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Hexagon → triangles with probability p, ANS = 12p+6
5p+1 (p = 1/4 shown).



Limit need not exist



average number sides ր ∞, areas → 0, diameters bounded



average number sides ր ∞, diameters → ∞, areas bounded below





average number sides ր ∞, forbid vertices of degree 1 and 2



Theorem 1: Suppose faces have areas that are bounded below and
diameters that are bounded above, and every vertex had degree ≥ 3.
Then

lim sup
t→∞

ANS(t) ≤ 6.

Average is over all faces contained in circle of radius t.



Average over faces inside/hitting an expanding circle



Theorem false in three dimensions



Euler’s formula for finite planar graphs: V − E + F = C + 1

V = number vertices

E = number of edges

F = number of faces

C = number of components
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Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree ≥ 3, then E < 3F .



Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree ≥ 3, then E < 3F .

Proof: Clearly
∑

v∈H

deg(v) = 2E.

By assumption, deg(v) ≥ 3 for all vertices so 3V ≤ 2E. Hence V ≤ 2
3E.



Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree ≥ 3, then E < 3F .

Proof: Clearly
∑

v∈H

deg(v) = 2E.

By assumption, deg(v) ≥ 3 for all vertices so 3V ≤ 2E. Hence V ≤ 2
3E.

Plugging this into Euler’s formula V − E + F = C + 1 gives

−
1

3
E + F ≥ C + 1

or
E ≤ 3F − 3(C + 1) < 3F.



Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree ≥ 3, then E < 3F .

Corollary: Number of sides = 2E < 6F . So for a finite planar graph
(all degrees ≥ 3), the average number of sides per face is ≤ 6.

E = 16, F = 8, ANS = 4



This is for finite H . What about infinite maps?



Choose a piecewise smooth region R in the plane and let tR + x denote
the region dilated by a factor of t > 0 and translated by x.

Let H = H(R, t, x) be the sub-map of G consisting of the 2-cells of G
that lie inside tR + x.

Let ANS(t) be average number of sides over faces in H(R, t, x).

Usually take circle around origin.



Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then
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Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then

lim sup
t→∞

ANS(H(R, t, x)) ≤ 6.

Average is taken over faces contained in tR + x.

Same conclusion holds for faces hitting tR + x

Really only need R to have non-empty interior and zero area boundary.



Definition: edge boundary: If H ⊂ G, then ∂EH is set of edges in
G \H with at least one endpoint in H .

e(H) =
|∂EH|

F
.

Here e(H) = 9/5. Related to Cheeger constant of G.



Lemma 1: If H is a sub-map of G then ANS(H) ≤ 6 + 4e(H).

Proof: Note that

2E + |∂EH| ≤
∑

v∈H

degG(v) ≤ 2E + 2|∂EH|,

The left hand inequality would be an equality, except that some edges in
∂EH might have both endpoints on ∂H .



Lemma 1: If H is a sub-map of G then ANS(H) ≤ 6 + 4e(H).

Proof continued: Every vertex has degree ≥ 3, so

3V ≤
∑

v∈H

degG(v) ≤ 2E + 2|∂EH|.

Divide by 3 and put estimate for V into Euler’s formula:

(
2

3
E +

2

3
|∂EH|)− E + F ≥ C

Simplifying gives

E

F
≤ 3 + 2

|∂EH|

F
− 3

C

F
≤ 3 + 2e(H).

Hence
ANS(H) ≤ 2E/F ≤ 6 + 4e(H).



Definition: the face boundary: ∂FH is the set of faces in G \ H
that touch H .

Easy to see |∂FH| ≤ |∂EH|. We need converse direction.



One adjacent face, many adjacent edges



Lemma 2: Suppose the faces of G have diameters ≤ D < ∞ and H is a
sub-map. Let N be the number of faces that lie inside a 3D-neighborhood
of ∂H . Then |∂EH| ≤ 3N .



Lemma 2: Suppose the faces of G have diameters ≤ D < ∞ and H is a
sub-map. Let N be the number of faces that lie inside a 3D-neighborhood
of ∂H . Then |∂EH| ≤ 3N .

Proof:

Let G′ be the finite graph on the sphere consisting of the faces of G that lie
within the 2D-neighborhood of ∂H , together with their edges and vertices.

Check that edges of G′ include all edges in ∂EH .

Each face of G′ is either a face of G or contains a face of G that is within
3D of ∂H . Thus number of faces of G′ is at most N .







Lemma 2: Suppose the faces of G have diameters ≤ D < ∞ and H is a
sub-map. Let N be the number of faces that lie inside a 3D-neighborhood
of ∂H . Then |∂EH| ≤ 3N .

Proof continued:

Define G′′ by removing any vertices of degree 2 from G′; combine edges.

G′ and G′′ have same number of faces, ≤ N .

If e ∈ ∂EH , endpoints have degree ≥ 3 in G′ (any edge touching e in G
is in G′). So e is an edge of G′′.

By Sphere Theorem, edges in G′′ bounded by three times faces in G′′.

Hence |∂EH| ≤ 3N .



Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then

lim sup
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ANS(H(R, t, x)) ≤ 6.



Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then

lim sup
t→∞

ANS(H(R, t, x)) ≤ 6.

Proof: Only need show e(H(R, t, x)) → 0.



Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then

lim sup
t→∞

ANS(H(R, t, x)) ≤ 6.

Proof continued: The number of faces in H(R, t, x) is ≥ ct2.

2D

2D



Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then

lim sup
t→∞

ANS(H(R, t, x)) ≤ 6.

Proof continued: Area within 3D of ∂H is O(t ·D),
so |∂EH| = O(tD/A).

3D



Theorem 1: Suppose all faces of G have diameter ≤ D < ∞, and have
area ≥ A > 0, and that every vertex has degree ≥ 3. Then

lim sup
t→∞

ANS(H(R, t, x)) ≤ 6.

Proof continued: Hence e(H) = O(t/t2) = O(1/t).



Theorem 2: If G satisfies the area lower bound and diameter upper
bouned and every vertex has degree 3, then

lim
t→0

ANS(t) = 6.



Voronoi diagram of Poisson point process



Ω is δ-thick if for all 0 < r < diam(Ω) and all x ∈ ∂Ω we have

area(Ω ∩D(x, r)) ≥ δr2.

Thick Not Thick

True if Ω is convex, with a δ that depends on the aspect ratio.

Holds for quasidisks.



Theorem 3: Suppose G is a planar map and every face is δ-thick, for
some δ > 0. Then there is a nested, increasing sequence of sub-maps
{Hn} so that limn→∞ANS(Hn) ≤ 6.



Theorem 3: Suppose G is a planar map and every face is δ-thick, for
some δ > 0. Then there is a nested, increasing sequence of sub-maps
{Hn} so that limn→∞ANS(Hn) ≤ 6.

Idea of proof:

If lim inf > 6, then e(H(t)) > ǫ > 0 for all t > t0.

We can show this forces |∂FH(t)| ր ∞ in a finite time.

This contradicts local finiteness of G.



lim sup = ∞, lim inf ≤ 6.



Aspect Ratio(K) = inf R/r where D(x, r) ⊂ K ⊂ D(y,R).

Is there a “6” theorem if faces have uniformly bounded aspect ratios?



Aspect Ratio(K) = inf R/r where D(x, r) ⊂ K ⊂ D(y,R).

Is there a “6” theorem if faces have uniformly bounded aspect ratios?

No.
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Out-radius/in-radius is bounded, but number of neighbors ր ∞



Out-radius/in-radius is bounded, but number of neighbors ր ∞.


