Planar maps with at most six neighbors on average

Christopher Bishop, Stony Brook
Dennis Sullivan, Stony Brook
Michael Wigler, Cold Spring Harbor

AMS Sectional Meeting – March 19, 2016 Stony Brook NY
www.math.sunysb.edu/~bishop/lectures
Hexagon \rightarrow triangles with probability p, $\text{ANS} = \frac{12p+6}{5p+1}$ ($p = 1/4$ shown).
Limit need not exist
average number sides $\rightarrow \infty$, areas $\rightarrow 0$, diameters bounded
average number sides $\uparrow \infty$, diameters $\rightarrow \infty$, areas bounded below
average number sides $\uparrow \infty$, forbid vertices of degree 1 and 2
Theorem 1: Suppose faces have areas that are bounded below and diameters that are bounded above, and every vertex had degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(t) \leq 6.$$

Average is over all faces contained in circle of radius t.

Average over faces inside/hitting an expanding circle
Theorem false in three dimensions
Euler’s formula for finite planar graphs: \(V - E + F = C + 1 \)

\(V \) = number of vertices
\(E \) = number of edges
\(F \) = number of faces
\(C \) = number of components
Euler’s formula for finite planar graphs: $V - E + F = C + 1$

$V =$ number of vertices

$E =$ number of edges

$F =$ number of faces

$C =$ number of components
Euler’s formula for finite planar graphs: \(V - E + F = C + 1 \)

\(V = \) number vertices
\(E = \) number of edges
\(F = \) number of faces
\(C = \) number of components
Sphere Theorem: If H is a finite graph on the 2-sphere and every vertex has degree ≥ 3, then $E < 3F$.
Sphere Theorem: If H is a finite graph on the 2-sphere and every vertex has degree ≥ 3, then $E < 3F$.

Proof: Clearly

$$\sum_{v \in H} \deg(v) = 2E.$$

By assumption, $\deg(v) \geq 3$ for all vertices so $3V \leq 2E$. Hence $V \leq \frac{2}{3}E$.
Sphere Theorem: If H is a finite graph on the 2-sphere and every vertex has degree ≥ 3, then $E < 3F$.

Proof: Clearly

$$\sum_{v \in H} \deg(v) = 2E.$$

By assumption, $\deg(v) \geq 3$ for all vertices so $3V \leq 2E$. Hence $V \leq \frac{2}{3}E$. Plugging this into Euler’s formula $V - E + F = C + 1$ gives

$$-\frac{1}{3}E + F \geq C + 1$$

or

$$E \leq 3F - 3(C + 1) < 3F.$$
Sphere Theorem: If H is a finite graph on the 2-sphere and every vertex has degree ≥ 3, then $E < 3F$.

Corollary: Number of sides $= 2E < 6F$. So for a finite planar graph (all degrees ≥ 3), the average number of sides per face is ≤ 6.

$E = 16, \quad F = 8, \quad \text{ANS} = 4$
This is for finite H. What about infinite maps?
Choose a piecewise smooth region R in the plane and let $tR + x$ denote the region dilated by a factor of $t > 0$ and translated by x.

Let $H = H(R, t, x)$ be the sub-map of G consisting of the 2-cells of G that lie inside $tR + x$.

Let $\text{ANS}(t)$ be average number of sides over faces in $H(R, t, x)$.

Usually take circle around origin.
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(H(R, t, x)) \leq 6.$$
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(H(R, t, x)) \leq 6.$$

Average is taken over faces contained in $tR + x$.

Same conclusion holds for faces hitting $tR + x$.

Really only need R to have non-empty interior and zero area boundary.
Definition: edge boundary: If $H \subset G$, then $\partial_E H$ is set of edges in $G \setminus H$ with at least one endpoint in H.

$$e(H) = \frac{|\partial_E H|}{F}.$$

Here $e(H) = 9/5$. Related to Cheeger constant of G.

Lemma 1: If H is a sub-map of G then $\text{ANS}(H) \leq 6 + 4e(H)$.

Proof: Note that

$$2E + |\partial_E H| \leq \sum_{v \in H} \deg_G(v) \leq 2E + 2|\partial_E H|,$$

The left hand inequality would be an equality, except that some edges in $\partial_E H$ might have both endpoints on ∂H.

Lemma 1: If H is a sub-map of G then $\text{ANS}(H) \leq 6 + 4e(H)$.

Proof continued: Every vertex has degree ≥ 3, so

$$3V \leq \sum_{v \in H} \deg_G(v) \leq 2E + 2|\partial_E H|.$$

Divide by 3 and put estimate for V into Euler’s formula:

$$\left(\frac{2}{3}E + \frac{2}{3}|\partial_E H|\right) - E + F \geq C$$

Simplifying gives

$$\frac{E}{F} \leq 3 + 2\frac{|\partial_E H|}{F} - 3\frac{C}{F} \leq 3 + 2e(H).$$

Hence

$$\text{ANS}(H) \leq 2E/F \leq 6 + 4e(H).$$
Definition: the face boundary: $\partial_F H$ is the set of faces in $G \setminus H$ that touch H.

Easy to see $|\partial_F H| \leq |\partial_E H|$. We need converse direction.
One adjacent face, many adjacent edges
Lemma 2: Suppose the faces of G have diameters $\leq D < \infty$ and H is a sub-map. Let N be the number of faces that lie inside a $3D$-neighborhood of ∂H. Then $|\partial_E H| \leq 3N$.
Lemma 2: Suppose the faces of G have diameters $\leq D < \infty$ and H is a sub-map. Let N be the number of faces that lie inside a $3D$-neighborhood of ∂H. Then $|\partial_E H| \leq 3N$.

Proof:

Let G' be the finite graph on the sphere consisting of the faces of G that lie within the $2D$-neighborhood of ∂H, together with their edges and vertices. Check that edges of G' include all edges in $\partial_E H$.

Each face of G' is either a face of G or contains a face of G that is within $3D$ of ∂H. Thus number of faces of G' is at most N.
Lemma 2: Suppose the faces of G have diameters $\leq D < \infty$ and H is a sub-map. Let N be the number of faces that lie inside a $3D$-neighborhood of ∂H. Then $|\partial E H| \leq 3N$.

Proof continued:

Define G'' by removing any vertices of degree 2 from G'; combine edges. G' and G'' have same number of faces, $\leq N$.

If $e \in \partial E H$, endpoints have degree ≥ 3 in G' (any edge touching e in G is in G'). So e is an edge of G''.

By Sphere Theorem, edges in G'' bounded by three times faces in G''. Hence $|\partial E H| \leq 3N$.
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(H(R, t, x)) \leq 6.$$
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \operatorname{ANS}(H(R, t, x)) \leq 6.$$

Proof: Only need show $e(H(R, t, x)) \to 0$.
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(H(R, t, x)) \leq 6.$$

Proof continued: The number of faces in $H(R, t, x)$ is $\geq ct^2$.

![Diagram](https://via.placeholder.com/150)
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(H(R, t, x)) \leq 6.$$

Proof continued: Area within $3D$ of ∂H is $O(t \cdot D)$, so $|\partial_E H| = O(tD/A)$.

![Diagram of a circle with a radius of 3D]
Theorem 1: Suppose all faces of G have diameter $\leq D < \infty$, and have area $\geq A > 0$, and that every vertex has degree ≥ 3. Then

$$\limsup_{t \to \infty} \text{ANS}(H(R, t, x)) \leq 6.$$

Proof continued: Hence $e(H) = O(t/t^2) = O(1/t)$.
Theorem 2: If G satisfies the area lower bound and diameter upper bounded and every vertex has degree 3, then

$$\lim_{t \to 0} \text{ANS}(t) = 6.$$
Voronoi diagram of Poisson point process
Ω is δ-thick if for all $0 < r < \text{diam}(\Omega)$ and all $x \in \partial \Omega$ we have
\[
\text{area}(\Omega \cap D(x, r)) \geq \delta r^2.
\]

True if Ω is convex, with a δ that depends on the aspect ratio.

Holds for quasidisks.
Theorem 3: Suppose G is a planar map and every face is δ-thick, for some $\delta > 0$. Then there is a nested, increasing sequence of sub-maps $\{H_n\}$ so that $\lim_{n \to \infty} \text{ANS}(H_n) \leq 6$.
Theorem 3: Suppose G is a planar map and every face is δ-thick, for some $\delta > 0$. Then there is a nested, increasing sequence of sub-maps $\{H_n\}$ so that $\lim_{n \to \infty} \text{ANS}(H_n) \leq 6$.

Idea of proof:

If $\lim \inf > 6$, then $e(H(t)) > \epsilon > 0$ for all $t > t_0$.

We can show this forces $|\partial_F H(t)| \nearrow \infty$ in a finite time.

This contradicts local finiteness of G.
\[
\limsup = \infty, \quad \liminf \leq 6.
\]
Aspect Ratio\((K) = \inf R/r\) where \(D(x, r) \subset K \subset D(y, R)\).

Is there a “6” theorem if faces have uniformly bounded aspect ratios?
Aspect Ratio(K) = $\inf \frac{R}{r}$ where $D(x, r) \subset K \subset D(y, R)$.

Is there a “6” theorem if faces have uniformly bounded aspect ratios?

No.
Out-radius/in-radius is bounded, but number of neighbors $\uparrow \infty$
Out-radius/in-radius is bounded, but number of neighbors ↗ ∞.