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• Relevant definitions

• Statement of the quasiconformal folding theorem

• The proof (with most details)

• Applications:



Some definitions



We need three definitions before stating our result.

These adapt “obvious” properties of finite trees to infinite case.

(1) Tree neighborhoods: replaces Hausdorff metric ǫ-neighborhoods.

(2) Bounded geometry: nearby edges have comparable sizes.

(3) τ -lower bound: lower bound for measure of edges.



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}

Define neighborhood of T : T (r) = ∪{e(r) : e ∈ T}.



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}

Define neighborhood of T : T (r) = ∪{e(r) : e ∈ T}.

Adding vertices reduces T (r). Useful scaling property.



Bounded Geometry (local condition; easy to verify):
• edges are uniformly smooth.
• adjacent edges form bi-Lipschitz image of a star = {zn ∈ [0, r]}
• non-adjacent edges are well separated,

dist(e, f ) ≥ ǫ ·min(diam(e), diam(f )).



τ-Lower Bound (global condition; harder to check):

Complementary components of tree are simply connected.

Each can be conformally mapped to right half-plane. Call map τ .

τ

Ω

We assume all images have length ≥ π.

Need positive lower bound; actual value usually not important.



Non-example: half-strip. “Inside” is OK, but ...



n1

1

1
n n2

Conformal map of outside to half-plane is τ (z) ≈ √
z.

Unit intervals on half-plane have pre-images ≃ n.

⇒ Bounded geometry and τ -condition can’t both hold.



Assume that T is an unbounded, locally finite tree such that every com-
ponent Ωj of Ω = C \ T is simply connected.

We also assume that Ωj = σj(Hr) where σj is a conformal map that
extends continuously to the boundary and sends ∞ to ∞.

The inverses of these maps define a map τ : Ω → Hr that is conformal
on each component (we let τj = σ−1

j denote the restriction of τ to Ωj).

Whenever we refer to a conformal map τ : Ω → Hr, we always mean a
map that arises in this way.



Since T is a tree, it is bipartite and we assume the vertices have been
labeled with ±1 so that adjacent vertices always have different labels.

If V is the vertex set of T , let Vj = {z ∈ ∂Hr : σj(z) ∈ V }; this is a
closed set with no finite limit points. (It is tempting to write Vj = σ−1

j (V ),

but σ−1
j is not defined on all of V and may be multi-valued where it is

defined.)



The collection Ij of connected components of ∂Hr \ Vj is called the par-
tition of ∂Hr induced by Ωj (different choices of the map τj only change
the partition by a linear map).

If T = f−1([−1, 1]) is the tree associated to an entire function with crit-
ical values ±1, then the associated partition is ∂Hr \ πiZ, and partition
elements have equal size.



Theorem 1. Suppose T has bounded geometry and every edge has τ -
size ≥ π. Then there is an entire f and a K-quasiconformal φ so that
f ◦ φ = cosh ◦τ off T (r0). K only depends on the bounded geometry
constants of T . The only critical values of f are ±1 and f has no
finite asymptotic values.



The idea of the proof of Theorem 1 is to replace the tree T by a tree T ′ so
that T ⊂ T ′ ⊂ T (r0) and to replace τ by a map η that is quasiconformal
from each component of Ω′ = C \ T ′ onto Hr.

We will prove we can do this with a map η such that η(V ) ⊂ πiZ, η = τ
off T (r0) and so that g = cosh ◦ η is continuous across T ′.

The latter condition will imply g is quasiregular on the whole plane and
hence, by the measurable Riemann mapping theorem, there is a quasicon-
formal φ : C → C such that f = g ◦ φ−1 is entire.



Since g is locally 1-to-1 except at the vertices of T , the only critical values
are ±1.

It is also easy to see there are no finite asymptotic values and this proves
the theorem.

In fact, any preimage of any compact set K of diameter r < 2 will
only have compact connected components. This condition rules out fi-
nite asymptotic values.



Let ηj denote the restriction of η to the component Ωj. We build ηj by
post-composing τj with quasiconformal maps

ηj : Ωj
τj−→ Hr

ιj−→ Hr
λj−→ Hr

ψj−→ Wj ⊂ Hr.
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η is built as a composition: τ maps Ω to Hr, ι sends vertices to integer
points, λ makes the map preserve arclength and ψ “folds” the boundary.
VI is the union of dashed squares.
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As noted earlier, the map τj sends vertices of T to a discrete set Vj ⊂ ∂Hr
and Ij denotes the complementary components of Vj. By assumption all
these intervals have length ≥ π.
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Let Z be the collection of connected components of ∂Hr \ πiZ.
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We will construct ιj : Hr → Hr to be a QC map that sends each point of
Vj into πiZ and sends each interval of Ij to an interval of length (2n+1)π.
Moreover, ιj ◦ τj preserves vertex parity.
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These “odd-length” intervals give a new partition of ∂Hr that we call Kj.
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Next, we construct a quasiconformal map λj : Hr → Hr that fixes the
endpoints of Kj and such that |(λj ◦ ιj)′|/|σ′j| is a.e. constant on each
element of Kj.
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Informally, λj ◦ ιj ◦ τj multiplies length on each side of ∂Ωj by a constant
factor: if a side is mapped to an interval K ∈ Kj of length (2n + 1)π,
then normalized length on that side is multiplied by (2n + 1).
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Each side of T maps to a union of 2n + 1 elements of Z . We want it to
map to a single element. We fix this by adding 2n extra sides to T .



This is accomplished with the following lemma that describes the “quasi-
conformal folding”.

Lemma 2. Suppose K is a partition of ∂Hr into intervals with end-
points in πiZ and lengths in (2N+1)π and suppose adjacent intervals
have comparable lengths, with a uniform constant M . Then there is
a quasiconformal map ψ : Hr → W ⊂ Hr so that:

1. ψ is the identity off VK.
2. ψ is affine on each component of Z = ∂Hr \ πiZ.
3. Each element K ∈ K contains an element of Z that is mapped to
K by ψ.

4. For any x, y ∈ R, ψ(ix) = ψ(iy) implies cosh(ix) = cosh(iy).
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This is a simple folding.

Here an interval K of length 3π is folded into Hr so that one interval is
expanded and the other two are sent to two sides of a slit.
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The map ψ is piecewise linear on the triangulations. Since there are only
finitely many triangles, it is clearly quasiconformal.

Can fold up K sides onto slit but QC constant increases. We want bounds
independent of K.



Suppose ψj is the map given by Lemma 2 when applied to the partition
Kj corresponding to the component Ωj. Let

Ω′
j = (λj ◦ ιj ◦ τj)−1(W ) = (ψj ◦ λj ◦ ιj ◦ τj)−1(Hr) ⊂ Ωj.

This is just Ωj with countably many finite trees removed, each rooted a
vertex of T .



The composition ηj = ψ−1
j ◦ λj ◦ ιj ◦ τj maps Ωj to Hr and satisfies

1. ηj is uniformly quasiconformal from each component of Ω′ to Hr.

2. ηj maps vertices of T to points in πiZ of the correct parity.

3. ηj preserves normalized length on all sides of T ′.
These conditions imply g = cosh ◦ η is continuous across T ′.



3
5

3

5
1
3

1 5

5 3

7
3

1 7

1
11

9

5

On the left is a tree T with possible τ -lengths of sides marked. On the
right is the tree T ′ which is formed by adding a tree with n edges at one
endpoint of a T -edge with label (2n + 1).
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Every edge of T ′ is either an edge of T , in which case it is rectifiable, or it
is a quasiconformal image of a line segment.

Thus T ′ is removable for quasiregular maps and hence g is quasiregular
on the whole plane, as desired.
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Finally, ιj, λj and ψj are all the identity off VI . This will imply ηj = τj
off T (r0) for some fixed r0, and this completes the proof of Theorem 1
(except for proving the various results described above).



A neighborhood of the tree



Lemma 3. τ−1(VI) ⊂ T (r0) for some r0 ≤ 25.3.



Proof. For an interval I ⊂ ∂Hr, let

W (I, α) = {z ∈ Hr : ω(z, I,Hr) > α},
where ω denotes harmonic measure.

The set in Hr where I has harmonic measure bigger than α is the same
as the set where I subtends angle ≥ πα; this is a crescent bounded by I
and the arc of the circle in Hr that makes angle π(1− α) with I .

Some simple geometry shows that W (I, 12) ⊂ QI ⊂ W (I, 14) and hence

VI ⊂ ∪I∈IW (I, 14) (recall that QI is the square in Hr with I as one side).



Thus τ−1(VI) is contained in the set of points z in Ω such that some single
edge e of T has harmonic measure ω(z, e,Ω) ≥ 1/4. Beurling’s projection
theorem (see Corollary III.9.3 of Garnett-Marshall “Harmonic Measure”)
then implies

1

4
≤ ω(z, e,Ω) ≤ 4

π
tan−1

√

diam(e)

dist(z, e)
.

Hence
dist(z, e) ≤ (tan(

π

16
))−2 · diam(e)

and so τ−1(VI) ⊂ T (r0), where r0 = tan−2( π16) ≈ 25.27.
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Integerizing a partition



Lemma 4. Suppose I = {Ij} is a bounded geometry partition of the
real numbers (i.e., adjacent intervals have comparable lengths) so that
every interval has length ≥ 1. Then there is second partition J = {Jj}
so that

1. Every endpoint of J is an integer.

2. The length of Jj is an odd integer.

3. Ij and Jj have lengths differing by ≤ 2.

4. The left endpoints of Ij and Jj are within distance 5/2 of each
other. Similarly for the right endpoints.



Proof.We use induction to create adjacent intervals J1, J2, . . . with integer
endpoints, so that that the right endpoint of Jk is less than or equal to
the right endpoint of Ik.

After translating by at most 1
2 we can assume I0 contains a non-trivial

interval with integer endpoints and odd length. Let J0 be the maximal
such interval in I0.

For j > 0, let the left endpoint of Jj be the right endpoint of Jj−1. Choose
its right endpoint to be the largest integer that is less than or equal to the
right endpoint of Ij and so that Jj has odd length.

Since Ij has length ≥ 1, there is such a choice.

Then (1)-(3) all hold and (4) holds with constant 2. A similar argument
holds for j < 0. When we undo the initial translation, (1)-(3) all hold
with the same constants and (4) holds with 5/2.



Lemma 5. There is a quasiconformal map ι of the upper half-plane
H = {x+ iy : y > 0} to itself that sends the partition I in Lemma 4 to
the partition J . The map ι is the identity on H+ i = {x+ iy : y > 1}
and the dilatation is bounded independent of I.



Proof.We now define a map ψ1 : R → R as the piecewise linear map that
sends Ij to Jj. This is clearly bi-Lipschitz.

This boundary mapping ψ1 can be extended to a quasiconformal mapping
of H that is the identity off the strip S{x + iy : 0 < y < 1} by linearly
interpolating the identity on {y = 1} with ψ1 on R.

It is easy to see this defines a bi-Lipschitz (hence quasiconformal) map of
S to itself, that extends to the identity on the rest of H.



Length respecting maps



Lemma 6. If T has bounded geometry tree then adjacent partition
elements of Ij have comparable length.



Proof.Adjacent intervals I, J ⊂ ∂Hr correspond to sides of adjacent edges
e, f of T will have comparable lengths iff there is a point z ∈ Hr from
which the harmonic measures of I , J and both components of ∂Hr\(I∪J)
are all comparable.

But if we take a point w ∈ Ω that with

dist(w, e) ≃ dist(w, f ) ≃ dist(w, ∂Ω)

the bounded geometry assumption and the conformal invariance of har-
monic measure imply this is true for z = τ (w).



We say that a homeomorphism h of one rectifiable curve γ1 to another rec-
tifiable curve γ2 respects length if it is absolutely continuous with respect
to arclength and |h′| is a.e. constant, i.e., ℓ(τ (E)) = ℓ(E)ℓ(γ2)/ℓ(γ1), for
every measurable E ⊂ γ1.



Lemma 7. Suppose η : Ω → Hr is quasiconformal on each of its
connected components, maps the vertices of T into πiZ and is length
respecting on each side of T . Also suppose that for each edge e in T ,
the two sides of e have equal τ -length. If cosh ◦ η is continuous at all
vertices of T , then it is continuous across all edges of T .



Proof. Suppose v, w are the endpoints of e and z ∈ e.

By assumption the two possible images of e under η have the same length
and have their endpoints in πiZ.

Since cosh ◦η is continuous at w, both of its images have the same parity.
Similarly for v. Therefore the length respecting property implies both
images of z have the same distance from 2πiZ, which implies the result.



Theorem 8.Suppose T is a bounded geometry tree, Ωj is a component
of Ω = C\T and σj : Hr → Ωj is the inverse to τ for this component.
Suppose the partition of ∂Hr induced by Ωj has bounded geometry.
Then there is a quasiconformal map β : Hr → Hr so that σj ◦ β is a
length respecting on every element of Ij. The map β is the identity
on Vj ⊂ ∂Hr and on Hr \ VI.



Proof. Consider adjacent intervals I, J ∈ Ij corresponding to edges e, f
of T with a common vertex v. The bounded geometry condition states
that e and f have comparable length and Lemma 6 says I and J have
comparable length.

Suppose θ is the interior angle of Ω formed by the edges e and f and let
α = θ/π. Then

| d
dx
σj(x)| ≃

ℓ(e)

ℓ(I)
(x− a)α−1,

on both I and J near the endpoint a.



Let K be the interval centered at a with length ℓ(K) = 1
4min(ℓ(I), ℓ(J)).

Normalize so a = 0 and ℓ(K) = 1 and consider the map ϕ(z) = z|z|α−1

for |z| ≤ 1 and the identity for |z| > 1.

Then ϕ ◦ τ has a derivative that is bounded and bounded away from zero
on σj(K) The map ϕ is the identity outside the disk with diameter ℓ(K),
so is certainly the identity outside VI .



Now build a version of ϕ for every pair of adjacent edges to get a quasi-
conformal map ϕ : Hr → Hr that fixes every endpoint of our partition I
and is the identity outside VI .

For any interval I ∈ I, we can use integration to define a bi-Lipschitz map
κ : I → I fixing each endpoint of I and so that the derivative of κ ◦ϕ ◦ τ
has constant absolute value.



By simple linear interpolation this κ can be extended to a bi-Lipschitz
map of QI (the square in Hr with I as one side) that is the identity on
the other three sides of QI .

Doing this for every interval in the partition defines a quasiconformal κ on
Hr that is the identity off VI . Clearly β = κ ◦ ϕ satisfies the conclusions
of Theorem 8, completing the proof.



Building the tree



This is a slight reformulation of something stated earlier.

Lemma 9. Suppose J = {Jj} is a partition of R into intervals with
endpoints in Z and all odd lengths. Assume that any two adjacent
elements have lengths within a factor of M <∞ of each other. Then
there is a map ψ of H = {x + iy : y > 0} into itself and intervals
J ′j ⊂ Jj, so that the following all hold:

1. each J ′j has integer endpoints and length 1.

2. ψ is the identity off VJ .

3. ψ is quasiconformal with a constant depending only on M .

4. ψ is affine on each component of R \ Z.
5. ψ(J ′j) = Jj for all j.

6. ψ(x) = ψ(y) implies x, y ∈ R have the same distance to 2Z.



This simple tree is just a slit in the upper half-plane partitioned into n
edges. The triangulations show how H can be mapped to the comple-
ment of the slit by a piecewise linear map that is the identity outside the
indicated square.



Shown are the trees T̂1, T̂2, T̂3 and T̂4.



We add vertices to T̂j to get Tj. The jth level is divided into 2j equal
sub-edges by adding extra vertices. We illustrate only the j = 2 case, since
its hard to see individual vertices at higher levels.



How many edges are in Tj? How many sides?

The number of edges is

1 +

j
∑

k=1

22k+1 = −1 + 2

j
∑

k=0

4k =
2

3
(4j+1 − 1)− 1.

Normally, the number of sides would be twice the number of edges, but
for our purposes, we only want to count a side of Tj if it is accessible from
the interior of Rj, the convex hull of Tj.



Thus we have to subtract the “inaccessible” sides belonging to the bottom
and sides of Rj. After a little arithmetic, this gives

Nj = [
4

3
(4j+1 − 1)− 2]− [1 + 2

j
∑

k=1

2k] =
4

3
(4j+1 − 1) + 1− 2j+2

The first few values are 13, 69, 309, . . . . Because of symmetry, we know
the answer is odd and less than 4j.



We let T
i,k
j be the tree Tj with the top i levels of the the left-hand side

removed, together with all the other edges that are disconnected from the
base. We also remove the top k levels of the right-hand side.



Let R
i,k
j be the convex hull of the remaining tree.



The number of sides in T
i,k
j is

Nj,i,k = Nj − [2j + · · ·+2j−i+1]− [2j + · · ·+2j−k+1] ≥ Nj − 2j+2+2.



The exact number is not important, but we will need that it is odd and
comparable to 4j.



To get oddness, it is important to remember that this is the tree Tj, not

T̂j, so there are an even number of edges on Tj in each level along the left
and right sides of Rj.



So far, we have built trees that have an exponentially growing odd number
of sides. We want to be able to achieve any odd number, and to do this,
we will add edges to our clipped trees.

Suppose we are given an odd, positive integer m and define the level of m
as the value of j such that Nj ≤ m < Nj+1, where we set N0 = 1 and

Nj ≃ 4j was defined earlier.

Suppose we are also given non-negative integers i, k that are both less than

the level j of m. We will add edges to the clipped tree T
i,k
j so that the

total number of edges is m.
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First suppose j ≥ 2. Then there are ∼ 2j triangular components of

R
i,k
j \T i,kj , and we add a segment connecting the center of the pth triangle

to its bottom vertex and divide it into np equal sub-segments. We call thus
segment a “spike”.
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We choose the integers {np} so that

2
∑

p

np = m−Nj,i,k and np = O(2j),

where the constant is allowed to depend on i, k (eventually both of these
will be chosen to be O(1), so the constant above will also be O(1)).
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If j = 1 and i = 0 or k = 0 then there is at least one triangular component
where we can add a spike.

If j = 1 and i = k = 1 then instead of adding a spike, use a simple folding

in place of T
1,1,
1 .
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Suppose J ∈ J and let m be its length (an odd, positive integer). Let j
be the level of m and let j1 and j2 be the levels of the elements of J that
are adjacent to J and to its left and right respectively.

Let
i = max(0, j − j1), k = max(0, j − j2),

and associate to J the tree T
i,k
j,m.
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The indices i, k have been chosen so that when two intervals are adjacent,
and the corresponding trees have different levels, then the higher tree has
been clipped to match the level of its lower neighbor.
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Thus the union of the clipped convex hulls ∪Ri,kj has an upper edge that

is a Lipschitz graph γ (the graph coincides with the real line on intervals
where we use a simple folding).

The region above Γ and below height 2 is a variable width strip that we
denote S2.
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If m has level ≥ 1, then inside the copy of R
i,k
j with base J we place a

copy of the tree T
i,k
j,m and remove this tree from the upper half-plane.
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If m has level 0, or if we are in the case when j = 1 = k discussed earlier,

R
i,k
j is a line segment on R and we remove a diagonal line segment divided

into 1
2(m−1) edges; above these intervals the map will be a simple folding

of size m.
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Doing one of these steps for every element of the partition defines the
simply connected region W = H \ Γ.
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Next we want to triangulate the region W and use piecewise linear maps
on the triangles to define the map ψ.



Building the map ψ
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Given two adjacent intervals Jk, Jk+1 of our partition J with common
endpoint xk, let hj = min(ℓ(Jk), ℓ(Jk+1)) be the length of the shorter one
and let zk = xk + ihk.

Form an infinite polygonal curve by joining these points in order, and let
S0 be the region bounded between this curve and the real axis.
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The vertical crosscuts at the points xk cut the region into trapezoids and
because of our assumption about the lengths of adjacent elements of J
being comparable, only a compact family of trapezoids occur.



µ1
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It is easy to QC map S0 to the strip S1 = {x+ iy : 0 < y < 2} by sending
each trapezoid to a square of side length 2

Cut each trapezoid into triangles by a diagonal and map these linearly to
the right triangles obtained by cutting the square by a diagonal). Denote
this map by µ1
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Next we define a map µ2 : S1 → S1 that is the identity on the top edge
of S1 and will be biLipschitz on the bottom edge.

Such a map clearly has a biLipschitz extension to the interior of the strip.

On the bottom edge µ2 fixes the even integer points.
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Suppose I is an interval of length 2 on the bottom edge of S1 that cor-

responds to a an interval J ∈ J of length m and that T
i,k
j,m is the corre-

sponding clipped tree.

If this tree is a simple folding, we just take µ2 to be the identity on I .
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Otherwise, project the degree 1 vertices of T
i,k
j,m vertically onto I . These

points partition I into subintervals {Ip} that correspond 1-to-1 to the

components {Vp} of V = R
i,k
j,m \ T i,kj,m.

If Vp has mp sides, divide Ip into mp equal subintervals. This gives a
partition of I into m =

∑

pmp intervals (of possibly different sizes).
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Define µ2 to map the “even” partition of I into m equal length intervals
to “unequal” partition.

The map is biLipschitz because each interval in the “unequal” partition
has length comparable to |I|/m.

To see this, recall that if m has level j ≥ 1 then m ≃ 4j, there are ≃ 2j

components of V and each contains ≃ 2j sides.
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Define a variable width strip S2 whose upper boundary is {y = 2} and
whose lower boundary is the upper envelope γ of the union of the regions

R
i,k
j,m.

We let µ3 : S1 → S2 be a biLipschitz map that is the identity on the top
boundary of S2 and agrees with vertical projection onto γ on the bottom
edge (again, easy to define using triangulations).
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The maps S0
µ1−→ S1

µ2−→ S1
µ3−→ S2

µ4−→ W
µ−1
1−−→ S0 define ψ.



The final step is to construct the map µ4.

Suppose I is an interval of length 2 corresponding to some J ∈ J and let
Q ⊂ S1 be the 2× 2 square with base I .



The map µ4 is the identity above S2, so we only need to define it inside
each such Q so that it is the identity on ∂Q ∩ S2 (then the definitions on
different squares will join to form a quasiconformal map on S2.



If W ∩ Q is a simple folding, we have already seen how to define µ4 in a

previous figure. Otherwise, suppose Q contains the convex hull R = R
i,k
j

of a the tree T = T
i,k
j,m. Let R

′ = Rj be the “unclipped” version of R.



As noted earlier, ∂R\T consists of intervals, and each interval Ip has been
partitioned intomp equal length intervals wheremp is the number of sides
of the corresponding component of R \ T .

The interval Ip is horizontal unless it is the leftmost or rightmost interval,
in which case it may be sloped (the “clipped” part of R).



For horizontal intervals Ip we let Qp ⊂ Q \R be the square with base Ip.
For sloped intervals we let Qp denote the triangular component of R′ \R
containing the interval.

Let Wp be the component of R \ T with Ip as its top edge.

We want to define µ4 : Qp → Up = Qp ∪Wp to be quasiconformal, to be
the identity on ∂Qp \Wp, and to map each interval in our partition of Ip
to an side of Wp.



The four types of components Wp that have to be considered:

1. top triangles,

2. corner triangles,

3. parallelograms,

4. the center triangle,



In each case, the map from Qp to Up is specified by drawing compatible
triangulations of the two regions and then taking the piecewise affine map
between these triangulations.



Case 1: top triangles with and without slits



Case 2: side triangles



Case 3: parallelograms



Case 4: central component



This completes the proof of the “plain” Folding Theorem.

We will state, but not prove a more general version used in applications.



In our generalization, the tree T is replaced by a connected graph whose
complementary components are each mapped to one of three possible stan-
dard domains:

1. the unit disk, D.

2. the left half-plane, Hl.

3. the right half-plane, Hr.

We shall refer to these as D-components, L-components and R-components
respectively.

If only L- and R-components are used then the graph T is still a tree.



D

D

L

L

R

R

R

R

R
R

D

D-components that are bounded Jordan domains, L-components that are
unbounded Jordan domains and R-components that are unbounded simply
connected domains (they need not be Jordan).



D

D

L

L

R

R

R

R

R
R

D

D-components and L-components may only share an edge with a R-component
and QC folding will only be applied on the R-components.



D-components: Ω is bounded and ∂Ω is a closed Jordan curve that is
the union of a finite number of edges of T , say d. We are given a length
respecting (on the boundary) quasiconformal map η : Ω → D and we
assume the n vertices on ∂Ω map to the nth roots of unity on the circle.



The map σ : D → D is z 7→ zd followed by a quasiconformal map
ρ : D → D that is the identity on ∂D.

We often take ρ to be the identity, and this gives a critical point of degree
d with critical value 0.

If a critical value a is desired, then ρ is chosen so ρ(0) = a. If |a| < 1/2,
then ρ can be chosen to be conformal on {|z| < 3/4}, so in this case, the
dilatation of ρ is supported on {z : 14 < |z| < 1}. Thus, in all cases, the

dilatation of σ is bounded by O(|a|) and is supported on {z : 1− 1
d log 4 <

|z| < 1}.



L-components: Here Ω is an unbounded Jordan domain and we are
given a length respecting, quasiconformal η : Ω → Hl.

The map σ : Hl → D \ {0} is just z 7→ exp(z).

This gives a component with finite asymptotic value 0. If a different
asymptotic value a with |a| < 1/2 is desired, we post-compose this map
with quasiconformal map ρ : D → D such that ρ(0) = a and ρ is the
identity on ∂D (just as for critical values for D-components).



R-components: This is what we used in Theorem 1. Here Ω is simply
connected and unbounded and we are given a length respecting, quasicon-
formal map η : Ω → Hr.

The boundary may be a tree instead of a Jordan curve.

In the Folding Theorem 1, we took σ = cosh, but now we have to allow
more general maps.



Under the map τ−1
j : Hr → Ωj, each interval I in the partition is mapped

to one side of an edge e of T and either the other side of this edge also
faces the same component Ωj, or it faces a different component Ωk, k 6= j.

In the latter case, the second component Ωk could be a D, L or R-
component.



Lemma 10 (exp-cosh interpolation).There is a quasiregular map νj :
Hr → C \ [−1, 1] so that

νj(z) =















cosh(z), z ∈ J ∈ J j
1 ,

exp(z), z ∈ J ∈ J j
2 ,

cosh(z), z ∈ Hr + 1 = {x + iy : x > 1}.
The quasiconstant of νj is uniformly bounded, independent of all our
choices.



Proof. The proof is basically a picture.

Suppose J is one of our partition intervals and let R = [0, 1] × J ⊂ Hr.
The cosh map sends R into a topological annulus bounded by the unit
circle and the ellipse E = {x + iy : (x/s)2 + (y/t)2 = 1} where x =
1
2(e +

1
e), y = 1

2(e− 1
e).

The left side of R maps to the unit circle, the right side maps to E and
and the top and bottom edges of R map to the real segment [1, e]. Let
U be the region bounded by the ellipse and V = U \ D be the annular
region.



φ

U

R

V

The cosh map sends the rectangle R to an ellipse minus the unit disk.

On some rectangles we modify it to map to the ellipse minus [−1, 1].



Now define a quasiconformal map φ : V → U that is the identity on E
and on [1, e], but that maps {|z| = 1} onto [−1, 1] by z → 1

2(z +
1
z) (this

is just the Joukowsky map that conformal maps the exterior of the unit
circle to the exterior of [−1, 1] and identifies complex conjugate points).

This map can clearly be extended from the boundary of V to the interior
as a quasiconformal map.



We show only the construction in the upper half-plane; it is defined sym-
metrically in the lower half-plane.

The region V contains contains a crescent with vertices at ±1 as shown.
The crescent can be Möbius mapped to a sector which can be quasicon-
formally mapped to a larger sector by fixing radii and and expanding
arguments.



In Hr +1 = {x+ iy : x > 1} and in rectangles corresponding to J ∈ J j
1 ,

we set ν(z) = cosh(z). In the rectangles corresponding to elements of J j
2

we let ν(z) = φ(cosh(z)). This clearly has the properties stated in the
lemma.

The map can be visualized as a map from Hr to a Riemann surface with
sheets of the form either C \ [−1, 1] or C \ D attached along [1,∞) and
chosen according to the type of the corresponding partition element.



Theorem 11. Suppose T is a bounded geometry graph and suppose
τ is conformal from each complementary component to its standard
version.
(1) Assume that D and L components only share edges with R com-

ponents.
(2) Assume that τ on a D-component with n edges maps the vertices

to nth roots of unity and on L-components it maps edges to intervals
of length 2π on ∂Hl with endpoints in 2πiZ.
(3) On R-components assume that the τ -sizes of all edges are ≥ 2π.

Then there is an entire function f and a quasiconformal map φ of the
plane so that f ◦ φ = ν ◦ τ off T (r0). The only singular values of f
are ±1 (critical values coming from the vertices of T ) and the critical
values and singular values assigned by the D and L-components.



Application: rapid growth



Example:

Check that this tree has:

(1) bounded geometry,

(2) the τ -lower bound.



Rapid increase in Speiser class

We get f with 2 singular values, f (x) ր ∞ as fast as we wish.

Correction map ϕ is Hölder, only slows growth a little.

Similar examples due to Sergei Merenkov (2008) (3 singular values).



Application: fast spirals



Corollary 12. For any function φ : [0,∞) → [0,∞) that increases to
∞ there is a f ∈ S∈,′, a t0 < ∞ and a curve γ : [0,∞) → C along
which f tends to infinity, such that for all t > t0,

arg(γ(t)) ≥ φ(|γ(t)|),
where arg is a continuous branch of the argument on the simply con-
nected domain Ω = f−1(C \ [−1, 1]).





Application: the area conjecture



The logarithmic area of a set E in the plane is defined

logarea(E) =

∫

E

dxdy

x2 + y2
.

The area conjecture asks if logarea(f−1(K)) < ∞ whenever K is a com-
pact set of C \ S(f ) (recall S(f ) are the singular values of f ).



cosh

On the left is Ω, the tract of the area conjecture counterexample and on
the right is Ω′ = cosh−1(Ω); the same example in cosh-coordinates.



cosh

In the second picture, “rooms” are attached along a central strip by small
gaps whose size is chosen so that edges on the top and bottom of the strip
(thick edge) have approximately the same harmonic measure as the left
side of the strip (thick edge) when viewed from a point (white dot) on the
axis of the domain (dashed line).



cosh

With these choices, τ will have bounded derivative near the middle of each
room and along the top edge.

This implies that {z : |g(z)| < R} will contain a disk of radius comparable
to 1 in each “room” and the union of these disks has infinite logarithmic
area.



cosh

The quasiconformal change of variable φ preserves the

strip in cosh-coordinates and maps these disks to regions of Euclidean
comparable area, so the entire function f = g ◦ φ−1 disproves the area
conjecture.



The following is a stronger counterexample to the area conjecture.

Corollary 13.There is a function f ∈ S∋ with critical values {−1, 0, 1}
and no finite asymptotic values so that area({z : |f (z)| > ǫ}) <∞ for
every ǫ > 0.





For an entire function f , we let

m(r) = min
|z|=r

|f (z)|, M(r) = max
|z|=r

|f (z)|.

By definition m(r) ≤M(r), but it is interesting to ask how much smaller
can m be compared to M?

Obviously we have to avoid zero’s of f , but it is reasonable to ask if there
is a finite α so that for any entire function, m(r) ≥ M(r)−α along some
sequence of radii tending to infinity? The function ez shows we can’t take
α < 1.



Wiman proved that for any ǫ and any non-vanishing entire function f

m(r) > M(r)−1−ǫ,

for some sequence of r’s tending to ∞.

He conjectured this was true in general and this was verified by Beurling
in the special case |f (r)| = m(r) (i.e., the minimal values are attained
along R

+).

General case was disproved by Hayman.



Corollary 14. There are A > 0, r0 < ∞ and an entire function
f ∈ S∋,′ so that

m(r) < M(r)−A log log logM(r) (1)

for all r > r0. Hence m(r) < M(r)−C for every C and r large enough.





Very rapid introduction to transcendental dynamics



The Fatou set, F(f ), of an entire function f is the union of open disks
on which {fn} forms an open family.

It is also clear that f (F(f )) ⊂ F(f ) (forward invariance), but equality
need not hold if f has an omitted value.

For example, 1
10e

z has a Fatou component that contains 0, but 0 6∈
f (F(f )).

It turns out that if U is a Fatou component that is mapped into a com-
ponent V then V \ U can have at most one point and U = V if U is
bounded.

A Fatou component is wandering if all images land in different compo-
nents.



The escaping set I(f ) are all points whose orbits tend to ∞.

Eremenko proved this set is non-empty.

The complement J (f ) = C \ F(f ) is called the Julia set of f and is
clearly a closed, totally invariant set and satisfies J (f ) = J (fn) for every
n ∈ N.



The J (f ) is non-empty.

Indeed, J (f ) = ∂I(f ) and I(f ) 6= C.

The Julia set is the closure of the repelling fixed points.

The Julia set is either nowhere dense or is the whole plane.

If f is entire and V is any neighborhood of any point z ∈ J (f ) then
∪nfn(V ) covers the whole plane with at most one exception.



Theorem 15 (Baker). If f is a transcendental entire function, then
every multiply connected component of the Fatou set is bounded.

Corollary 16. If f is a transcendental entire function then every
multiply connected component of the Fatou set is a wandering domain.

Corollary 17.The Julia set of a transcendental entire function con-
tains a non-trivial continuum.

Corollary 18.The Julia set of a transcendental entire function has
Hausdorff dimension at least 1.



Wandering domains



Theorem 19 (Baker).There exists an entire function with a multiply
connected Fatou component, hence with a wandering domain.

The function will be

f (z) = z2
∞
∏

k=1

(1 +
z

Rk
),

where Rk ր ∞ is a sequence of positive real numbers that are defined
inductively.



Theorem 20 (Herman). f (z) = z − 1 + e−z + 2πi has a wandering
domain.

Theorem 21 (Baker). f (z) = z + sin z + 2π has a bounded, simply
connected wandering domain.



Suppose f is a transcendental entire function. A critical point of f is a
zero of f ′ and a critical value is f (z) where z is a critical point.

A asymptotic value is a w ∈ S2 so that lim f (z) = w along a curve
γ : [0,∞) that tends to ∞.

The singular values of f , denoted S(f ), is defined as the closure or the
union of critical values and finite asymptotic values.

Lemma 22. Suppose f is entire and U contain no critical values.
Then f is a smooth covering map from V = f−1(Ω) to Ω.



Corollary 23. Suppose f is entire and S(f ) ⊂ DR = {z : |a| < R}.
Then f is covering map from Ω = f (D

c
R) = {z : |f (z)| > R} to

D
c
R = {z : |z| > R}. Each connected component of Ω (called a tract

of f) is an unbounded, simply connected domain whose boundary is
an analytic Jordan curve that tends to ∞ in both directions.



Suppose f is a transcendental entire function. If S(f ) is finite, we say f
is finite type or in the Speiser class, denoted S .

If S(f ) is bounded, we say f is bounded type or in the Eremenko-Lyubich
class, denoted B.

A little care needs to be taken with the terms “finite type” and “bounded
type” since these are also used to mean something different in Nevanlinna
theory. We will use “EL-type” be more precise.

Lemma 24. If f ∈ B, then every component of F(f ) is simply con-
nected.



If f is Speiser class, the f has no wandering domains.

Sullivan’s proof for polynomials extends with minor changes to this case,
e.g. Eremenko-Lyubich or Goldberg-Keen.

Whether Eremenko-Lyubich functions have wandering domains remained
open until 2015: yes, QC-folding gives examples.



Graph giving wandering domain in Eremenko-Lyubich class.

Original proof corrected by Marti-Pete and Shishikura,
who also give alternate construction.



Graph giving wandering domain in Eremenko-Lyubich class.

Variations by Lazebnik, Fagella-Godillon-Jarque, Osborne-Sixsmith.



Graph giving wandering domain in Eremenko-Lyubich class.

Variations by Lazebnik, Fagella-Godillon-Jarque, Osborne-Sixsmith.



Graph giving wandering domain in Eremenko-Lyubich class.

Variations by Lazebnik, Fagella-Godillon-Jarque, Osborne-Sixsmith.



Models



Suppsoe f is entire.

Eremenko and Lyubich showed that if S(f ) ⊂ DR = {z : |z| < R}, then
the inverse image Ω of D∗

R = {z : |z| > R} under f is a disjoint union of
analytic, unbounded simply connected domains and that f acts a covering
map f : Ωj → D

∗
R on each component Ωj of Ω.

Which disjoint unions of analytic, unbounded simply connected domains
can arise in this way?

Essentially, they all do.



If f ∈ B and S(f ) ⊂ DR, we call Ω = {z : |f (z)| > R} a B-level-set and
each connected component is called a tract of f .

By normalizing f , we can assume that R = 1. On each tract there is a con-
formal map τj : Ωj → Hr = {x + iy : x > 0} so that f (z) = exp(τj(z))
on Ωj. The collection of these conformal maps defines a holomorphic map
τ : Ω → Hr.

exp

τ

F

x > 0

|z| > 1 

|F| > 1



Since S(f ) is compact, there is a ρ > 0, S(f ) ⊂ {z : |z| ≤ e−ρ} and hence
Ω′ = {z : |f | > e−ρ} contains Ω and also consists of simply connected
components.

It is locally finite (only a finite number of components meet any compact
set) and on each component τ is continuous and 1-to-1 at infinity (zn → ∞
in Ωj iff τj(zn) → ∞).

Conversely, we claim these conditions essentially characterize B-level-sets,
at least in a quasiconformal sense:



Theorem 25. Suppose ρ > 0 and Ω′ is a union of disjoint, locally
finite, unbounded simply connected regions and τ : Ω′ → Hr − ρ =
{x + iy : x > −ρ} is conformal and continuous and 1-to-1 at ∞
on each component of Ω′. Then there is a quasi-regular function g
that equals eτ on Ω = τ−1(Hr) and |g| ≤ 1 off Ω. In particular,
Ω = {z : |g(z)| > 1} is the level-set of a quasi-regular function of
EL-type.



Instead of defining a quasi-regular function of EL-type directly, we simply
note that the measurable Riemann mapping theorem implies that any
quasi-regular function g is of the form g = f ◦ φ for some entire function
f and some quasiconformal map φ : R2 → R

2.

We say that g has type EL if f does. Thus every Ω in Theorem 25 is the
QC image of some B-level-set.

This is what we meant above when we said that this condition “essentially”
characterizes bounded type level-sets.



We can be much more precise about the quasiconformal map φ that takes
Ω to a B-level-set.

Note that the points 2πiZ ⊂ ∂Hr partition the boundary of Hr into
equal sized segments. Thus the points f−1(1) = τ−1(2πiZ) partition ∂Ω
into arcs. We call this a conformal partition of ∂Ω, or the partition induced
by τ .

Given an arc J in the partition, let

J(r) = {z : dist(z, J) < r · diam(J)}.
We call this an r-neighborhood of J .

The union of r-neighborhoods over all partition arcs defines an open neigh-
borhood of ∂Ω that we denote TΩ(r). We just write T (r) if the set Ω is
clear from context.



exp

τ

F



Theorem 26. Suppose Ω is as in Theorem 25. Then there is a f ∈ B
and a K-quasiconformal map φ of the plane so that f ◦ φ = eτ on Ω,
f ◦ φ is bounded off Ω and φ is conformal off T (r) \ Ω (in particular,
it is conformal on Ω). The constants K, r < ∞ depend on ρ but are
otherwise independent of Ω and τ .



Corollary 27. Suppose Ω is as in Theorem 25. Then there is a
sequence {fn} ∈ B and quasiconformal maps {φn} with uniformly
bounded quasiconstant K so that Ωn = {z : |fn(z)| > 1} = φn(Ω)
converges to Ω in the Hausdorff metric on any bounded subset of the
plane.

Under certain circumstances, one can actually prove Ωn converges to Ω in
the Hausdorff metric on the whole plane. For example, a result of Dyn’kin
on pointwise differentiability of quasiconformal maps implies this is true if
area(T (r) ∩ D

∗
t ) = O(t2−4K−ǫ) for some ǫ > 0.

Estimates like this can often be proven with explicit calculations if Ω is
“thin” near infinity. For example, when the tracts have finite in-radius, and
we can use this to prove that area(T (r)∩D

∗
t ) tends to zero exponentially

fast in t. Hence these domains can be uniformly approximated (on the
whole plane) by B-level-sets.



Theorem 28. Suppose Ω is as in Theorem 25. Then there is a f ∈ S
and a K-quasiconformal map φ of the plane so that f ◦ φ = eτ on
Ω and φ is conformal on Ωc. The constants K, r < ∞ depend on ρ
but are otherwise independent of Ω and τ . We may take f to have
no finite asymptotic values, exactly two critical values, ± exp(−ρ/2),
and so that every critical point has degree ≤ 4.

This is very similar to Theorem 26, but with two important differences.



First, the dilatation of φ is now supported on C \ Ω instead of T (r) \ Ω.

Second, Theorem 28 omits the phrase “and f ◦φ is bounded off Ω”. Thus
Ω need not be the entire level-set of f ; it is merely a union of connected
components of {z : |f | > 1}.



Thus any B-tract is the QC image of a S-tract, but (as we shall see below)
not every B-level-set is the QC image of a S-level-set.

In other words, functions in S and B do not differ because of the geometry
of individual tracts, but because of how the tracts “fit together” to form
a level-set.

Theorem 29.There is a B-level-set that is not the QC image of any
S-level-set.



Suppose f ∈ S and S(f ) ⊂ D.

Assume dist(S(f ), ∂D) = 1− e−ρ and let

δ = min{|a− b| : a, b ∈ S(f ), a 6= b},
and η = min(1− e−ρ, δ).

For ǫ < η/4 the disks of radius ǫ centered at points of S(f ) are pairwise
disjoint (even have disjoint doubles) and all lie inside D. Thus the pre-
image of such a disk is disjoint from Ω = {z : |f (z)| > 1} and consists of
simply connected components.

If a ∈ S(f ) let Ω(a, ǫ) = f−1(D(a, ǫ)) be such a pre-image. A component
of Ω(a, ǫ) is either bounded and contains a critical point with critical value
a, or is unbounded and has asymptotic value a along some unbounded path
γ in the component.



Let X = D \
⋃

aD(a, ǫ), where the union is over a ∈ S(f ). Then X is
a “Swiss cheese”, i.e., disk with finitely many disjoint subdisks removed.
For functions f ∈ S , the preimage of this set must be “small” in the sense
that is lies close to ∂Ω = {z : |f (z)| = 1}:

Theorem 30. For any ǫ < η/4, there is a r < ∞ so that f−1(X) ⊂
TΩ(r). For each partition arc I of ∂Ω(a, ǫ) there is a partition arc J
of ∂Ω so that I ⊂ J(r) and J ⊂ I(r); thus |I| ≃ |J | ≃ dist(I, J).


