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THE IDEA

In analysis we often want to map a complicated region to a simple shape,
such as a disk, preserving some property, e.g., angles.

In computational geometry we often want to decompose a complicated
shape into simple regions, like triangles, bounding the number of pieces
needed and the angles used.

These problems are closely connected.



THE PLAN

Lecture 1: Medial axis approximates conformal maps
e Harmonic measure and conformal maps
e The Schwarz-Christottel formula
e The medial axis
e Convex hulls in hyperbolic space

Lecture 2: Conformal maps give good meshes
e Optimal quad-meshes
e Optimal triangulations of polygons
e Non-obtuse triangulations of PSLGs

































200 step random walk.




1000 step random walk.
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10,000 step random walk.



100,000 step random walk.



Harmonic measure = hitting distribution of Brownian motion

Suppose €2 is a planar Jordan domain.



Harmonic measure = hitting distribution of Brownian motion

Let E be a subset of the boundary, 0f).



Harmonic measure = hitting distribution of Brownian motion

Choose an interior point z € ().



Harmonic measure = hitting distribution of Brownian motion

w(z, E,)) = probability a particle started at z first hits 0€2 in E.
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Harmonic measure = hitting distribution of Brownian motion

w(z, E,)) = probability a particle started at z first hits 0€2 in E.



Harmonic measure = hitting distribution of Brownian motion

w(z, E,Q) ~1/10.



Harmonic measure = hitting distribution of Brownian motion

w(z, F,Q) ~ 13/100.



Harmonic measure = hitting distribution of Brownian motion

w(z, E, Q) ~ 126/1000.



Riemann Mapping Theorem: If () C R? is simply connected, then
there is a conformal map f : D — ).

Conformal = angle preserving
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Brownian motion is conformally invariant, so normalized length measure
maps to harmonic measure. Fastest way to compute harmonic measure.




Riemann Mapping Theorem: If () C R? is simply connected, then
there is a conformal map f : D — Q. (conformal = angle preserving)

Brownian motion is conformally invariant, so normalized length measure
maps to harmonic measure. Fastest way to compute harmonic measure.




harmonic measure ~ 0.1128027




harmonic measure ~ 1.22155 x 100




Georg Friedrich Bernhard Riemann

Stated RMT in 1851



William Fogg Osgood
First proof of RMT, Trans. AMS, vol. 1, 1900
Harvard 1866, Math Faculty 1890-1933, Chair 1918-22



The proof of Osgood represented, in my opinion, the “coming of age”
of mathematics in America. Until then, ...the mathematical pro-
ductivity in this country in quality lagged behind that of Europe, and
no American before 1900 had reached the heights that Osgood then

reached.

J.L. Walsh, “History of the Riemann mapping theorem”, Amer. Math.
Monthly, 1973.



Schwarz-Christoffel formula for maps to polygons (1867):

Christoftel Schwarz



Schwarz-Christoffel formula for maps to polygons (1867):

a’s known. z’s unknown (= SC-parameters = pre-vertices)

Finding SC-parameters = Finding harmonic measure of edges



Numerical conformal mapping:
e Koebe
e Theodorsen
e Fornberg
e Wegman
o Gaier
e Symm
e Kerzman-Stein
e Integral equations via fast multipole, Rokhlin
e Circle packing, Sullivan, Rodin, Stephenson
e CRDT, Driscoll and Vavasis
e SCToolbox, Trefethen, Driscoll
e ZIPPER, Marshall

Problem: given n-gon, how fast can we compute the SC-parameters?



Theorem: Can compute e-conformal map onto n-gon in time Ck - n.



Theorem: Can compute e-conformal map onto n-gon in time Ck - n.

e-conformal = 1 + € quasiconformal.
Ce = O(log % log log %)
Data held as O(n) Laurent series of length p = log %

Bottleneck is doing O(1) FFTs per vertex of polygon.




Quasiconformal (QC) maps are homeomorphisms that are differentiable
a.e. and send infinitesimal ellipses to circles.
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Eccentricity = ratio of major to minor axis of ellipse.

For K-QQC maps, ellipses have eccentricity < K



Quasiconformal (QC) maps are homeomorphisms that are differentiable
a.e. and send infinitesimal ellipses to circles.

SO QO O00000
SN E=ro 000000
Co 0009 — 000000
S0 0 00 000000

NODoo( 000000

Eccentricity = ratio of major to minor axis of ellipse.
For K-QQC maps, ellipses have eccentricity < K

Ellipses determined a.e. by measurable dilatation

Here f, = fy —ify and fz = fo +1ify.

K —1

< 1.
K +1




Quasiconformal (QC) maps are homeomorphisms that are differentiable
a.e. and send infinitesimal ellipses to circles.

SO QO O00000
SN E=ro 000000
Qo002 —+« 000000
SO0 00 000000
NOdoop 000000

Example: piecewise afline maps between triangulations.

NN

Map is QC if all angles bounded above and below.




Affine map between triangles {0, 1, a} and {0, 1, b} has constant dilatation
b—a
S

(For experts, this is pseudo-hyperbolic distance in upper half-plane.)



Example: piecewise afline maps between triangulations.




Example: piecewise afline maps between triangulations.




QC-distance for n-gons defined by optimal QQC map preserving vertices.

| |

For rectangles, optimal map is linear stretch (z,y) — (za - y).
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In general, optimal QQC map is hard to compute.

See “Computing Teichmiiller Maps between Polygons”, Goswami, Gu,
Pingali, Telang (2014)



Any map gives an upper bound.

Find compatible triangulation and compute dilatation of affine maps.



Any map gives an upper bound.
Find compatible triangulation and compute dilatation of affine maps.
It Pi, Py are e-close in QC sense, SC-parameters are O(¢)-close on circle.

Estimates distance to SC-parameters without knowing SC-parameters.



Recall that the dilatation of a QQC map is
ja
p=2 o0 fo=p-fs
/=
Measurable Riemann Mapping Theorem:
Given a measurable dilatation g on the unit disk with ||u||co < 1, there

is a quasiconformal f : D — D with this dilatation.



Recall that the dilatation of a QQC map is
ILL — f_z

/=

Measurable Riemann Mapping Theorem:

Given a measurable dilatation g on the unit disk with ||u||co < 1, there
is a quasiconformal f : D — D with this dilatation.

o fr=pfs

e [ixact solution by power series of singular integral operators.
e Linearization can be solved by convolution with 1/z.
e Newton’s method: solve linear approximation, compute new pu, repeat.

e Converges if ||t|lco < €.



Corollary:
Given QC g : D — (), thereis f : D — ID so that g o f is conformal.

f g ﬁ I
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Corollary:
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f g ﬁ I

\ /
conformal

Fast mapping theorem reduces to two steps:
e Find initial QC map ¢ to polygon.
e Solve Beltrami for p = pg to get f : 1D — D.

We ignore 2nd part; just find good g.



A “good” ¢ is fast to compute and guaranteed close to correct answer.



A “good” g is fast to compute and guaranteed close to correct answer.
e fast comes from computational geometry.

e close comes from hyperbolic geometry:.



Medial axis:

centers of disks that hit boundary in at least two points.




Medial axis:
centers of disks that hit boundary in at least two points.

Medial axis of a polygon is a finite tree.
Computable in O(n), Chin-Snoeyink-Wang (1999).

Related to Voronoi diagrams: divides polygon according to nearest edge.



Medial axis:
centers of disks that hit boundary in at least two points.

(-

Claim: there is a “natural” choice of conformal map between any two
medial axis disks.




A Mobius transformation is a map of the form

az + b
Z — )
cz+d

Conformally maps disks to disks (or half-planes).

Form a group under composition.

Uniquely determined by images of 3 distinct points.




Intersecting circles:

Fix intersection points a, b and map ¢ — d as shown.
Determines unique Mobius map between disks.

Part of 1-parameter symmetric family fixing a, b.





















Points follow circular paths, perpendicular to boundary:.



How does this give a map from polygon P to a circle?



e [ix a “root” MA disk D.
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e For any z € P, take MA disk D, touching z.



e Connect D, to D on MA.
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We discretize only to draw picture.

Limiting map has formula in terms of medial axis.



Similar flow for any simply connected domain.
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Theorem: Mapping all n vertices takes O(n) time.

Uses linear time computation of MA (Chin-Snoeyink-Wang) and book-
keeping with cross ratios.
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How close is medial axis map to conformal map?



How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoflel formula.

Target Polygon MA Parameters

Looks pretty close. What is QC distance?




How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoflel formula.

Target Polygon MA Parameters

Looks pretty close. What is QC distance?
The most distorted triangle is shaded. Here K = 1.24.




Theorem: Medial axis map always gives QC-error K < 8.



Theorem: Medial axis map always gives QC-error K < 8.

Why is this theorem true?



Theorem: Medial axis map always gives QC-error K < 8.
Why is this theorem true?

Short answer: convex sets in hyperbolic 3-space



Usual definition of convex: contains geodesic between any two points.




More useful for us: complement is a union of half-spaces.




Hyperbolic metric on disk given by
ds ds

dp = -~ .
P 1 — |22 dist(z,0D)

e (Geodesics are circles perpendicular to boundary:.

e Shaded region is hyperbolically convex.

e Metric transfers via conformal maps to other domains.
e For simply connected regions dp >~ ds/dist(z, 0€2).




In the upper half-space R = {(z,y,t) : t > 0}, metric is dp = ds/2t.
A

(Geodesics in R‘i are vertical rays or semi-circles perpendicular to R2.
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In R3 | a hyperbolic half-space = hemisphere.
Given 2 C R2. compute hyperbolic convex hull its complement.

Easier to visualize the complement of convex hull = union of hemispheres.



Dome(€2) is union of hemi-spheres with base disks in €.

Region above dome is intersection of half-spaces, hence convex.

Upper boundary S of dome is a surface in ]Ri with 05 = 9.



Finite dome









The medial axis. Equidistant from at least two boundary points.
Corresponding hemispheres give the dome.









Thm: Simply connected domes are isometric to hyperbolic disk.
We assume dome has hyperbolic path metric.

e Prove for finite unions of disks.

e Fvery dome is a limit of finite domes.

e Limit of isometries is an isometry:.

Isometry on boundary I' defines a map I' to circle.



Every dome has conformal map to disk by “flattening”.




Folding plane along geodesic does not change length.
Pleated surface (folded along disjoint geodesics) = Flat plane






Medial axis map = boundary of flattening map (iota)

= boundary of conformal map of dome to hemisphere



10ta = conformal

conformal

QC

-

Riemann =
conformal

Iota = conformal from dome to disk.

Medial axis flow = boundary values of iota

Claim: There is QC map base — dome fixing boundary pointwise.
Implies that medial axis map has QC extension {2 — ID.

Claim is proven using nearest point projection onto convex sets.



Nearest point map in R" is Lipschitz.
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Nearest point map in R" is Lipschitz.




Region below dome is union of hemispheres
Hemispheres = hyperbolic half-spaces.
Region above dome is hyperbolically convex.

Consider nearest point retraction onto this convex set.



























Need not be a homeomorphism, but . ..



Need not be a homeomorphism, but it is a quasi-isometry

L _ plR@).RY) _

A7 pz,y)

i.e., R is bi-Lipschitz on large scales.

if p(z,y) > B.

Metrics are hyperbolic metrics on €2 and S



“Smoothing” gives K-QQC map fixing boundary points.

Sullivan’s convex hull theorem: K is independent of domain.

Dennis Sullivan, David Epstein and Al Marden, C.B.



Dennis Sullivan ~ David Epstein Al Marden

Dennis Sullivan proved this assuming invariance under a group of Mobius
transtformations. This was used by William Thurston to prove certain
3-manifolds have a hyperbolic metric.

Epstein and Marden extended to general simply connected ). K ~ 85.

Best value unknown, but 2.1 < K < 7.82.



Application: factorization: Riemann map f = h o g where
e g : () — D is Lipschitz in Euclidean path metrics,
e h : D — ID is biLipschitz in hyperbolic metric

Euclidean Hyperbolic
Lipschi;( \biqipschitz

-

conformal

Cor: Any simply connected domain can be mapped 1-1, onto a disk D
by a contraction for the internal path metric.



Application: Angle scaling:
Crescents in base can map to folding geodesics on surface.

Gray collapses to bending lines, “width = angle”.
White maps isometrically to dome.

Discrete Riemann map: collapses crescents (gray), Mobius elsewhere (white).



Angle scaling family - crescent angles decrease
“Morphs” region to disk.

Reduces solving Beltrami equation to case of small dilatations.



Riemann map approximated by cutting into simple pieces and rearranging.
Gray pices collapse orthogonally.

White pieces map by Mobius transformations.
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Intermediate regions need not be planar.



Application: Quadrilateral meshes




Marshall Bern and David Eppstein (2000) proved:
e n-gons have O(n) quad-mesh with angles < 120°.
e O(nlogn) work.

e Regular hexagon (and Euler’s formula) shows 120° is sharp.




Bern asked: can we bound angles from below?



Bern asked: can we bound angles from below?

Theorem: Every n-gon has O(n) quad-mesh with all angles < 120° and
new angles > 60°. O(n) work.



Bern asked: can we bound angles from below?

Theorem: Every n-gon has O(n) quad-mesh with all angles < 120° and
new angles > 60°. O(n) work.

Original angles < 60° remain unchanged. 60° is sharp.



Idea of proof: transfer mesh from disk




Idea of proof: transfer mesh from disk

More about this next time.
















Sketch of proof that R is quasi-isometry
One direction: R is Lipschitz.

Other direction: R~ is Lipschitz at distances > 1.



Fact 1: If z € (), 0o &€ (),
r ~ dist(z, Q) ~ dist(R(z), R?) ~ |z — R(2)|.




Fact 2: R is Lipschitz.
e () simply connected = dp ~ |dz|/dist(z, 0f2).

e 2 € D C Qand R(z) € Dome(D) = z in hyperbolic convex hull of
0N oD in D.

= dist(z, 0Q)/v2 < dist(z,0D) < dist(z, 0Q)
= p(z) = ppl(2) = PDome(F(2)).




Fact 3: pg(R(z), R(w)) <1 = po(z,w) < C.

Suppose dist(R(z),R?) = 7.

Suppose 7 is geodesic on dome from R(z) to R(w).
= dist(y, R?) ~ r

= dist(R™1(7), Q) ~ r, R () c D(z,Cr)
=




Moreover, g = 1o o : {2 — D is locally Euclidean Lipschitz.

yo oy dist(g(z), OD)
9(z)] = dist(z,092)

Use Fact 1

dist(R(z), R?)
Prs (£(2), 20))

(

(=
exp(—pg(R(=), %)
exp(—pp(9(2),0))
dist(g(z),0D)

dist(z, 00

2

exp
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