Planar maps with at most six neighbors on average

Christopher Bishop, Stony Brook Dennis Sullivan, Stony Brook Michael Wigler, Cold Spring Harbor

AMS Sectional Meeting - March 19, 2016 Stony Brook NY www.math.sunysb.edu/~bishop/lectures

Hexagon \rightarrow triangles with probability p, ANS = $\frac{12p+6}{5p+1}$ (p = 1/4 shown).

Limit need not exist

average number sides $\nearrow \infty$, areas $\rightarrow 0$, diameters bounded

average number sides $\nearrow \infty$, diameters $\rightarrow \infty$, areas bounded below

average number sides $\nearrow \infty$, forbid vertices of degree 1 and 2

Theorem 1: Suppose faces have areas that are bounded below and diameters that are bounded above, and every vertex had degree ≥ 3 . Then

 $\limsup_{t \to \infty} \text{ANS}(t) \le 6.$

Average is over all faces contained in circle of radius t.

Average over faces inside/hitting an expanding circle

Theorem false in three dimensions

Euler's formula for finite planar graphs: V - E + F = C + 1

- V = number vertices
- E = number of edges
- F = number of faces
- C = number of components

Euler's formula for finite planar graphs: V - E + F = C + 1

- V = number vertices
- E = number of edges
- F = number of faces
- C = number of components

Euler's formula for finite planar graphs: V - E + F = C + 1

- V = number vertices
- E = number of edges
- F = number of faces
- C = number of components

Proof: Clearly

$$\sum_{v \in H} \deg(v) = 2E.$$

By assumption, $\deg(v) \ge 3$ for all vertices so $3V \le 2E$. Hence $V \le \frac{2}{3}E$.

Proof: Clearly

$$\sum_{v \in H} \deg(v) = 2E.$$

By assumption, $\deg(v) \ge 3$ for all vertices so $3V \le 2E$. Hence $V \le \frac{2}{3}E$.

Plugging this into Euler's formula V - E + F = C + 1 gives

$$-\frac{1}{3}E + F \ge C + 1$$

or

 $E \le 3F - 3(C+1) < 3F.$

Corollary: Number of sides = 2E < 6F. So for a finite planar graph (all degrees ≥ 3), the average number of sides per face is ≤ 6 .

 $E = 16, \quad F = 8, \quad \text{ANS} = 4$

This is for finite H. What about infinite maps?

Choose a piecewise smooth region R in the plane and let tR + x denote the region dilated by a factor of t > 0 and translated by x.

Let H = H(R, t, x) be the sub-map of G consisting of the 2-cells of G that lie inside tR + x.

Let ANS(t) be average number of sides over faces in H(R, t, x).

Usually take circle around origin.

Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then

 $\limsup_{t \to \infty} \operatorname{ANS}(H(R, t, x)) \le 6.$

Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then $\limsup_{t \to \infty} \operatorname{ANS}(H(R, t, x)) \leq 6.$

Average is taken over faces contained in tR + x.

Same conclusion holds for faces hitting tR + x

Really only need R to have non-empty interior and zero area boundary.

Definition: edge boundary: If $H \subset G$, then $\partial_E H$ is set of edges in $G \setminus H$ with at least one endpoint in H.

Here e(H) = 9/5. Related to Cheeger constant of G.

Lemma 1: If H is a sub-map of G then $ANS(H) \le 6 + 4e(H)$.

Proof: Note that

$$2E + |\partial_E H| \le \sum_{v \in H} \deg_G(v) \le 2E + 2|\partial_E H|,$$

The left hand inequality would be an equality, except that some edges in $\partial_E H$ might have both endpoints on ∂H .

Lemma 1: If H is a sub-map of G then $ANS(H) \le 6 + 4e(H)$.

Proof continued: Every vertex has degree ≥ 3 , so

$$3V \le \sum_{v \in H} \deg_G(v) \le 2E + 2|\partial_E H|.$$

Divide by 3 and put estimate for V into Euler's formula:

$$(\frac{2}{3}E + \frac{2}{3}|\partial_E H|) - E + F \ge C$$

Simplifying gives

$$\frac{E}{F} \leq 3 + 2\frac{|\partial_E H|}{F} - 3\frac{C}{F} \leq 3 + 2e(H).$$

Hence

$$\operatorname{ANS}(H) \le 2E/F \le 6 + 4e(H).$$

Definition: the face boundary: $\partial_F H$ is the set of faces in $G \setminus H$ that touch H.

Easy to see $|\partial_F H| \leq |\partial_E H|$. We need converse direction.

One adjacent face, many adjacent edges

Lemma 2: Suppose the faces of G have diameters $\leq D < \infty$ and H is a sub-map. Let N be the number of faces that lie inside a 3D-neighborhood of ∂H . Then $|\partial_E H| \leq 3N$.

Lemma 2: Suppose the faces of G have diameters $\leq D < \infty$ and H is a sub-map. Let N be the number of faces that lie inside a 3D-neighborhood of ∂H . Then $|\partial_E H| \leq 3N$.

Proof:

Let G' be the finite graph on the sphere consisting of the faces of G that lie within the 2D-neighborhood of ∂H , together with their edges and vertices.

Check that edges of G' include all edges in $\partial_E H$.

Each face of G' is either a face of G or contains a face of G that is within 3D of ∂H . Thus number of faces of G' is at most N.

Lemma 2: Suppose the faces of G have diameters $\leq D < \infty$ and H is a sub-map. Let N be the number of faces that lie inside a 3D-neighborhood of ∂H . Then $|\partial_E H| \leq 3N$.

Proof continued:

Define G'' by removing any vertices of degree 2 from G'; combine edges. G' and G'' have same number of faces, $\leq N$.

If $e \in \partial_E H$, endpoints have degree ≥ 3 in G' (any edge touching e in G is in G'). So e is an edge of G''.

By Sphere Theorem, edges in G'' bounded by three times faces in G''. Hence $|\partial_E H| \leq 3N$. **Theorem 1:** Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then

 $\limsup_{t \to \infty} \operatorname{ANS}(H(R, t, x)) \le 6.$

Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then

 $\limsup_{t \to \infty} \operatorname{ANS}(H(R, t, x)) \le 6.$

Proof: Only need show $e(H(R, t, x)) \to 0$.

Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then $\limsup_{t \to \infty} \operatorname{ANS}(H(R, t, x)) \leq 6.$

Proof continued: The number of faces in H(R, t, x) is $\geq ct^2$.

Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then $\limsup ANS(H(R, t, x)) \leq 6$.

Proof continued: Area within 3D of ∂H is $O(t \cdot D)$, so $|\partial_E H| = O(tD/A)$.

 $t \rightarrow \infty$

Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3 . Then $\limsup ANS(H(R, t, x)) \leq 6$.

Proof continued: Hence $e(H) = O(t/t^2) = O(1/t)$.

 $t \rightarrow \infty$

Theorem 2: If G satisfies the area lower bound and diameter upper bound and every vertex has degree 3, then

 $\lim_{t \to 0} \text{ANS}(t) = 6.$

Voronoi diagram of Poisson point process

Ω is δ -thick if for all $0 < r < \operatorname{diam}(\Omega)$ and all $x \in \partial \Omega$ we have $\operatorname{area}(\Omega \cap D(x, r)) \ge \delta r^2.$

True if Ω is convex, with a δ that depends on the aspect ratio. Holds for quasidisks. **Theorem 3:** Suppose G is a planar map and every face is δ -thick, for some $\delta > 0$. Then there is a nested, increasing sequence of sub-maps $\{H_n\}$ so that $\lim_{n\to\infty} ANS(H_n) \leq 6$.

Theorem 3: Suppose G is a planar map and every face is δ -thick, for some $\delta > 0$. Then there is a nested, increasing sequence of sub-maps $\{H_n\}$ so that $\lim_{n\to\infty} ANS(H_n) \leq 6$.

Idea of proof:

If
$$\liminf > 6$$
, then $e(H(t)) > \epsilon > 0$ for all $t > t_0$.

We can show this forces $|\partial_F H(t)| \nearrow \infty$ in a finite time.

This contradicts local finiteness of G.

 $\limsup = \infty, \liminf \leq 6.$

Aspect $\operatorname{Ratio}(K) = \inf R/r$ where $D(x, r) \subset K \subset D(y, R)$.

Is there a "6" theorem if faces have uniformly bounded aspect ratios?

Aspect $\operatorname{Ratio}(K) = \inf R/r$ where $D(x, r) \subset K \subset D(y, R)$.

Is there a "6" theorem if faces have uniformly bounded aspect ratios?

No.

Out-radius/in-radius is bounded, but number of neighbors $\nearrow \infty$

Out-radius/in-radius is bounded, but number of neighbors $\nearrow \infty$.