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I will try to compress a semester-long course on quasiconformal maps in
to a few weeks, giving many statements and few proofs. Among the topics
I plan to touch on are:

• Extremal length and modulus

• Definitions of quasiconformal and quasisymmetric

• Compactness

• Measurable Riemann Mapping Theorem

• Estimates for QC maps

• Removability



Modulus and Extremal length



Suppose Γ is a family of locally rectifiable paths in a planar domain Ω and
ρ is a non-negative Borel function on Ω.

We say ρ is admissible for Γ (and write ρ ∈ A(Γ)) if

ℓ(Γ) = ℓρ(Γ) = inf
γ∈Γ

∫

γ
ρds ≥ 1,

and define the modulus of Γ as

Mod(Γ) = inf
ρ

∫

M
ρ2dxdy,

where the infimum is over all admissible ρ for Γ.



The reciprocal of modulus is called the extremal length:

λ(Γ) = 1/M(Γ).



Lemma 1 (Conformal invariance). If F is a family of curves in a
domain Ω and f is a one-to-one analytic mapping from Ω to Ω′ then
M(F) = M((F)).



Proof. This is just the change of variables formulas
∫

γ
ρ ◦ f |f ′|ds =

∫

f (γ)
ρds,

∫

Ω
(ρ ◦ f )2|f ′|2dxdy =

∫

f (Ω)
ρdxdy.

These imply that if ρ ∈ A(f (F)) then |f ′| · ρ ◦ f−1 ∈ A(f (F)), and thus
M(f (F)) ≤ M(F). We get the other direction by considering f−1.



Lemma 2 (Monotonicity). If F1 and F2 are collections such that every
γ ∈ F1 contains some curve in F2 then

M(F1) ≤M(F2)

and
λ(F1) ≥ λ(F2).

The proof is immediate since A(F1) ⊃ A(F2).



Lemma 3 (Grötzsch Principle). If F1 and F2 are families of curves in
disjoint domains then

M(F1 ∪ F2) =M(F1) +M(F2).



Proof. Suppose ρ1 and ρ2 are admissible for F1 and F2. Take ρ = ρ1
and ρ = ρ2 in their respective domains. Then it is easy to check that
ρ is admissible for F1 ∪ F2 and

∫

ρ2 =
∫

ρ21 +
∫

ρ22 so domains then
M(F1 ∪ F2) ≤ M(F1) +M(F2). By restricting an admissible metric ρ
to each domain, a similar argument proves the other direction.



Lemma 4 (Series Rule). If F1 and F2 are families of curves in disjoint
domains and every curve of F contains both a curve from F1 and F2,
then λ(F) ≥ λ(F1) + λ(F2).



Proof. If ρi ∈ A(Fi) for i = 1, 2, then ρ = tρ1+(1− t)ρ2 is admissible for
F . Since the domains are disjoint we may assume ρ1ρ2 = 0 everywhere
so for 0 ≤ t ≤ 1,

ρ2 = t2ρ21 + (1− t)2ρ22.

Integrating ρ2 then shows

M(F) ≤ t2M(F1) + (1− t)2M(F2),

for each t. To find the optimal t set a =M(F1), b =M(F2), differentiate
the right hand side above, and set it equal to zero

2at− 2b(1− t) = 0.



Solving gives t = b/(a + b) and plugging this in above gives

M(F) ≤ t2a + (1− t)2b =
b2a + a2b

(a + b)2

=
ab(a + b)

(a + b)2
=

ab

a + b
=

1
1
a +

1
b

or
1

M(F)
≥ 1

M(F1)
+

1

M(F2)
,

which, by definition, is the same as

λ(F) ≥ λ(F1) + λ(F2),



Modulus of a rectangle.

So suppose R = [0, b] × [0, a] is a b wide and a high rectangle and Γ
consists of all rectifiable curves in R with one endpoint on each of the
sides of length a.



Then each such curve has length at least b, so if we let ρ be the constant
1/b function on R we have

∫

γ
ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ) ≤
∫∫

T
ρ2dxdy =

1

b2
ab =

a

b
.



To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(

∫

fgdx)2 ≤ (

∫

f2dx)(

∫

g2dx).

To apply this, suppose ρ is an admissible metric on R for γ. Every hori-
zontal segment in R connecting the two sides of length a is in Γ, so since
γ is admissible, the Cauchy-Schwarz inequality gives

1 ≤
∫ b

0
(1 · ρ(x, y))dx ≤

∫ b

0
12dx ·

∫ b

0
ρ2(x, y)dx.



Now integrate with respect to y to get

a =

∫ a

0
1dy ≤ b

∫ a

0

∫ b

0
ρ2(x, y)dxdy,

which implies Mod(Γ) ≥ b
a. Thus we must have equality.



Lemma 5. If A = {z : r < |z| < R} then the modulus of the path
family connecting the two boundary components is

1

2π
log

R

r
.

More generally, if F is the family of paths connecting rT to a set
E ⊂ RT, then M(F) ≥ |E| log Rr .



Proof. By conformal invariance, we can rescale and assume r = 1. Suppose
ρ is admissible for F . Then for each z ∈ E ⊂ T,

1 ≤ (

∫ R

1
ρdr)2 ≤ (

∫ R

1

dr

r
)(

∫ R

1
ρ2rdr) = logR

∫ R

1
ρ2rdr

so
∫ 2π

0

∫ R

1
ρ2rdrdθ ≥

∫

E

∫ R

r
ρ2rdrdθ ≥ |E|

∫ R

1
ρ2rdr ≥ |E| logR



A quadrilateral Q is a Jordan curve in the plane with two distinguished,
disjoint, closed subarcs. The modulus of Q is the modulus of the path
family in Q connecting these two boundary arcs.

We will use without proof that there is a conformal map of the interior
of Q to a rectangle that extends homeomorphically to the boundary with
the four marked points mapping to the four corners of the rectangle.

If the rectangle has side lengths a, b > 0, and the distinguished arcs of Q
map to the then the modulus of the quadrilateral is a/b.



Lemma 6. [short connection, large modulus]
Suppose Q is a quadrilateral with opposite pairs of sides E,F and
C,D. Assume

1.E and F can be connected in Q by a curve of diameter ≤ ǫ,

2. any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is
larger than M(ǫ) where M(ǫ) → ∞ as ǫ→ 0.



Proof. There is a segment (a, b) ⊂ Q with |a − b| ≤ ǫ and a ∈ E and
b ∈ F . Define a metric on Q by

ρ(z) =
1

2
|z − a|−1/ log(1/2ǫ)

for ǫ < |z − a| < 1/2.

Any curve γ connecting C and D must cross S and since γ has diameter
≥ 1 it must leave the annulus where ρ is non-zero. As before, this shows
that the modulus of the path family in Q separating E and F is small,
hence the modulus of the family connecting them is large.



Lemma 7. Suppose Ω ⊂ C is a topological annulus of modulus M
whose boundary consists of two Jordan curves γ1, γ2 with γ2 separating
γ1 from ∞. Then diam(γ1) ≤ (1 − ǫ)diam(γ2) where ǫ > 0 depends
only on M .



Proof.Rescale so diam(γ2) = diam(Ω) = 1 and suppose diam(γ1) > 1−ǫ.
Then there are points a ∈ γ1 and b ∈ γ2 with |a − b| ≤ ǫ. Let ρ be the
metric on Ω defined by ρ(z) = 1

|z−a| log(1/2ǫ) for ǫ < |z − a| < 1/2.

Then any curve γ ⊂ Ω that separates γ1 and γ2 satisfies
∫

γ ρds ≥ 1 and

M ≤
∫

ρ2dxdy ≤ π

4
log−2 1

2ǫ
.



Thus the modulus of the path family separating the boundary compo-
nents is bounded above by the right hand side, and the modulus of the
reciprocal family connecting the boundary components is bounded below
by π

4 log
2 1
2ǫ. Thus ǫ ≥ 1

2 exp(−
√

πM/4).



Definitions of quasiconformal maps



Quasiconformality: Geometric definition

A homeomorphism f : Ω → Ω′ is K-quasiconformal if there is a K < ∞
so that for every quadrilateral Q ⊂ Ω

1

K
M(Q) ≤M(f (Q)) ≤ KM(Q).



Quasiconformality: Analytic definition

A homeomorphism f : Ω → Ω′ is K-quasiconformal if f is absolutely
continuous on almost all lines and there is a 0 ≤ k = (K−1)/(K+1) < 1
so that

|fz| ≤ k|fz̄|.



Quasiconformality: Metric definition

A homeomorphism f : Ω → Ω′ is K-quasiconformal if there is a K < ∞
so that for every x ∈ Ω

lim sup
r→0

max|y−x|=r |f (y)− f (x)|
min |y − x| = r|f (y)− f (x)| ≤ K.

A homeomorphism f : Ω → Ω′ is K-quasisymmetric if there is a K <∞
so that for every x ∈ Ω

sup
r>0

max|y−x|=r |f (y)− f (x)|
min |y − x| = r|f (y)− f (x)| ≤ K.



Quasisymmetric ⇒ quasiconformal

Sometimes converse holds, e.g., on R
n, n ≥ 2

Quasisymmetric 6= Quasiconformal in R.



All three definitions are equivalent for planar domains.

Geometric definition with modulus is convenient for proving compactness
of K-QC maps.

Analytic definition is convenient for mapping theorem and estimating map
in terms of dilatation.

Analytic ⇒ Geometric is fairly easy.

Geometric ⇒ Analytic is harder. Must prove differentiability.

Equivalence with metric definition is due to Heinonen and Koskela (in
certain metric spaces, including Euclidean space).



Lemma 8. If we have a piecewise differentiable K-quasiconformal
map between a 1 × a and 1 × b rectangle with dilatation ≤ K, then
a
K ≤ b ≤ Ka.



Proof. By integrating over horizontal lines in the first rectangle, we see

b ≤
∫ a

0
(|fz| + |fz|)dx,

and integrating in the other variable,

b ≤
∫ 1

0

∫ a

0
(|fz| + |fz|)dxdy.



Thus by Cauchy-Schwarz

b2 ≤ (

∫ 1

0

∫ a

0
(|fz| + |fz|)(|fz| − |fz|)dxdy)(

∫ 1

0

∫ a

0

|fz| + |fz|
|fz| − |fz|

dxdy)

≤ (

∫ 1

0

∫ a

0
(|fz|2 − |fz|2)dxdy)(

∫ 1

0

∫ a

0

|fz| + |fz|
|fz| − |fz|

dxdy)

≤ (

∫ 1

0

∫ a

0
Jfdxdy)(

∫ 1

0

∫ a

0
Dfdxdy)

≤ baK,

so b ≤ Ka. The other direction follows by considering the inverse map.



Corollary 9. If f is a piecewise differentiable K-quasiconformal on
the whole rectangle and (1+ ǫ)-quasiconformal except on a set of area
δ, then b/a ≤ 1 + ǫ + Kδ. In particular, a sequence of such maps
whose dilatations satisfy supn ‖µn‖∞ ≤ k < 1 and so that {µn} tends
to 0 in measure, will tend to a 1-quasiconformal map.



Equicontinuity of K-quasiconformal maps



Arzela-Ascoli theorem:

A family of continuous functions on a compact Hausdorff space has com-
pact closure for the sup-norm topology (uniform convergence) if and only
if
(1) the family is equicontinuous,
(2) the family is pointwise bounded.



Lemma 10. Suppose f : C → C is a K-quasiconformal map that fixes
both 0 and 1. Then |f (x)| is bounded with an estimate depending on
|x| and K, but not on f .



Proof. First suppose Re(x) ≤ 1/2 and consider the topological annulus
with boundary component [0, x] and [1,∞).

The modulus of the path family separating the two boundary components
is bounded below depending only on |x|. But if R = |f (x)| then by using
the metric ρ(z) = 1/(|z| logR), we see that the modulus of f (F) is at
most 1/ logR.

This is a contradiction if R is too large.

For Re(x) > −1/2 we consider [1, x] and [0,−∞).



Theorem 11.A K-quasiconformal map of the plane that fixes both
0 and 1 is locally Hölder continuous.



Proof. Suppose f is as in the lemma and x, y ∈ D(0, r). By Lemma 10,
D(0, 2r) is mapped into D(0, R) for some R = R(r,K). Surround {x, y}
by N = ⌊log2 r

|x−y|⌋ annuli {Aj} of modulus log 2.

The image annuli {f (Aj)} have moduli bounded away from zero, and
hence diam(f (Aj+1)) ≤ (1− ǫ)diam(f (Aj)) by Lemma 7.

Therefore

|f (x)− f (y)| ≤ R(1− ǫ)N

≤ R2log2(1−ǫ)(1+log2R−log2 |x−y|)

≤ C(R)|x− y|log2(1−ǫ).



Thus normalized K-QC maps form a equicontinuous family.

Arzela-Ascoli theorem may be applied.

One can prove the actual Hölder exponent is α = 1/K (Mori’s theorem).



Lemma 12. If ϕ : D → D is quasiconformal and onto, then ϕ extends
continuously to a homeomorphism of T = ∂D to itself.



Proof.We may assume f (0) = 0; the general case follows after composing
with a Möbius transformation.

Suppose w, z ∈ D. We will show that

|f (z)− f (w)| ≤ C|z − w|α,
for constants C < ∞, α > 0 that depend only on the quasiconstant K
of f . This implies f is uniformly continuous and hence has a continuous
extension to the boundary of D.

Let d = |z − w| and r = min(1 − |z|, 1 − |w|). There are several cases
depending on the positions of the points z, w and the relative sizes of d
and r.



To start, note that if |z − w| ≥ 1
10 we can just take C = 20 and α = 1.

So from here on, we assume |z − w| < 1/10.

Suppose r > 1/4, so z, w ∈ 3
4D. Surround the segment [z, w] byN ≃ log d

annuli with moduli ≃ 1. Then just as in the proof of Theorem 11, the
image annuli have moduli ≃ 1 (with a constant depending on K) and
hence

|f (z)− f (w)| ≤ (1− ǫ(K))N = O(|z − w|α),
for some α > 0 depending only on K.



Next suppose |z| ≥ 3/4 and d > r. Then separate [z, w] from 0 by
N ≃ log d disjoint quadrilaterals with a pair of opposite sides being arcs
of T, and all with moduli≃ 1. Since f (0) = 0 and the image quadrilaterals
have moduli ≃ 1, the diameters shrink geometrically, so |z − w| = (1 −
ǫ(K))N = O(dα), as desired.



Finally, if r ≤ d we combine the two previous ideas: we start by separat-
ing [z, w] from 0 by ≃ log d quadrilaterals with as above. The smallest
quadrilateral then bounds a region of diameter approximately r containing
[z, w] and we then construct ≃ log r/d disjoint annuli with moduli ≃ 1
that each separate [z, w] from this smallest quadrilateral.

The same arguments as before now show

|z − w| = (1− ǫ(K))− log r(1− ǫ(K))log r/d = O(dα) = O(|z − w|α).



Symmetry and Koebe’s theorem



If γ is a path in the plane let γ̄ be its reflection across the real line and
let γ+ = (γ ∩H)∪ γ ∩Hl, where H,Hl = H denote the upper and lower
half-planes.

If Γ is a path family, define Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.

γ
γ+

Lemma 13. If Γ = Γ then M(Γ) = 2M(Γ+).



Proof.We start by proving M(Γ) ≤ 2M(Γ+). Given a metric ρ, define
σ(z) = max(ρ(z), ρ(z̄)). Then for any γ ∈ Γ,

∫

+γ+σds ≥
∫

γ+
ρds ≥ inf

γ∈Γ

∫

γ
ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ



Thus, since max(a, b)2 ≤ a2 + b2,

M(Γ) ≤
∫

σ2dxdy ≤
∫

ρ2(z)dxdy +

∫

ρ2(z̄)dxdy ≤ 2

∫

ρ2(z)dxdy.

Taking the infimum over admissible ρ’s for Γ+ makes the right hand side
equal to 2M(Γ+), proving the claim.



For the other direction, given ρ define σ(z) = ρ(z) + ρ(z̄) for z ∈ H and
σ = 0 if z ∈ Hl. Then
∫

γ+
σds =

∫

γ+
ρ(z) + ρ(z̄)ds

=

∫

γ∩H
ρ(z)ds +

∫

γ∩H
ρ(z̄)ds +

∫

γ∩Hl
ρ(z) +

∫

γ∩Hl
ρ(z̄)ds

=

∫

γ
ρ(z)ds +

∫

γ̄
ρ(z)ds

≥ 2 inf
ρ

∫

γ
ρds.



Thus if ρ is admissible for Γ, 12σ is admissible for Γ+. Hence, since (a +

b)2 ≤ 2(a2 + b2),

M(Γ+) ≤
∫

(
1

2
σ)2dxdy

=
1

4

∫

H

(ρ(z) + ρ(z̄))2dxdy

≤ 1
2

∫

H

ρ2(z)dxdy +

∫

H

ρ2(z̄)dxdy

=
1

2

∫

ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2M(Γ) on the right

hand side, proving the lemma.



Lemma 14 (Rays are extreme). Let D
∗ = {z : |z| > 1} and Ω0 =

D
∗ \ [R,∞) for some R > 1. Let Ω = D

∗ \K, where K is a closed,
unbounded, connected set in D

∗ which contains the point {R}. Let
Γ0,Γ denote the path families in these domains with separate the two
boundary components. Then M(Γ0) ≤M(Γ).



Proof.We use the symmetry principle we just proved.

The family Γ0 is clearly symmetric (i.e., Γ = Γ, so M(Γ+) = 1
2M(Γ0).

The family Γ may not be symmetric, but we can replace it by a larger
family that is.



Let ΓR be the collection of rectifiable curves in D
∗ \ {R} which have zero

winding number around {R}, but non-zero winding number around 0.

Clearly Γ ⊂ ΓR and ΓR is symmetric soM(Γ) ≥ M(ΓR) = 2M(Γ+R).

Thus all we have to do is show M(Γ+R) =M(Γ+0 ).

We claim Γ+R = Γ+0 . Clearly Γ0 ⊂ ΓR, so we only need Γ+R ⊂ Γ+0 .



Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross
both the negative and positive real axes. If it never crossed (0, R) then
the winding around 0 and R would be the same, which false, so γ must
cross(0, R) as well.

Choose points z− ∈ γ∩(−∞, 0) and z+ ∈ γ∩(0, R). These points divide
γ into two subarcs γ1 and γ2.Then γ

+ = γ+1 ∪ γ+2 . But if we reflect γ+2
into the lower half-plane and join it to γ+1 it forms a closed curve γ0 that

is in Γ0 and γ
+
0 = γ+. Thus γ+ ∈ Γ+0 , as desired.



Let Ωǫ,R = {z : |z| > ǫ}\ [R,∞). Thus Ω1,R is the domain considered in
the previous lemma. We can estimate the moduli of these domains using
the Koebe map

k(z) =
z

(1 + z)2
= z − 2z2 + 3z3 − 4z4 + 5z5 − . . . ,

which is conformal D → R
2 \ [14,∞) and k(0) = 0, k′(0) = 1.



Then k−1( 1
4Rz) maps Ωǫ,R conformally to an annular domain in the disk

whose outer boundary is the unit circle and whose inner boundary is
trapped between the circle of radius

ǫ

4R
(1±O(

ǫ

R
)).

Thus the modulus of Ωǫ,R is 2π log 4R
ǫ +O(ǫ/R).



Lemma 15. Suppose z, w ∈ D and K is a compact connected set in
D which contains both these points. Let Γ be the path family that
separates K and T. Then the modulus of this family is maximized
when K is the hyperbolic geodesic between z and w in which case the
modulus is 2π log 4

ρ(z, w) +O(ρ(z, w)), where ρ denotes the hyperbolic
distance.

Proof. By conformal invariance we may use a Möbius transformation to
move z to 0 and w onto the positive axis. Applying an inversion, the path
family is mapped to one as in Lemma 14, showing that the radial line from
z to w maximizes the modulus. The estimate of the modulus follows from
our previous remarks.



We now give an elegant proof of the Koebe 1
4-theorem due to Mateljevic.

Theorem 16 (The Koebe 1
4 Theorem). Suppose f is holomorphic, 1-1

on D and f (0) = 0, f ′(0) = 1. Then D(0, 14) ⊂ f (D).



Proof. Let R = dist(0, ∂f (D)). Let Aǫ,r = {z : ǫ < |z| < r} and note
that by conformal invariance

2π log
1

ǫ
=M(Aǫ,1) =M(f (Aǫ,1)).

Let δ = min|z|=ǫ |f (z)|. Since f ′(0) = 1, δ = ǫ + O(ǫ2). Note that

f (D) \D(0, δ) ⊃ f (Aǫ,1), so

M(f (D) \D(0, δ)) ≥M(f (Aǫ,1)).



By Lemma 14 (“rays are extreme”)

M(f (D) \D(0, δ)) ≤M(Ωδ,R) = 2π log
4R

δ
+O(

δ

R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
) ≥ 2π log

1

ǫ
,

or
log 4R− log(ǫ +O(ǫ2)) +O(

ǫ

R
) ≥ − log ǫ.

Taking ǫ→ 0 shows log 4R ≥ 0, or R ≥ 1
4.



Capacity and boundary values of conformal maps



Theorem 17 (Gehring-Hayman inequality).There is an absolute con-
stant C <∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic
and simply connected. Given two points in Ω, let γ be the hyperbolic
geodesic connecting these two points and let γ′ be any other curve in
Ω connecting them. Then ℓ(γ) ≤ Cℓ(γ′).

“Hyperbolic geodesics are approximately Euclidean geodesics”.



Proof. Let
Qn = {z ∈ D : 2−n−1 < |z − 1| < 2−n},

and let
γn = {z ∈ D : |z − 1| = 2−n},

zn = γn ∩ [0, 1).

Let f : D → Ω be conformal, normalized so that γ is the image of
I = [0, r] ⊂ D for some 0 < r < 1.



WLOG, we may assume r = zN+1 for some N (if not we truncate a
segment of the form J = [zN+1, r] and use Koebe’s theorem to compare
the lengths of f (J) and γ′ ∩ f (QN+1)).



Let Q′
n ⊂ Qn be the sub-quadrilateral of points with | arg(z− 1)| < π/6.

Each of these has bounded hyperbolic diameter and hence by Koebe’s
theorem its image is bounded by four arcs of diameter ≃ dn and opposite
sides are ≃ dn apart.



In particular, this means that any curve in f (Qn) separating γn and γn+1
must cross f (Q′

n) and hence has diameter & dn. Since Qn has bounded
modulus, so does f (Qn) and so Lemma 6 (“short connection, large mod-
ulus”) says that the shortest curve in f (Qn) connecting γn and γn+1 has
length ℓn ≃ dn.

Any γ′ in Q connecting γn and γn+1 has length at least ℓn, and so

ℓ(γ) = O(
∑

dn) = O(
∑

ℓn) ≤ O(ℓ(γ′)).



Given E ⊂ T we will denote the capacity of E to be the modulus of
the path family in the annulus {12 < |z| < 1} that has one endpoint on

{|z| = 1
2} and one endpoint on E.

This definition of capacity is non-standard, and is a substitute for the usual
logarithmic capacity cap(E) of E.



Lemma 18. If E has zero capacity, then it has zero length.

Proof.We prove the contrapositive. If E has positive length, suppose ρ is
an admissible metric for the corresponding path family. Considering the
radial segments connecting E to {|z| = 1/2}, we see

|E| ≤ 2

∫

E

∫ 1

1/2
ρ(z)drdθ ≤ 4

∫

E

∫ 1

1/2
ρ(z)rdrdθ

≤ 4

(

∫

E

∫ 1

1/2
ρ2(z)dxdy

)1/2

·
(

∫

E

∫ 1

1/2
1dxdy

)1/2

≤ 2

(

∫

E

∫ 1

1/2
ρ2(z)dxdy

)1/2

·
√

|E|.

Hence
∫

ρ2dxdy ≥ 1
4|E|.



Actually, sets of zero capacity have zero Hausdorff dimension.



Lemma 19 (Bounded radial images). Suppose f : D → Ω is conformal,
and for R ≥ 1,

ER = {x ∈ T : |f (x)− f (0)| ≥ R dist(f (0), ∂Ω)}.
Then ER has capacity O(1/ logR) if R is large enough.



Proof.Assume f (0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ logR
for z ∈ Ω ∩ {1 < |z| < R}.

Then ρ is admissible for the path family F connecting D(0, 1/2) to ∂Ω \
D(0, R) and

∫∫

ρ2dxdy ≤ 2π/ logR.

By definition M(F) ≤ 2π/ logR and λ(F) ≥ (logR)/2π.

By Koebe distortionK = f−1(D(0, 1/2)) is contained in a compact subset
of D, independent of Ω.

One can show that the extremal length connecting K to the E is compa-
rable to the extremal length connecting {|z| = 1/2} to E.



Corollary 20. Suppose f : D → Ω is conformal and z ∈ D. For any
direction θ at z and any ǫ > 0 there is a hyperbolic geodesic ray γ
start at z within ǫ of direction θ so that the Euclidean length of f (γ)
is ≤ Cǫdist(f (z), ∂Ω).



Lemma 21. There is a c > 0 so that the following holds. Suppose
f : D → Ω and 1

2 ≤ r < 1. Let

E(δ, r) = {x ∈ T : |f (sx)− f (rx)| ≥ δ for some s ∈ (r, 1)}.
Then the extremal length of the path family P connecting D(0, r) to
E is bounded below by cδ2/a(r) where a(r) = area(Ω \ f (D(0, r)).



Proof. Suppose z, w ∈ Ω, suppose γ is the hyperbolic geodesic connecting
z and w and suppose γ̃ is any path in Ω connecting these points. By
the Gehring-Hayman inequality there is a universal C < ∞ such that
ℓ(γ) ≤ Cℓ(γ̃) (here ℓ(γ) denotes the length of γ).

Now suppose we apply this with z = f (sx) and w ∈ f (D(0, r)). By the
Gehring-Hayman estimate, the length of any curve from w to z is at least
1/C times the length of the hyperbolic geodesic γ between them.



But this geodesic has a segment γ0 that lies within a uniformly bounded
distance of the geodesic γ1 from f (rx) to z. By the Koebe distortion
theorem γ0 and γ1 have comparable Euclidean lengths, and clearly the
length of γ1 is at least δ.

Thus the length of any path from f (D(0, r)) to f (sx) is at least δ/C.
Now let ρ = C/δ in Ω \ f (D(0, r)) and 0 elsewhere. Then ρ is admissible
for f (P) and

∫∫

ρ2dxdy is bounded by C2a(r)/δ2.

Thus λ(P) ≥ C−2δ2/a(r).



Corollary 22. If f : D → Ω is conformal, then f has radial limits
except on a set of zero capacity (and hence almost everywhere).

Proof. Let Er,δ ⊂ T be the set of x ∈ T so that diam(f (rx, x)) > δ, and
let Eδ = ∩0<r<1Er,δ. If f does not have a radial limit at x ∈ T, then
x ∈ Eδ for some δ > 0, and this has zero capacity by Lemma 21.

Taking the union over a sequence of δ’s tending to zero proves the result.
The set where f has a radial limit ∞ has zero capacity by Lemma 19, so
we deduce f has finite radial limits except on zero capacity.



Continuity of modulus and limits of K-QC maps



Lemma 23. Suppose {fn} are conformal maps of D → Ωn that
converge uniformly on compact subsets of D to a conformal map
f : D → Ω. Suppose that the boundary of each Ωn is the homeo-
morphic image ∂Ωn = σn(T) and that {σn} converges uniformly on T

to a homeomorphism σ : T → ∂Ω. Then fn → f uniformly on the D.

This implies modulus is a continuous function of the quadrilateral.



Proof. Fix ǫ > 0 and choose n so large that if we divide T into n equal
sized intervals {Jj}n1 , then σ maps each of them to a set Ij of diameter at
most ǫ/2.

Let Ikj = σk(Jj). Because σk → σ uniformly, the sets Ij all have diameter
at most ǫ, if k is large enough.



Next choose η > 0 so small that if k,m > 1/η and σm(Jj) and σk(Ji)
contain points at most distance Cη apart, then Ji and Jk are the same or
adjacent to each other.

We can do this because of the uniform convergence and the fact that σ is
1-to-1. By passing to the limit the same property holds for σ.



Next choose m so large that f (D) \ f ({|z| < 1− 1
m}) is contained in an

η-neighborhood of ∂Ω.

Choose m points {zj} equally spaced on the circle |z| = 1 − 1
m, and let

Kj ⊂ T be the arc centered at zj/|zj| of length 4π/m.



Fix a small number δ > 0 (determined below, depending only on η).

By Lemma 19 (“long curves, small capacity”) choose a point wj ∈ Kj so
that |wj − zj| ≤ 2/m and

|f (wj)− f (wj(1−
1

m
))| ≤ Cδ.

This is possible if m is large enough depending on δ.



Similarly, choose points wkj ∈ Kj so that

|fk(wkj )− fk(zj)| ≤ 2Cδ.

This is possible since fk → f uniformly on the compact set {|z| ≤ 1− 1
m}

and thus ∂fk(D) is contained in an 2δ-neighborhood of ∂Ω for k large
enough and ∂Ωk is contained in a δ-neighborhood of ∂Ω because of the
uniform convergence of the parameterizations.



By taking even m larger, if necessary, we can also arrange that each Ij
contains at least one of the points f (zm/|zm|). (Recall {Ij} are images n
equal size arcs {Jj} on circle.)

Thus each f (Kj) is mapped into the union of at most 2 of the Ij and
hence its image has diameter at most 2ǫ.

Also, the points f (wkp) and f (w
k
p+1) are at most Cδ apart, so belong to

the same or adjacent sets Ij.

Thus fk(Kp) is a union of at most 4 such adjacent sets and hence has
diameter O(ǫ).



For each wkp there is an arc Jj so that fk(w
k
p) ⊂ σk(Jj). Similarly, there

is an arc Ji so that f (wp) ∈ Ii = σ(Ji).

Since fk → f uniformly on the finite set {zn}, we have, for k sufficiently
large

|fk(wkn)− f (wn)| ≤ |fk(wkn)− fk(zn)|
+|fk(zn)− f (zn)|

+|f (zn)− f (wn)|
≤ (2C + 1 + C)δ.

This is less than η if δ is small enough (determines δ).



Since Ii and Ij each have diameter at most ǫ, their union has diameter
< 2ǫ and the union of the intervals adjacent to these is at most 4ǫ.

Similarly for Iki and Jkj . Thus fk(Kp) and f (Kp) are contained in O(ǫ)-
neighborhoods of each other. Thus fk → f uniformly on T.

By the maximum principle, this implies uniform convergence on the closed
disk, as desired.



Corollary 24. Suppose {fn} are homeomorphisms C → C that con-
verge uniformly to a homeomorphism f and suppose that Q is a
quadrilateral. Then the moduli of Qn = fn(Q) converge to the modu-
lus of f (Q)

Corollary 25. Suppose {fn} are K-QC homeomorphisms on Ω ⊂ C

that converge uniformly to a homeomorphism f . Then f is K-QC.

Proof. If Q ⊂ Ω, then M(f (Q)) = limnM(fn(Q)) ≤ KM(Q).



Lemma 26. If {fn} is a sequence of K-quasiconformal maps on Ω
that converge uniformly on compact subsets to a homeomorphism f ,
then f is K-quasiconformal.

Proof.Any quadrilateral Q ⊂ Ω has compact closure in Ω so Q′ =
limn fn(Q) is a quadrilateral in f (Ω) and we need only check that if Q
is a quadrilateral then M(limn fn(Q)) = limnM(fn(Q)). However, this
follows from Lemma 23.



Corollary 27. Suppose {fn} are K-QC homeomorphisms on C nor-
malized to fix 0, 1. The there is a subsequence that converges uniformly
to a K-QC map f .

Proof. By earlier estimates we get equicontinuity, so can apply Arzela-
Ascoli to get uniformly convergent subsequence. Limit is K-QC by conti-
nuity of modulus.

If fn is Kn-QC and Kn ց 1 then the limit f is 1-QC.

If we knew f was conformal then it is also linear, and since it fixes 0, 1, f
would be the identity.



1-quasiconformal = conformal



Lemma 28. If f is a homeomorphism of Ω ⊂ C that is K-QC in a
neighborhood of each point of Ω, then f is K-QC on all of Ω.



Proof. Suppose Q ⊂ Ω is a quadrilateral that is conformally equivalent via
a map φ to a 1×m rectangle R and Q′ = f (Q) is conformally equivalent
a 1×m′ rectangle R′.

Divide R into M equal vertical strips {Sj} of dimension 1 ×m/M . We
have to choose M sufficiently large that several things happen.



φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R



First choose δ > 0 so that f−1 is K-quasiconformal on any disk of radius
δ centered at any point of Q′ (possible since Q′ has compact closure in Ω).

The closure of Q′ is a union of Jordan arcs γ corresponding via f ◦ φ−1

to vertical line segments in R.

By the continuity of f ◦ φ−1 there is an η > 0 so that if z ∈ R then
f (φ−1(D(z, η))) has diameter ≤ δ.



By the continuity of the inverse map, there is an ǫ > 0 so that x, y ∈ Q′
and |x− y| < ǫ implies |φ(f−1(x))− φ(f−1(y))| ≤ η.

Thus for any δ > 0 there is an ǫ > 0 so that if x, y ∈ γ ⊂ Q′ are at most
distance ǫ apart, then the arc of γ between then has diameter at most δ
(and ǫ is independent of which γ we use).



φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R

Choose M so large that each region Q′
j = f (φ−1(Sj)) contains a disk of

radius at most ρ, where ρ will be chosen small depending on ǫ.



φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R

Map Ωj conformally to a 1 × m′
j rectangle R′

j. There is an absolute

constant C so that every for every y ∈ [0, 1], there is a t ∈ (0, 1) with
|t−y| ≤ Cmj and so that the horizontal cross-cut of R′

j at height t maps

via φ−1
j to a Jordan arc of length ≤ Cρ.



φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R

Thus we can divide R′
j by horizontal cross-cuts into rectangles {R′

ij} of

modulus m′
ij ≃ 1 so that the preimages of these rectangles under φj are

quadrilaterals with two opposite sides of length ≤ Cρ and which can be
connected inside the quadrilateral by a curve of length ≤ Cρ.



Taking δ as above, choose ǫ as above corresponding to δ/4 and choose ρ
so that 3Cρ < min(ǫ, δ/4).

Then all four sides of the quadrilateral Q′
ij have diameter ≤ δ/4 and

hence Q′
ij has diameter less than δ and hence lies in a disk where f−1

is K-quasiconformal. Let mij be the modulus of corresponding preimage

quadrilateral Qij = f−1(Q′
ij).

φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R



Then using the rules of extremal length

M

m
≥
∑

i

1

mij
,

1

m′
j

=
∑

i

1

m′
ij

, m′ ≥
∑

j

m′
j,

and by the definition of K-quasiconformal,

1

K
≤ mij

m′
ij

≤ K.

φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R



Hence
M

m
≥
∑

i

1

mij
≥ 1

K

∑

i

1

m′
ij

=
1

Km′
j

or
m

M
≤ Km′

j

for every j. Thus

m =

M
∑

j=1

m

M
≤
∑

j

Km′
j ≤ Km′.

Applying the same result to the inverse map shows f isK-quasiconformal.



If K = 1, then m = m′ the last line of the above proof becomes

m′ = m ≤
∑

j

m

M
≤
∑

j

m′
j ≤ m′.

so we deduce
∑

j

m′
j = m′,

whereas in general, we only have
∑

jm
′
j ≤ m′.

We’ll use this to deduce that a 1-QC map must be conformal.



Lemma 29. Consider a 1 × m rectangle R that is divided into two
quadrilaterals Q1, Q2 of modulus m1 and m2 by a Jordan arc γ the
connects the top and bottom edges of R. Then if m = m1 +m2, the
curve γ is a vertical line segment.



Proof. Let ϕ1, ϕ2 be the conformal maps ofQ1, Q2 onto 1×m1 and 1×m2
rectangles R1, R2 respectively.

Set ρ = |f ′1| on Q1 and ρ = |f ′2| in Q2 and zero elsewhere. Then each
horizontal line is cut by γ into pieces one of which connects the left vertical
edge of R to γ, and another that connects γ to the right edge of R.



The images of these connect the vertical edges of R1 and R2 respectively.
Thus the images have lengths at least m1 and m2 respectively. Thus the
length of the image of the entire horizontal segment in Q is ≥ m1 +m2.

If we integrate over all horizontal segments in Q, we see
∫

Q
(ρ− 1)dxdy ≥ m1 +m1 −m = 0.



Similarly,
∫

Q
(ρ2 − 1)dxdy = area(f1(Q1) + area(f2(Q2))− area(Q)

= (m1 +m2)−m = 0.

Thus
∫

Q
(ρ− 1)2dxdy =

∫

Q
(ρ2 − 1)− 2(ρ− 1)dxdy

=

∫

Q
(ρ2 − 1)− 2

∫

Q
(ρ− 1)dxdy

= 0− 2

∫

Q
(ρ− 1)dxdy

≤ 0.



Since (ρ− 1)2 ≥ 0, this implies
∫

Q
(ρ− 1)2dxdy = 0

and hence ρ = 1 a.e., f1, f2 are linear, and γ is a vertical segment.



Lemma 30. If f is 1-QC on Ω, then it is conformal on Ω.

Proof. If f is 1-quasiconformal in the proof of Theorem 28, then as noted
before Lemma 29, we must have

M

m
=
∑

i

1

mij
,

1

m′
j

=
∑

i

1

m′
ij

, m′ =
∑

j

m′
j,

Thus the map ψ = ϕ′ ◦ f ◦ ϕ−1 between identical rectangles must be the
identity map. Thus f = (ϕ′)−1 ◦ ϕ is a composition of conformal maps,
hence conformal.



Small dilatation implies almost linear:

Corollary 31. For any δ > 0 and and any r > 0 there is an ǫ > 0 so
that the following holds. If f : C → C is (1 + ǫ)-quasiconformal and
f fixes 0 and 1, then |z − f (z)| ≤ δ for all |z| < r.



Proof. If not, there is a sequence of (1 + 1
n)-quasiconformal maps that all

fix 0 and 1 and points zn ∈ D(0, r) so that |zn − fn(zn)| > δ.

However, there is a subsequence that converges uniformly on compact
subsets of the plane to a 1-quasiconformal map that fixes 0 and 1 and that
moves some point by at least δ.

However a 1-quasiconformal map is conformal on C, hence of form az + b
and since it fixes both 0 and 1, it is the identity and hence doesn’t move
any points, a contradiction.



Geometric definition implies analytic definition



Theorem 32. If f is quasiconformal, then f is absolutely continuous
on almost every line in any given direction.



Proof.After a Euclidean similarity, we may consider horizontal lines in
Q = [0, 1]2. Define

A(y) = area(f ([0, 1]× [0, y])).

Then A(0) = 0, A(1) = area(f (Q)) <∞ and A is increasing.

Thus A is continuous except on a countable set and has a finite derivative
almost everywhere. Fix a value of y where both this things happen, and
we will show that f is absolutely continuous on the horizontal line Ly =
[0, 1]× {y}.

The main idea is that if this failed, then modulus estimates relating length
to area will force A′(y) = ∞.



Divide R = [0, 1]× [y, y + 1
n] into m << n disjoint 1

m × 1
n sub-rectangles

denoted {Rj}.

Let R′
j = f (Rj) and let the “left”, “right”, and “bottom” edges of R′

j be
the images under f of corresponding edges of Rj.

Let bj be length of f (Ly∩∂Rj), i.e., the length of the bottom edge of R′
j.

This number might be finite or infinite.



Fix ǫ > 0.

Ifm is fixed, as n→ ∞, any curve in f (Rj) joining the opposite “vertical”
sides limits on the bottom edge.

Hence the liminf of the lengths of such curves is at least the length of the
bottom edge of R′

j.

If bj is finite, by taking n large enough, we can insure that any curve in
f (Rj) than joins the images of the vertical sides of Rj has length ≥ bj−ǫ.

If bj is infinite, we can insure these curves all have length ≥ 1/ǫ.



By quasiconformality we know

M(R′
j) ≥M(Rj)/K =

m

Kn
,

and using the metric ρ = 1 on R′
j, shows

M(R′
j) ≤

area(R′
j)

b2j
.



Thus by Cauchy-Schwarz,

(

m
∑

j=1

bj)
2 ≤ (

m
∑

j=1

b2jm)(

m
∑

j=1

1

m
)

≤ m
m
∑

j=1

area(R′
j)

M(R′
j)

≤ m

m
∑

j=1

area(R′
j)

m/Kn

≤
m
∑

j=1

area(R′
j)Kn

≤ K
A(y + 1

n)− A(y)

1/n

→ KA′(y).



Since we assumed A′(y) <∞, f (Ly) has finite length for our choice of y.

Given a compact set E of the horizontal segment Ly, suppose E is hit
by N of the rectangles Rj and that m has been chosen so large that
N/m ≤ 2m1(E).



Then repeating the argument above, but only summing over the j’s so
that the bottom edges of Rj hit E,

(
∑

j

bj)
2 ≤ (

∑

j

b2jm)(
∑

j

1

m
)

≤ (m)(N/m)
∑

j

area(R′
j)

M(R′
j)

≤ N
∑

j

area(R′
j)

m/Kn

≤ N

m

m
∑

j=1

area(R′
j)Kn

≤ Km1(E)
A(y + 1

n)− A(y)

1/n

→ Km1(E)A
′(y).



Thus m1(E) small, implies
∑

bj is small, and hence f (E) has small 1-
dimensional measure. Hence f is absolutely continuous on Ly, as desired.



We have shown that quasiconformal maps are absolutely continuous on
almost every horizontal and almost every vertical line, so fx, fy exist al-
most everywhere and hence fz, fz, µf = fz/fz are all well defined almost
everywhere.

We want f to be differentiable a.e., i.e.,

f (z) = f (w) + fz(w)(z − w) + fz(w)(z − w) + o(|z − w|),
This requires more work.



A remarkable theorem of Gehring and Lehto says this is true.

Theorem 33. If f is a homeomorphism of Ω ⊂ C and has partials
almost everywhere, then it is differentiable almost everywhere.



Proof. By Egorov’s theorem the limits

fx(z) = lim
h→0

f (z + h)− f (z)

h
,

fy(z) = lim
h→0

f (z + ih)− f (z)

h
,

are uniform and converge to a continuous functions on a compact set
E ⊂ Ω so that area(Ω \ E) is as small as we wish.



Almost every point of E is a point of density for the intersection of E with
both the vertical and horizontal lines through z0, so if suffices to prove
differentiability at such points.

For simplicity we assume 0 is such a point.

The proof follows the usual case where we assume the partials are contin-
uous. Here we replace continuous on a neighborhood of 0 with continuous
on a set E such that E has density 1 at 0.



Because of the continuity and uniform convergence on E, for any ǫ > 0
there is a δ > 0 so that

|fx(0)− fx(z)|, |fy(0)− fy(z)| < ǫ,

if z ∈ E ∩D(0, δ)-neighborhood of 0 and

|fx(z)−
f (z + h)− f (z)

h
|, |fy(z)−

f (z + ih)− f (z)

h
| < ǫ,

if z ∈ E ∩D(0, δ) and h ∈ [−δ, δ].



Note that

f (z)− f (0)− xfx(0)− yfy(0) = [f (z)− f (x)− yfy(0)]

+[f (x)− f (0)− xfx(0)]

+[yfy(x)− yfy(0)]

= I + II + III.

If |z| < δ and x ∈ E, then by the inequalities above, I < ǫ|y|, II < ǫ|x|
and III < ǫy, so the term on the far left is bounded by 3ǫ|z|, which proves
differentiability if x ∈ E. A similar proof works if iy ∈ E.



Fix ǫ > 0 and choose δ so small that if 0 < x < δ, then

E ∩ (
x

1 + ǫ
, x) 6= ∅, E ∩ (

iy

1 + ǫ
, iy) 6= ∅.

This is possible since 0 is point of density.

Thus if 0 < |x|, |y| ≤ δ/(1 + ǫ) can find points

x1, x2 ∈ E ∩ (
x

1 + ǫ
, (1 + ǫ)x)

and
iy1, iy2 ∈ E ∩ i( y

1 + ǫ
, (1 + ǫ)y)

and so that
x + iy ∈ R = (x1, x2)× (y1, y2).



Thus for each point z = (x, y) on the boundary of R we have

|f (z)− f (0)− xfx(0)− yfy(0)| ≤ ǫ|z|

Since f is a homeomorphism (all we need is that it is continuous and open),
|f | takes its maximum on the boundary, so

sup
z=x+iy∈R

|f (z)− f (0)− xfx(0)− yfy(0)|

≤ sup
w=u+iv∈∂R

|f (w)− f (0)− xfx(0)− yfy(0)|

≤ 3ǫ|w| + sup
w=u+iv∈∂R

|x− u||fx(0)| + |y − v||fy(0)|

≤ 3ǫ(1 + ǫ)|z| + ǫ|fx(0)||z| + ǫ|fy(0)||z|.



Partials are in L2



Lemma 34. If f is K-quasiconformal then
∫

Q
Jfdxdy ≤ area(f (Q)) ≤ πdiam(f (Q))2,

for every square Q.

Proof. Second inequality is trivial.

We claim first holds for any map that is differentiable almost everywhere.



At any point x where f is differentiable we can choose a small square Qx
containing x such that

area(f (Q′)) ≥ (1− ǫ)Jf (x)area(Q
′),

and by the Lebesgue differentiation theorem, for almost every x we have
∫

Q′
Jfdxdy ≤ (1 + ǫ)Jf (x)area(Q

′),

for all small enough squares centered at x.



Combining these two estimates and using the Vitali covering theorem to
extract a collection of disjoint squares {Qj} with centers xj and with these
properties that cover almost every point of Q, we get

∫

Q
Jfdxdy ≤

∑

j

∫

Qj

Jfdxdy

≤ (1 + ǫ)Jf (xj)area(Qj)

≤ 1 + ǫ

1− ǫ
area(f (Qj))

≤ 1 + ǫ

1− ǫ
area(f (Q)).

Taking ǫց 0, gives area(f (E)) ≥
∫

E Jfdxdy.



Lemma 35. If f is K-quasiconformal then
∫

Q
|fz|2dxdy ≤ π

1− k2
diam(f (Q))2,

for every square Q.

Proof. Follows from previous result since for K-QC maps

Jf = |fz|2 − |fz̄|2 ≥ |fz|2 − k2|fz|2 = (1− k2)|fz|2

or
|fz|2 ≤ Jf/(1− k2).

Later we will show that partials are in Lp for some p > 2.



A weak version of the mapping theorem



Theorem 36. Suppose Γ is a triangulation of the plane, 0 ≤ k < 1
and µ(z) is constant on the interior of each triangle with |µ| < k.
Then there is a homeomorphism f of the plane with µf = µ.



Proof. For each triangle T let A be the affine map with dilatation µ(T )
and Tµ be the image of T under A.

Form an Riemann surface by identifying the triangles Tµ along the same
edges as in Γ. This defines a Riemann surface that is quasiconformally
equivalent to the plane via the map Φ : R → C that is affine on each
triangle.



By the uniformization theorem, there is also a conformal map Ψ : R → C.

Since R is simply connected and not-compact, it is conformally equivalent
to either the disk or the plane and since it quasiconformally equivalent to
the plane we know the extremal length of the path family connected an
disk to ∞ on R is infinite, and hence it must be conformally equivalent to
the plane.

Then Ψ ◦ Φ−1 : C → C is quasiconformal with dilatation µ.



Weak Measurable Riemann Mapping Theorem:

Theorem 37. For any measurable µ on the plane with |µ| ≤ k < 1,
there is a quasiconformal map f with f = limn fn and µn = µfn
where {µn} satisfy the conditions of Theorem 36, µn → µ almost
everywhere, and {fn} are the corresponding maps.



Proof. Take the standard equilateral triangulation of the plane and a series
of refinements by recursively subdividing each triangle into four equilateral
sub-triangles.

Define a piecewise constant dilatation on the nth triangulation by tak-
ing the average of µ on each triangle and let {fn} be the corresponding
sequence of quasiconformal maps, normalized to fix 0, 1,∞.



Since these are all quasiconformal with the same bound, they form an
equicontinuous family and we can extract a subsequence that converges
uniformly on compact subsets of the plane.

The limit function f is also K-quasiconformal by Lemma 26.

If µ is continuous on a disk D, then the dilatations µn converge uniformly
to µ on compact subsets of the plane.



Is µ the dilatation of f? Yes, but we have not proved this yet.

We need a few other facts.

Note that fn → f uniformly does not imply dilatations converge pointwise.

We will show they do converge weakly and, assuming they converge point-
wise to something, that something must be the dilatation of f .



We will need the following fact, to be proven later:

Lemma 38. If f is quasiconformal, then fz and fz are locally in Lp.

Due to Bojarskii 1955 in plane, Gehring 1973 in R
n (partials in Lp for

some p > n). We will follow Gehring’s proof, in case n = 2.



The Pompeiu formula for QC maps and weak convergence



Assuming the partials of a QC map are in Lp for some p > 2, we can
prove a.e. convergence of the dilatations.

We start with some useful formulas and estimates.



Pompeiu formula:

Corollary 39. If Ω has a piecewise C1 boundary and f is quasicon-
formal on Ω, then

f (w) =
1

2πi

∫

∂Ω

f (z)

z − w
dz − 1

π

∫∫

Ω

fz
z − w

dxdy. (1)

Proof. For smooth functions this follows from Green’s formula.

In general, smooth f using radial bump function to get sequence {fn}
converging uniformly to f .

Note that (fn)z → fz a.e. and sup(fn)z ∈ Lp by Hardy-Littlewood
maximal theorem.

(We are assuming for moment that fz, fz ∈ LP , some p > 2.)



Note that
fn(w) → f (w)

and
∫

∂Ω

fn(z)

z − w
dz →

∫

∂Ω

f (z)

z − w
dz

by uniform convergence.



Finally, we want last term to converge:

∫∫

Ω

(fn)z
z − w

dxdy →
∫∫

Ω

fz
z − w

dxdy

or

∫∫

Ω

fz − (fn)z
z − w

dxdy → 0.



Choose p > 2 so that fz ∈ Lp and q < 2 the conjugate exponent. Since
1/z ∈ L2, Hölder’s inequality gives

∫∫

Ω

fz − (fn)z
z − w

dxdy

≤
(
∫∫

Ω
|fz − (fn)z|pdxdy

)1/p(∫∫

Ω
|z − w|−qdxdy

)1/q

.

Second term is fixed, finite constant.

As noted earlier, the first term tends to zero a.e. and is in Lp by Hardy-
Littlewood maximal theorem.

Thus by Lebesgue dominated convergence theorem integral tends to zero.



Lemma 40. Suppose {gn} ∈ Lp(R, dxdy) for some p > 2 and

lim
n

∫∫

R

gn(z)

z − w
dxdy = 0

for all w ∈ R. Then limn
∫∫

R gndxdy = 0.

It is “well known” that if µ is a finite measure whose Cauchy transform

µ̂(w) =

∫

dµ(z)

z − w
= 0

almost everywhere, then µ is the zero measure.



Proof. Fix rectangles R′′ ⊂ R′ ⊂ R, each compactly contained in the
interior of the next.

The Cauchy integral formula on ∂R′ implies we can uniformly approximate
the constant function 1 on R′′ by a finite (Riemann) sum

s(z) =
∑ ak

z − wk
≈ 1

2πi

∫

∂R′
1 · dz
z − w

with wk ∈ ∂R′ and
∑ |ak| is uniformly bounded.



Then
∫∫

R
gn(z)dxdy =

∫∫

R
gn(z)s(z)dxdy +

∫∫

R
gn(z)(1− s(z))dxdy.

By assumption the first integral is small if n is large enough. Thus is
suffices to fix n and show the following are small:

∫∫

R′′
gn(z)(1− s(z))dxdy +

∫∫

R\R′′
gn(z)(1− s(z))dxdy.



∫∫

R′′
gn(z)(1− s(z))dxdy +

∫∫

R\R′′
gn(z)(1− s(z))dxdy.

For a fixed n, the first integral can be made as close to zero as we wish by
taking s close to 1 on R′′.



∫∫

R′′
gn(z)(1− s(z))dxdy +

∫∫

R\R′′
gn(z)(1− s(z))dxdy.

The second integral can be made small by taking area(R \R′′) → 0; this
implies the Lp norm of gn on R \ R′′ tends to zero (hence so does its
L1 norm) whereas the Lq norm of s remains uniformly bounded (it is a
convex combination of Lq functions with bounded norm).

Thus, by Hölder’s inequality, we can make
∫∫

R gndxdy as small as we wish
if n is large, proving the lemma.



Weak convergence of derivatives:

Lemma 41. If {gn} are K-quasiconformal maps that converge uni-
formly on compact sets to a quasiconformal map g, then for any rect-
angle R.

∫∫

R
[(gn)z − gz]dxdy → 0,

∫∫

R
[(gn)z − gz]dxdy → 0.

and (gn)z → gz and (gn)z → gz weakly (as measures).



Proof. First consider the z-derivative. Let hn = (gn)z − gz.

By the Pompeiu formula and the fact that gn → g uniformly on R, we
deduce that

lim
n→∞

∫∫

R

hn(z)

z − w
dxdy = 0

for any w ∈ R. Then by Lemma 40
∫∫

R
hndxdy → 0.



To prove weak conference, take any continuous f of compact support
and uniformly approximate it by a function f̃ that is constant on finite
collection of rectangles. Then

∫∫

fhndxdy =

∫∫

(f − f̃ )hndxdy +

∫∫

f̃hndxdy.

The first integral is bounded by ǫ
∫∫

|hn|dxdy.

This is small since ‖hn‖1 ≤ C‖hn‖p is uniformly bounded on a large ball

containing the support of both f and f̃ .



∫∫

fhndxdy =

∫∫

(f − f̃ )hndxdy +

∫∫

f̃hndxdy.

The second integral tends to zero since is a finite linear combination of
integrals of hn over rectangles.

The result for z-derivatives follows from the same proof applied to the
complex conjugates of g and {gn}, using the fact that (f̄ )z = fz.



Almost everywhere convergence of dilatations



Theorem 42. Suppose {fn}, f are all K-quasiconformal maps on the
plane with dilatations {µn}, µf respectively, that fn → f uniformly
on compact sets and that µn → µ pointwise almost everywhere. Then
µf = µ almost everywhere.

Recall that fn → f uniformly by itself does not imply µn has any a.e.
pointwise limit.

By earlier arguments, this theorem implies MRMT. We prove it assuming
partials are in Lp for some p > 2.



Proof.We restrict attention to some domain Ω with compact closure.

We know that fz̄ = µffz almost everywhere and we know that fz is
non-zero almost everywhere, so it suffices to show that

fz̄(w)− µ(w)fz(w) = 0,

almost everywhere.

We claim the integral of fz̄(w)− µ(w)fz(w) over any rectangle R is zero.

The theorem then follows by an application of the Lebesgue differentiation
theorem: at almost every point an integrable function is the limit of its
averages over rectangles shrinking down to that point.



We re-write this function as

fz̄(w)− µ(w)fz(w) = [fz̄(w)− (fn)z̄(w)]

+[(fn)z̄(w)− µn · (fn)z(w)]

+[µn(w)(fn)z(w)− µ(w)(fn)z(w)]

+[µ(w)(fn)z(w)− µ(w)fz]

= I + II + III + IV.

Term I has integral tending to 0 by Lemma 41 ((fn)z → fz weakly).

Term II equals zero almost everywhere by the definition of fn.



Term III: By Cauchy-Schwarz, the integral over R is bounded by

(

∫∫

R
(µ− µn)

2dxdy)1/2(

∫∫

R
|(fn)z|2dxdy)1/2.

The first integrand tends to zero pointwise and is bounded above by 2 al-
most everywhere, so the integrals tend to zero by the Lebesgue dominated
convergence theorem.



In the second integral, Lemma 35 implies
(
∫∫

R
|(fn)x|2dxdy

)1/2

≃ diam(fn(R)),

Since {fn} converges uniformly on compact sets, this remains bounded.

Thus the product of the two terms tends to zero.

Hence Term III tends to zero.



Term IV: First, we argue as for Term I, but applied to fz = (f̄ )z̄. Using
the fact that (f̄ )z = (fz), we can show that

∫∫

R
(fz − (fn)z)dxdy → 0

for every rectangle R.

However, what we want is
∫∫

R
µ(fz − (fn)z)dxdy → 0

for every rectangle R.



Now approximate µ in the Lq(R, dxdy) norm by a function ν that is
constant on a finite collection of disjoint squares (such functions are dense
in Lq). Then

∫∫

R
ν · (fz − (fn)z)dxdy → 0

for every rectangle where ν is constant. For such rectangles,
∫

n

∫∫

R
µ((fz − (fn)z)dxdy = lim

n

∫∫

R
(µ− ν)((fz − (fn)z)dxdy

≤ lim
n

‖µ− ν‖q‖(fz − (fn)z)‖p.

The first term is as small and the second is uniformly bounded, so the
product is small. Thus the limit must be zero.

MRMT is now proven, except for showing partials are in Lp, some p > 2.



Reverse Hölder estimates imply fz ∈ Lp



We want to show fz is in L
p for some p > 2.

Since |fz| ≤ k|fz|, enough to show fz ∈ Lp for some p > 2.



We already know fz ∈ L2, recall

Lemma 43. If f is K-quasiconformal then
∫

Q
|fz|2dxdy ≤ π

1− k2
diam(f (Q))2,

for every square Q.

This implies

1

area(Q)

∫

Q
|fz|2dxdy ≤ K

(

1

area(Q)

∫

Q
|fz|dxdy

)2

for every square Q. This is known as a reverse Hölder inequality.



The usual Hölder inequality is

(

∫

Q
|fz|dxdy

)2

≤
∫

Q
|fz|2dxdy ·

∫

Q
12dxdy

=

∫

Q
|fz|2dxdy · area(Q)

or
(

1

area(Q)

∫

Q
|fz|dxdy

)2

≤ 1

area(Q)

∫

Q
|fz|2dxdy



Result of Gehring, 1973:

Theorem 44. Let p > 1. If v(x) ≥ 0 and v ∈ Lp(Q, dxdy), and if the
“reverse Hölder inequality”

1

area(Q)

∫

Q
vpdxdy ≤ K

(

1

area(Q)

∫

Q
vdxdy

)p

,

holds for all subsquares of a square Q0, then there is an r > p so that
(

1

area(Q0)

∫

Q0

vrdxdy

)1/r

≤ C(K, p, r)
1

area(Q0)

∫

Q0

vdxdy,

Proof requires several preliminary lemmas.



Lemma 45 (The Calderon-Zygmund lemma). Suppose Q is a square,
u ∈ L1(Q, dxdy) and suppose

α >
1

area(Q)

∫

Q
|u|dxdy.

Then there is a countable collection of pairwise disjoint open dyadic
subsquares of Q so that

α ≤ 1

area(Qj)

∫

Qj

|u|dxdy < 4α, (2)

|u| ≤ α almost everywhere on Q \ ∪jQj, (3)

∑

area(Qj) ≤
1

α

∫

Q
|u|dxdy (4)



Proof.We say a subsquare of Q is type 1 if the average of f over Q is < α.

Define a collection of subsquares by iteratively dividing type 1 squares into
four, equal sized disjoint subsquares, and stopping if the average is ≥ α.

If the average of u over a square is less than α then average over each of
the four subsquares is < 4α, so every stopped square has property (2).



Any point not in a stopped square is a limit of squares where the average
of u is < α, so by the Lebesgue differentiation theorem u ≤ α at almost
every such point. This is (3).

Finally, (4) follows because
∫

Q
|u|dxdy ≥

∑

j

α · area(Qj).



Lemma 46. Suppose that p > 1, v ≥ 0, Eλ = {z : v(z) > λ}, and
∫

Eλ

vpdxdy ≤ Aλp−1
∫

Eλ

vdxdy,

for all λ ≥ 1. Then there is r > p and C <∞ so that

(

∫

Q
vrdxdy)1/r ≤ C(

∫

Q
vpdxdy)1/p.

Proof. This is basically just arithmetic with distribution functions. Note
that it suffices to assume area(Q) = 1 and

∫

Q v
pdxdy = 1. Then



∫

E1

vrdxdy =

∫

E1

vpvr−pdxdy

= (r − p)

∫

E1

vp(1 +

∫ v

1
λr−p−1dλ)dxdy

= (r − p)

∫

E1

vp + (r − p)

∫ ∞

1
λr−p−1

∫

Eλ

vpdxdydλ

≤ (r − p)

∫

E1

vp + A(r − p)

∫ ∞

1
λr−2

∫

Eλ

vdxdydλ

≤ (r − p)

∫

E1

vp + A(r − p)

∫

E1

v(

∫ v

0
λr−2dλ)dxdy

≤ (r − p)

∫

E1

vp + A
r − p

r − 1

∫

E1

vrdxdy

≤ (r − p)

∫

E1

vp +
1

2

∫

E1

vrdxdy



where the last inequality holds if r is close enough to p (depending on A
and p). Subtracting the last term of the last step from the first step gives

∫

E1

vrdxdy ≤ 2(r − p)

∫

E1

vpdxdy.

Off E1 we have v ≤ 1 so vr ≤ vp and hence
∫

Q
vrdxdy ≤ (1 + 2(r − p))

∫

Q
vpdxdy.

Because of our normalizations, this proves the lemma.



Proof of “reverse Hölder” theorem.

Proof.We need only verify the hypothesis of Lemma 46. Fix λ and set
β = 2Kλ. We will split the integral

∫

Eλ

vpdxdy =

∫

Eλ\Eβ
vpdxdy +

∫

Eβ

vpdxdy

into two pieces. The second piece is trivial to bound by the correct estimate
because

∫

Eλ\Eβ
vpdxdy ≤ βp−1

∫

Eλ\Eβ
vdxdy ≤ (2Kλ)p−1

∫

Eλ

vdxdy.



To bound the other piece of the integral, we use the Calderon-Zygmund
lemma (Lemma 45) to find a sequence of disjoint squares {Qj} so that

βp ≤ 1

area(Qj)

∫

Qj

vpdxdy < 2βp,

and v ≤ β a.e. off ∪Qj. Thus Eβ \ ∪Qj has measure zero and
∫

Eβ

vpdxdy ≤
∑

j

∫

Qj

vpdxdy ≤ 2βp
∑

area(Qj).



We now make use of the reverse Hölder hypothesis to write

βp ≤ 1

area(Qj)

∫

Qj

vpdxdy ≤ (
K

area(Qj)

∫

Qj

vdx)p

or

β ≤ K

area(Qj)

∫

Qj

vdx



Hence (recall β = 2Kλ):

area(Qj) ≤ K

β

∫

Qj

vdxdy

≤ K

β

(

∫

Qj∩Eλ
vdxdy + λarea(Qj)

)

≤ K

β

∫

Qj∩Eλ
vdxdy +

1

2
area(Qj).

Solving for area(Qj) gives

area(Qj) ≤ 2K

β

∫

Qj∩Eλ
vdxdy ≤ 1

λ

∫

Qj∩Eλ
vdxdy.



Thus by the defining property of the Qj’s,
∫

Eβ

vpdxdy ≤
∑

j

∫

Qj

vpdxdy ≤ 2βp
∑

j

area(Qj)

Using the estimate from the previous slide, this is less than

≤ 2βpλ−1
∑

j

∫

Qj∩Eλ
vdx ≤ 2p+1Kpλp−1

∫

Eλ

vdx.

Thus the hypothesis of Lemma 46 holds with

A = (2K)p−1 + 2p+1Kp,

and we deduce that v ∈ Lr(Q, dxdy) for some r > p.

This completes the proof of the MRMT.



Distortion estimates for QC maps



Theorem 47.Suppose f : Rn → R
n is K=quasiconformal and f (0) =

0. Suppose also that

I(r) =
1

ωn

∫

|x|<r

Lf (x)− 1

|x|n dx→ 0

as r → 0. Then |f (x)| ∼ C|x| as |x| → 0 and

min
|x|=1

|f (x)|e−I(1) ≤ C ≤ max
|x|=1

|f (x)|e−I(1)



Lemma 48. Suppose A,B are disjoint, planar sets and
∫

A

dxdy

|z − w|2 ≤ C <∞,

for all w ∈ B. If ϕ is a K-quasiconformal map that is conformal off
A, then ϕ is M-bi-Lipschitz on B with M depending only on C and
K, i.e., for all w, z ∈ B,

0 <
1

M(C,K)
≤ |ϕ(z)− ϕ(w)|

|z − w| ≤M(C,K) <∞.

“Speiser class Julia sets with dimension near one”, with Simon Albrecht,
Journal d’Analyse, vol 141, issue 1, 2020, pages 49–98.



We say a measurable set E ⊂ C is (ǫ, h)-thin if ǫ > 0 and

area(E ∩D(z, 1)) ≤ ǫh(|z|)
for all z ∈ C, where h : [0,∞) → [0, π] is a bounded, decreasing function,
such that

∫ ∞

0
h(r)rndr <∞,

for every n > 1.

If a > 0, the function h(r) = exp(−ar) satisfies this condition, and this
example suffices for many applications.



Recall that a quasiconformal map F : C → C is often normalized by
post-composing by a conformal linear map in one of two ways. First, we
can assume F (0) = 0 and F (1) = 1.

We call this the 2-point normalization.

Second, if the dilatation of F is supported on a bounded set, then F is
conformal in a neighborhood of ∞ and then we can choose R large and
post-compose with a linear conformal map so that

|F (z)− z| = O(
1

|z|),

for |z| > R/2. We say that such an F is normalized at ∞.

This is also called the hydrodynamical normalization of F .



Theorem 49. Suppose F : C → C is K-quasiconformal, and E = {z :
µ(z) 6= 0} is bounded (so F is conformal near ∞) and F is normalized
so

|F (z)− z| ≤M/|z|,
near ∞. Assume E is (ǫ, h)-thin. Then for all z ∈ C,

|F (z)− z| ≤ ǫβ

|z| + 1
,

where β > 0 depends only on K and h. In particular, as ǫ → 0, F
converges uniformly to the identity on the whole plane.



Corollary 50. Suppose f : C → C is K-quasiconformal, f (0) = 0,
f (1) = 1, and E = {z : µ(z) 6= 0} is (ǫ, h)-thin. Then

(1− Cǫβ)|z − w| − Cǫβ ≤ |f (z)− f (w)| ≤ (1 + Cǫβ)|z − w| + Cǫβ,(5)

where C and β only depend on ‖µ‖∞ and h.

“Quasiconformal maps with thin dilatations”, Publicacions Matematiques,
vol 66, 2022, 715–727



Removable sets for QC maps



We say that a compact set E ⊂ R
2 is conformally removable if any home-

omorphism of the plane to itself that is conformal off E is conformal ev-
erywhere.

This is equivalent to being quasiconformally removable.

Set of finite (or even sigma-finite) length are removable.

Sets of positive length are non-removable (MRMT).



Quasicircles are removable.



A Whitney decomposition of an open set Ω consists of a collection
of dyadic squares {Qj} contained in Ω so that

1. the interiors are disjoint,

2. the union of the closures is all of Ω,

3. for each Qj, diam(Qj) ≃ dist(Qj, ∂Ω).

For existence, take the set of maximal dyadic squares Q so that

diam(Q) ≤ 1

4
dist(Q, ∂Ω),

(maximal = the parent square fails this condition).





Suppose K is compact, δ > 0 and for each x ∈ K let γx be a Jordan
arc in Ω = C \K that connects x to Ωδ = {z ∈ Ω : dist(z,K) ≥ δ}. For
a single x, γx may consist of several arcs that connect x to Ωδ.





For each Whitney square Q ⊂ Ω, let

S(Q) = {x ∈ K : γx ∩Q 6= ∅}.
This is called the “shadow” of Q on K.

The name comes from the special case when K is connected and does not
separate the plane and γx is a hyperbolic geodesic connecting x to ∞. If
we think of ∞ as the “sun” and the geodesics as light rays, then S(Q) is
the part of K that blocked from ∞ by Q, i.e., it is Q’s shadow.





The paths connecting a Whitney square to its shadow can sometimes hit
larger Whitney squares. However this path will hit a largest square, and
there after only hit smaller squares.



The immediate shadow I(Q) ⊂ S(Q) is the closure of all x ∈ S(Q) so
that Q is the first Whitney square of that size hit by γx as we traverse it
from x to Ωδ.

Given x ∈ I(Q), we let I(x,Q) to be all the dyadic squares for Ω that
are hit by γx between x and Q, i.e., this is an infinite chain of Whitney
squares that starts at Q and accumulates on x and has Q as its unique
largest square.



We will assume three things about shadows:

1. I(Q) is closed.

2. limn→∞
∑

Q∈Dn(Ω) diam(I(Q))2 = 0 where the sum is over all Whit-

ney squares for Ω of side length 2−n.
3. dist(I(q), Q) → 0 as diam(Q) → 0,



These will hold in most situations we are interested in. For example, if
Ω is simply connected and we take γx to be arcs of hyperbolic geodesics
connecting some base point z0 ∈ Ω to x, then (2) always holds, (3) holds
if ∂Ω is locally connected, and (1) holds if Ω is a John domain.



An open, connected set Ω in R
2 is called a John domain if any two

points a, b ∈ Ω can be connected by a path γ in Ω with the property that
dist(z, ∂Ω) & min(|z − a|, |z − b|).



Lemma 51. Suppose Q is a square, λ > 1 and f is K-quasiconformal
on λQ. Then

area(f (Q)) ≥ ǫdiam(f (Q))2,

where ǫ > 0 depends only on λ and K.



Proof. By rescaling by conformal linear maps we may assume the square
Q is [−2, 2] × [−2, 2] and the map f fixes 0 and 1. Choose x ∈ ∂Q and
connect x to 0 and connect 1 to λ∂Q by disjoint curves γ0, γ1 so that
the annular region λQ \ (γ0 ∪ γ1) has modulus ≃ 1 with a constant that
depends on λ (and decreases as λ increases.

The image of this annular region has modulus bounded away from 0 and
∞ and this implies f (γ0) is bounded in terms of K (otherwise, as in the
proof of Lemma 10 we could define a metric ρ(z) = 1/|z| on 1 < |z| < R
and show that the path family separating f (γ0) from f (γ1) has very small
modulus). Thus diam(f (Q)) is bounded in terms of K alone.



Now consider the modulus of A = Q \ [0, 1]. Again this is a fixed number
≃ 1, so the modulus of f (A) is bounded away from zero. But every
curve surrounding f ([0, 1]) has length at least 2, so the metric ρ = 1/2 is
admissible, so

mod (f (A)) ≤ 1

4
area(f (Q)).

Since the left hand side is bounded away from zero depending only on K,
so is right hand side.



Theorem 52. Suppose Ω has a Whitney decomposition so that the
corresponding shadow sets satisfy conditions (1)-(3) above. Suppose
that f is a homeomorphism of the plane that is K-quasiconformal on
each component of R2 \ ∂Ω and that there is an M <∞ so that

dist(f (Qj), f (Qj+1)) ≤M max(diam(Qj), diam(Qj+1)), (6)

whenever Qj, Qj+1 are consecutive squares in the chain associated to
some x ∈ ∂Ω. Then f is a C-quasiconformal map on the whole plane
where C depends only on K and M .



If the chain associated to each x ∈ ∂Ω consists of adjacent squares (i.e., Qj
touches Qj+1, then the same is true for their images under f , so condition
(6) is automatically satisfied. Thus we obtain:

Corollary 53. Suppose Ω has a Whitney decomposition so that the
corresponding shadow sets satisfy conditions (1)-(3) above and all the
Whitney chains are connected. The ∂Ω is removable to quasiconfor-
mal homeomorphisms, i.e., any homeomorphism of the plane that is
K-QC off ∂Ω is quasiconformal on the whole plane.



Proof of Theorem 52. Suppose that W is any bounded quadrilateral in
the plane, say of modulus m and that W ′ = F (W ) has modulus m′. We
want to show that m′ ≤ Cm where C < ∞ depends only on K and M
as in the statement of the theorem. We will do this by mimicking the
proof of Theorem 8, that showed that any piecewise differentiable map
with bounded dilatation was quasiconformal (in the geometric sense).



Let ϕ : W → R = [0,m]×[0, 1] and ψ : W ′ → [0,m′]×[0, 1] be conformal
maps of the quadrilateralsW,W ′ to rectangles R,R′ of the same modulus.
Let X = ϕ(∂Ω ∩W ) ⊂ R.

The main difficulty with the proof is that we are going to consider three
different Whitney decompositions: one for W , one for Ω and one for U =
R \X . To try to differentiate the different Whitney cubes we we let
{Wj} denote a Whitney decomposition for W ,
{Qj} a Whitney decomposition for Ω and
{Uj} a Whitney decomposition for U .



Fix some ǫ > 0.

Fix a Whitney cube Wj for W . We assume the decomposition is chosen
so that 2Wj ⊂ W .

Suppose δ > 0 is so small (depending on our choice of Wj) that the
following two conditions all hold:



1. If Qk is a Whitney square for Ω with diameter less than δ and the
shadow I(Qk) hits Wj, then I(Qk) ⊂ 2Wj and the entire Whitney
chain connecting any point x ∈ I(Qk) to Qk is contained in 2Wj. This
is possible by condition (3) on shadow sets.



2. Let S(Wj) denote the collections of all Whitney squares Qk for Ω so
that diam(Qk) ≤ δ and I(Qk)) ∩Wj 6= ∅. Then

∑

Qk∈S(Wj)

diam(I(Qk))
2 ≤ ǫarea(Wj).

This holds for small enough δ, because by condition (2) on shadows,
this sum over all Whitney squares for Ω is finite, so removing all the
squares bigger than δ gives a sum that tends to 0 as δ tends to zero.
Thus we can make is less than ǫ · area(Wj) by taking δ small enough
(depending on Wj).



Let S = ∪jS(Wj) be the collection of all shadow sets of all Whitney
squares for Ω that are in some S(Wj) for some Whitney square of W .

Claim: ∂Ω∩Wj is covered by a finite number of the shadow sets I(Qk)
with Qk ∈ S(Wj).



Proof of Claim. Each point x ∈ ∂Ω ∩ Wj is associated to a Whitney
chain that contains a square with diameter comparable to δ. There are
only finitely many such squares, so their shadows form a finite collection
that covers ∂Ω ∩Wj.



Suppose L = [a+ iy, b+ iy] is a horizontal segment, compactly contained
in the interior of R at height y. We wish to show that

∫ 1

0
|g(b + iy)− g(a + iy)|dy ≤ Cm,

where C depends only on K and M . If we can do this, then by letting
a→ 0 and b→ m we get

m′ ≤ lim
a→0,b→m

|g(b + iy)− g(a + iy)|,

and hence

m′ ≤ lim
a→0,b→m

∫ 1

0
|g(b + iy)− g(a + iy)|dy ≤ Cm,

which is the desired inequality.



Since L is compactly contained in the interior of R and X is relatively
closed in the interior of R, L ∩X is compact.

Thus ϕ−1(L ∩X) is a compact set of W , hence covered by finitely many
whitney squares forW and hence is covered by finitely many shadows sets
in S .



Let X be the image of the elements of S under ϕ. Then L∩X is covered
by finitely many elements of X , say X1, . . . Xn.

For k = 1, . . . , n, let Yk = [ak, bk] be the smallest closed interval in L
that contains Xn (this is the convex hull of Xk, the interval with the same
leftmost and rightmost point as Xk).

Then Y1, . . . , Yn also cover L∩X and we can extract a subcover with the
property that Yj ∩ Yk 6= ∅ implies |j − k| ≤ 1.



Since the points ak, bk are both in the same set Xk, the preimage points
ϕ−1(ak), ϕ

−1(bk) are both in the same element of S .

Thus they are both in the shadow set of some Whitney square for Ω and
are associated to a two sided chain of distinct Whitney squares {Qm}∞−∞
of Whitney squares for Ω.

If two chains arising in this way, say from Yk and Ym with m > k, have
a Whitney square in common, then we can combine the chains to form a
chain connecting ak to bm consisting of distinct squares.



After doing this for all intersections, we end up with a finite collection of
closed intervals Zk in L which covers the same set as the union of the Yk’s
and such that the two endpoints of each Zk correspond to a two-sided
Whitney chain in Ω and that different intervals use different Whitney
squares (no overlapping chains).

Moreover, if Zk has endpoints ck, dk and the corresponding chain is {Qn},
then

|g(ck)− g)dk)| ≤ (M + 1)
∑

n

diam(ψ(f (Qn))).



The set V = L\∪kZk consists of finitely many open intervals in U = R\X
with their endpoints in X .

We break V into countable many sub-intervals by intersecting it with the
Whitney squares for U (without loss of generality, we can assume the
endpoints of L occur on the boundary of a Whitney square for U).



On each Whitney square Uk for U we define the constant function

Dg =
diam(g(Uk))

diam(Uk)
.

Then if Lj = L ∩ Uj,
∫

Lj

Dgdx = diam(g(Uj))/
√
2.

Thus ∫

L\ZL
Dgdx ≃

∑

j

diam(g(Uj)),

where the sum is over Whitney squares for U that hit L.



Thus

|g(b + iy)− g(a + iy)| .
∫

L∩U
Dgdx +

∑

n

diam(ψ(f (Qn))).

Now integrate in y to get
∫ 1

0
|g(b + iy)− g(a + iy)|dy .

∫∫

U
Dgdx +

∑

n

diam(ψ(f (Qn)))µn,

where µn is the Lebesgue measure in [0, 1] of the set of lines Ly that use
the Whitney square Qn in at least one of the two-sided chains associated
to a interval Z ⊂ Ly.



The measure of this set is no more than its diameter, which is no more
than the diameter of Xn = ϕ(I(Qn)). Thus

∫ 1

0
|g(b + iy)− g(a + iy)|dy

.

∫∫

U
Dgdxdy +

∑

n

diam(ψ(f (Qn)))diam(Xn),



Estimate each term using the Cauchy-Schwarz inequality. First,
∑

n

diam(ψ(f (Qn)))diam(Xn)

≤ (
∑

n

diam(ψ(f (Qn)))
2)1/2(

∑

n

diam(Xn)
2)1/2

≤ A(
∑

n

area(ψ(f (Qn))))
1/2(
∑

Wk

∑

Qn∈S(Wk)

[
diam(ϕ(Wk)

diam(Wk)
diam(I(Qn))]

2)

≤ A(
∑

n

area(ψ(f (Qn))))
1/2(
∑

Wk

∑

Qn∈S(Wk)

[
diam(ϕ(Wk)

diam(Wk)
ǫarea(Wk))]

2)1/

≤ A(
∑

n

area(R′)1/2 · ǫ · (area(R)1/2.

where A just depends on the distortion estimate for conformal maps and
ǫ is as small as we wish. Thus this term is small.



The other term is also bounded by Cauchy-Schwarz
∫∫

U
Dgdx =

∑

k

∫∫

Uk

Dgdxdy

≤ (
∑

k

∫∫

Uk

Dg2dxdy)1/2(
∑

k

∫∫

Uk

dxdy)1/2

≤ (
∑

k

(diam(g(Uk))
2)1/2(area(R))1/2

≤ A(
∑

k

(area(g(Uk)))
1/2(area(R))1/2

≤ A(area(R′)1/2(area(R))1/2

≤ A
√
m′m.



Thus
∫ 1

0
|g(b + iy)− g(a + iy)|dy .

√
m′m +O(ǫ),

Taking ǫ→ and squaring gives
(

∫ 1

0
|g(b + iy)− g(a + iy)|dy

)2

. m′m.

Since we already know that
∫ 1

0
|g(b + iy)− g(a + iy)|dy & m′

this implies
∫ 1

0
|g(b + iy)− g(a + iy)|dy . m.

as desired.



Lemma 54. The Riemann map ϕ from the unit disk to a bounded
John domain satisfies

diam(ϕ(I(Q))) ≤ Cdiam(ϕ(Q)),

dist(ϕ(Q), ϕ(I(Q))) ≤ Cdiam(ϕ(Q)),

for some C <∞, and any Whitney square Q and its shadow I(Q).



Proof. The second inequality follows directly from Lemma 19 by consider-
ing the path family of radial lines connecting Q to I .

To prove the first, consider the Whitney-Carleson boxes Q1 and Q2 that
are adjacent to Q and of the same size. By Lemma 19 each is connected to
its shadow by a radial segment whose image under f has length comparable
to diam(f (Q)).

Thus there is a geodesic crosscut γ of the disk that passes through Q and
whose image has length comparable to diam(f (Q)).



Now suppose x is in the shadow of Q. Any curve connecting 0 to x crosses
γ, so any curve Γ connecting f (0) and f (x) crosses f (γ) and hence contains
a point z ∈ f (γ) ∩ Γ that is at most distance O(diam(f (Q)) from ∂Ω.

Thus by the definition of John domain, either

dist(f (0), z) = O(diam(f (Q))),

or
dist(f (x), z) = O(diam(f (Q))).

In a bounded domain, the first can only happen for finitely many Qs; for
the remainder, the second must hold and hence f (I(Q)) is contained in a
O(diam(f (Q)) neighborhood of f (Q).



Corollary 55.Boundaries of John domains are removable.

Proof. The conclusions of the Lemma 54 imply (1)-(3) in Theorem 52.


