contradiction. Hence f is onto \mathbb{D}.
Proof of lemma:
Choose Möbius maps σ, τ of disk so
\[\sigma(w) = 0, \quad \tau(\sqrt{\sigma(0)}) = 0. \]

Compute derivative at 0 of $g = \tau(\sqrt{\sigma})$
\[|d\frac{d}{dz}\tau(\sqrt{\sigma(z)})|_0 \geq \frac{1 + |w|}{2\sqrt{|w|}} > 1. \]
Proof of RMT gives an algorithm:
• Choose linear map of Ω into \mathbb{D}.
• Choose image boundary point closest to origin.
• Compose f with $g = \tau(\sqrt{\sigma}) : \mathbb{D} \to \mathbb{D}$.
• Repeat.

\[d_n = \text{dist}(\partial\Omega_n, 0) \]

Lemma: If \(k \geq 4/(1 - \sqrt{d_n}) \), then \(d_{n+k} > \sqrt{d_n} \).

Cor: If \(d_0 \geq 1/2 \) then \(d_n = 1 - O(1/n) \).

Takes 1,000,000 iterations to get \(d_n = .000001 \).
0th iteration
1th iteration
2nd iteration
10th iteration
20th iteration
50th iteration
Koebe’s iteration: it works, but is slow.

Numerous faster methods.
Schwarz-Christoffel formula (1867):

\[f(z) = A + C \int_{z}^{\tilde{z}} \prod_{k=1}^{n} (1 - \frac{w}{z_k})^{\alpha_k - 1} dw, \]
Schwarz-Christoffel formula (1867):

\[f(z) = A + C \int_{z}^{\bar{z}} \prod_{k=1}^{n} \left(1 - \frac{w}{z_k}\right)^{\alpha_k-1} dw, \]
Schwarz-Christoffel formula (1867):

\[f(z) = A + C \int \prod_{k=1}^{n} \left(1 - \frac{w}{z_k}\right)^{\alpha_k-1} dw, \]

\(\{\alpha_1 \pi, \ldots, \alpha_n \pi\} \), are interior angles of polygon.
\(\{z_1, \ldots, z_n\} \) are points on circle mapping to vertices.

\(\alpha \)'s are known.

\(z \)'s must be solved for.

Basic idea: guess some parameters. Use formula to draw the corresponding polygon. Compare to target polygon and revise guesses.
Davis’ method:

- Compare guessed polygon to target polygon.
- If an edge is too long, shorten corresponding parameter arc.
- If too long, lengthen the gap.

\[
\text{new gap} = \text{old gap} \times \frac{\text{target side}}{\text{old side}}
\]
20 iterations of Davis’ method for a rectangle.
20 iterations of Davis’ method - QC error.
30 iterations of Davis’ method - QC error.
We hit machine error $\approx 10^{-15}$.
50 iterations of Davis’ method.
QC error for 50 iterations of Davis’ method.
QC error for 400 iterations of Davis’ method.
Conformal Crowding:

Riemann map can dramatically shrink distances.

For a $1 \times R$ rectangle, two parameters are $\leq e^{-\pi R}$ apart.

If $e^{-\pi R} \leq 10^{-16} = \text{machine precision}$, they are the same point to the computer. $R \approx 11$.
QC mappings: distort angles by bounded amount.

\[\partial f = \frac{1}{2}(f_x - if_y), \quad \overline{\partial f} = \frac{1}{2i}(f_x + if_y). \]

Conformal \(f : \mathbb{D} \to \Omega \) with \(\overline{\partial f} = 0 \) (Cauchy-Riemann).

We measure distance to conformality by dilatation

\[\|f\| = \sup |\mu_f| \equiv \sup \left| \frac{\overline{\partial f}}{\partial f} \right|. \]
Affine map between triangles \{0, 1, a\} and \{0, 1, b\} is
\[f(z) \rightarrow \alpha z + \beta \bar{z} \]
where \(\alpha + \beta = 1\) and \(\beta = (b - a)/(a - \bar{a})\). Then
\[K_f = \frac{1 + |\mu_f|}{1 - |\mu_f|}, \]
where
\[\mu_f = \frac{f_{\bar{z}}}{f_z} = \frac{\beta}{\alpha} = \frac{b - a}{b - \bar{a}}, \]
How to compute integrals in SC-formula (error $< 10^{-16}$)?

$$\int_{a}^{b} f(x) dx \approx \sum_{k=1}^{n} a_n f(x_n)$$

- Right-hand-rule: error $= O(n^{-1})$.
- Midpoint rule: error $= O(n^{-2})$.
- Simpson's rule: error $= O(n^{-4})$.
- Gauss Quadrature: error $= O(n^{-2n})$.

Evaluation points $\{x_k\}$ and weights $\{a_k\}$ are given in terms of orthogonal polynomials.
SC-parameters by Newton’s method.

$T = \text{unit circle}$

$T_n = \text{ordered } n\text{-tuple on circle } (= \text{SC parameter guess})$

$\mathbb{C} = \text{complex numbers}$

$\mathbb{C}_n = \text{ } n\text{-tuple of complex numbers } (= \text{polygons})$
Fix angles in SC-formula. Then we get map:
$S : \mathbb{T}_n \rightarrow \mathbb{C}_n$ (parameters \rightarrow polygons)

Guessing map:
$G : \mathbb{C}_n \rightarrow \mathbb{T}_n$ (polygons \rightarrow parameters)

Compose $H = G \circ S : \mathbb{T}_n \rightarrow \mathbb{T}_n$ (para \rightarrow para)
If P is target polygon, let $z_0 = G(P)$.

Let $F(z) = H(z) - z_0$.

Find solution of $F(z) = 0$ by Newton’s method.

Then $H(z) = z_0 \Rightarrow G \circ S(z) = G(P) \Rightarrow S(z) = P$ (if G is 1-1).

We need:
 - G to be 1-1.
 - G to be computable.
How to solve $F(z) = 0$?

Define an iteration by

$$z_{n+1} = z_n - D_F^{-1}(F(z_n)).$$

where D_F is the derivative matrix of $F = (F_1, \ldots, F_d)$

$$(D_F)_{jk} = \frac{dF_k}{dx_j}.$$

In one dimension, this is

$$z_{n+1} = z_n - \frac{F(z_n)}{F'(z_n)}.$$
A couple of problems with this:

- What is a good G to choose?
- How do we compute D_F?
- $z_n, F(z_n) \in \mathbb{T}$. How do we do linear algebra?

We will deal with these in reverse order.
How to make \(n \)-tuples on circle into a vector space?

Triangulate the points.
How to make n-tuples on circle into a vector space?

Choose a root triangle.
How to make n-tuples on circle into a vector space?

For each triangle adjacent to root, form quadrilateral by union of the two triangles
How to make n-tuples on circle into a vector space?

Record the cross ratio of the four points

\[\text{cr}(a, b, c, d) = \frac{(d - a)(b - c)}{(c - d)(a - b)}. \]

Invariant under Möbius transformations.

Points on circle \Rightarrow cross ratio real valued.
How to make n-tuples on circle into a vector space?

The $n-2$ numbers $\log |\rho|$ determine n-tuple on circle up to a Möbius transformation of disk (free to place vertices of root triangle where we please).

If two n-tuples differ by a Möbius transformation, Schwarz-Christoffel gives similar polygons.
\(T^*_n = \mathbb{R}^{n-3} = \) equivalence classes of ordered \(n \)-tuples on circle identified via Möbius transformations.

\(\mathbb{C}^*_n = n \)-tuples on complex numbers modulo similarities.

We can think of
\[
G : \mathbb{C}^*_n \rightarrow T^*_n, \quad S : T^*_n \rightarrow \mathbb{C}^*_n,
\]
and
\[
F : T^*_n \rightarrow T^*_n,
\]
or
\[
F : \mathbb{R}^{n-3} \rightarrow \mathbb{R}^{n-3}.
\]

So now we can do linear algebra.
How do we compute derivative of $F = G \circ S$?

1) Use a discrete approximation

$$\partial_j F_k(x_1, \ldots, x_m) = \frac{1}{h} [(F_k(x_1, \ldots, x_j + he_j, \ldots, x_m) - F_k(x_1, \ldots, x_j, \ldots x_m)].$$

Gives good result but slow ($m + 1$ evaluations of F).

2) Assume $DF = Id$. Easy, fast, often works.

3) Broyden updates. Start by assuming $DF = Id$, but update DF after each evaluation of F. Often best compromise between speed and accuracy.
What is a good choice for \(G \), the guessing function?

Davis’s method: based on edge lengths.

CRDT: based on triangulation and cross ratios.

Iota: based on hyperbolic geometry.
CRDT

Cross Ratios and Delaunay Triangulations

Toby Driscoll and Stephen Vavasis, 1998

Triangulate polygon

Choose root triangle

For non-roots form quadrilateral of triangle and parent

Compute cross ratio ρ of 4 vertices (complex number).

Record $\log |\rho|$.

Identify with n-tuple (modulo Möbius) as before.

Full CRFT: $DF = \text{discrete approximation}$

Simple CRDT: $DF = \text{Identity}$

Shortcut CRDT: DF using Broyden updates
What is Delaunay Triangulation?

A triangulation is Delaunay if whenever triangles share and edge, the opposite angles sum to $\leq \pi$.

A DT always exists and minimizes the maximum angle. Not needed to define CRDT, but makes it work better.
QC error for CRDT
Comparison of Davis and CRDT
A 98-gon and its Delaunay triangulation.
10 iterations of shortcut CRDT applied to a 98-gon.
QC error of shortcut CRDT applied to the 98-gon.
For a pentagon, the iteration is on \mathbb{R}^2.

We can draw a picture: connect z to $F(z)$ by a segment.
The map $F = G \circ S$. We want to solve $F(z) = z_0$.
Iteration $\mathbf{z} \rightarrow \mathbf{z} - (F(\mathbf{z}) - \mathbf{z}_0)$. We want fixed point.
Another guessing map: iota

Consider interior disks with ≥ 2 contacts on boundary.
Another guessing map: iota

Consider interior disks with ≥ 2 contacts on boundary.
Another guessing map: iota

Consider interior disks with ≥ 2 contacts on boundary.
Another guessing map: iota

Centers of all such disks define **medial axis**.
Another guessing map: iota

Centers of all such disks define **medial axis**.
Another guessing map: iota

Take a finite set of medial axis disks. Choose a root.
Another guessing map: iota

Foliate crescents by orthogonal arcs.
Another guessing map: \(\iota \)

Follow arcs to define map of boundary to circle.
Similar flow for any simply connected domain.
Thm: Iota is 8-QC close to conformal.

Thm: Iota is computable in $O(n)$ time.
How does Iota compare to CRDT?