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This is a course about constructing polynomials and entire functions using
quasiconformal folding; a method that give good geometric control of the
function and precise placement of the critical values singular values.

There are connections to the theory of dessins d’enfant, and we will briefly
describe Belyi’s theorem, although mostly we will deal with more analytic
aspects of dessins,

The main tool will be quasiconformal mappings, and we will review the
basics definitions and facts, including the measurable Riemann mapping
theorem, which is central to our approach.



Defn: A topological surface X is a Hausdorff topological space provided
with a collection homeomorphisms {ϕj} (called charts) from open subsets
of X to to open subsets of C such that:
• the union of the charts covers X ,
• when two charts Uj, Uk intersect the the transition function ϕj ◦ ϕ−1

k
is a homeomorphism.



Defn: A Riemann surface is a connected topological surface such that
the transit on functions are holomorphic.

• the plane, any planar domain (= open, connected).

• the 2-sphere

• the projective line = non-zero {(x, y) ∈ C2 such that (x, y) ∼ (w, z) if
(x, y) = λ(w, z) for some λ 6= 0. This is same as the 2-sphere. The two
charts are x/y if y 6= 0 and y/x if n 6= 0.



• Torus = C/Γ where Γ = {nω1 + mω2} is a lattice

Different generators can give the same Riemann surface. Can always as-
sume one generator is 1 and other is in upper half-plane. Different tori
correspond to points in fundamental region of group PSL(2,R).



Uniformization theorem: Every Riemann surface except sphere, plane,
punctured plane and tori equals the unit disk (or upper half plane) modulo
a Fuchsian group.

Fuchsian group = a discrete group of Möbius transformations mapping
unit disk to itself (or upper half-plane to itself)..

Möbius transformation = linear fractional transformation
az + b

cz + d
.



Preserves disk if

eiθ
z − a
1− az

Discrete = identity is isolated, i.e., no no-trivial sequence approaches it.





Relatively short proof of uniformization theorem given by Don Marshall.

By “topology” s ait suffices to find all simply connected Riemann surfaces.

simply connected = every closed curve in is homotopic to a point.





Subharmonic functions::

A continuous function u : Ω → [−∞,∞) is subharmonic if for all z ∈ Ω
there is a s > 0 (depending on z) so that

v(z) ≤ 1

2π

∫ 2π

0
v(z + reitdt,

for all r < s.

Example: log |f | if f is holomorphic.

Sum and maximum of two subharmonic functions is subharmonic.

If a subharmonic funtion attains its maximum, then it is constant.



Lindelöf ’s Maximum principle:

Suppose Ω is a region and {ζk}n1 ⊂ ∂Ω but are not all of ∂Ω. If u is
subharmonic on Ω with u ≤M <∞ and

lim sup
z→ζk

u(z) ≤ m

for each each k = 1, . . . n, then u ≤ m on Ω.



Harnack’s Theorem:

Suppose u is positive and harmonic on the unit disk. Then if r = |z|, we
have (

1− r
1 + r

)
u(0) ≤ u(z) ≤ q

(
1 + r

1− r

)
u(0)



General version of Harnack’s Theorem:

If u is positive and harmonic on a connected region Ω and w, z ∈ Ω, there
is a constant so that

u(w) ≤ Cu(z) ≤ C2u(w).



If v is subharmonic on Ω and D ⊂ Ω is a closed disk, then replacing
v inside D by its Poisson extension from ∂D to D gives a subarhmonic
function VD with v ≤ VD.



Perron family: A family F of subharmonic functions on Ω is called a
perron family if

(1) v, u ∈ F implies max(u, v) ∈ F .
(2) if v ∈ F and D ⊂ Ω, then vD ∈ F .
(3) for each z ∈ Ω, v(z) > −∞ for some v ∈ F .



Theorem: Given an Perron family F ,

uF(z) = sup
v∈F

v(z)

is either harmonic on Ω or is identically +∞.



If ∂Ω is compact in C and f is real-valued and continuous on ∂Ω, the
Perron family Ff for f consists of all subharmonic functions v on Ω so
that

lim sup
z→w

v(z) ≤ f (w)

for all w ∈ ∂Ω.

Then the sup over this family is a finite harmonic function that should be
the solution of the Dirichet problem with boundary values f .



Barriers:

If w ∈ ∂Ω, a barrier at w for Ω is a function b so that
(1) b is subharmonic on Ω ∩D(w, r) for some r > 0
(2) b(z) < 0 for z ∈ Ω ∩D(x, r)
(3) limz→w b(z) = 0.



We say w is regular for Ω if a barrier exists.

If w belong to a non-trival connected component of ∂Ω, then w is regular
(for plane; not higher dimensions).



Theorem: The Perron solution is continous at every regular point of
the boundary.



Green’s function:

Suppose W is a Riemann surface. Fix p0 ∈ W and let z : U → D be a
coordinate function such that z(p0) = 0.

Let F0 be the collection of subharmonic functions on W \ p0 so that
(a) v = 0 off some proper compact K ⊂ W ,
(b) lim supp→p0

(v(p) + log |z(p)|) <∞ .



Set
gW (p, p0) = sup{v(p) : v ∈ F0}.

One of the following two cases holds by Harnack’s Theorem:
Case 1: gW (p, p0)is harmonic in W \ p0, or
Case 2: gW (p, p) = +∞ for all p ∈ W \ p0.

In the first case, gW is called Green’s function with pole at p0.

In the second case we say that Green’s function does not exist.



In probability theory the Green’s function can be defined using Brownian
motion.

For a measurable set E

T (E) = T (E) =

∫
E
g(z, p)dxdy

is the amount of time that a Brownian motion started at p spends in E.

If G ≡ ∞, then Brownian motion is recurrent and visits every positive
area set E infinitely (and spends infinite time in E).

If G <∞, then Brownian motion is transcient and leaves every compact
set eventually.



The Uniformization Theorem (Koebe[1907]).

Suppose W is a simply connected Riemann surface.

(1) If Green’s function exists for W , then there is a one-to-one analytic
map of W onto the unit disk, D.

(2) If W is compact, then there is a one-to-one analytic map of W onto
the Riemann sphere C∗.

(3) If W is not compact and if Green’s function does not exist for W ,
then there is a one-to-one analytic map of W onto C.



Lemma 1. Suppose p0 ∈ W and suppose z : U → D is a coordinate
function such that z(p0) = 0. If gWexists then,

(1) gW (p, p0) > 0 for p ∈ W \ p0, and
(2) gW (p, p0) + log |z(p)| extends to be harmonic in U .



Proof: The function v0(p) = − log |z(p)| on U and zero elsewhere is
admissible (i.e., it is in F0). It is non-negative, so gW (p, p0) ≥ 0 and
gW (p, p0) > 0 if p ∈ U .

By the maximum principle gW > 0 (and the fact that if a harmonic
functions vanishes on a disk, it vanishes everywhere).



If v is admissible and ε > 0, then v + (1 + ε) log |z| extends to be subhar-
monic in U , and equal to −∞ at p0. Thus

sup
U

(v + (1 + ε) log |z|) = sup
∂U

v ≤ sup
∂U

gW <∞.



Taking the supremum over admissible v and sending ε→ 0, we obtain

gW + log |z| ≤ sup
∂U

gW = C <∞

in U \ p0. We also have that

gW + log |z| ≥ v0 + log |z| ≥ 0

for p ∈ U\p0. Thus p0 is a removable singularity for the harmonic function
gW + log |z|. �



The Green’s function for the unit disk D is given by

gD(z, a) = log |1− az
z − a

|.

To prove this note that by the maximum principle, each candidate sub-
harmonic function v is bounded above by (1 + ε)gD(z, a), for ε > 0.

On the other hand max(gD(z, a) − ε, 0) is an admissible subharmonic
function that vanishes off a compact set, and their supremum is gD given
above..



Lemma 2. Suppose W0 is a Riemann surface and suppose U0 is a
coordinate disk whose closure is compact in W0. Set W = W0 \ U0.
Then gW (p, p0) exists for all p, p0 ∈ W with p 6= p0.

Proof: Fix p0 ∈ W and let U be a coordinate disk as above with coor-
dinate function x taking p0 to 0.

We have to show the family of admissible subharmonic functions F0 is
bounded above.



Fix 0 < r < 1, and set rU = {p ∈ W : |z(p)| < r}.

If v is admissible and ε > 0, then by the maximum principle

v(p) + (1 + ε) log |z(p)| ≤ max
∂U

(v(q) + (1 + ε) log |z(q)|) = max
∂U

v(q),

for all p ∈ U .

Letting ε→ 0, we obtain

max
∂rU

v(p) + log r ≤ max
∂U

v(p). (1)



Let ω(p) = ω(p, ∂rU,W \ rU) be the Perron solution to the Dirichlet
problem on W \ rU = W0 \ {U0 ∪ rU} with boundary data 1 on ∂rU
and 0 on ∂U0.

More precisely, let F denote the collection of functions u which are sub-
harmonic on W \ rU with u = 0 on W \ K for some compact set K,
depending on u, and such that

lim sup
p→ζ

u(p) ≤ 1

for ζ ∈ ∂rU . By definition ω(p) = sup{u(p) : u ∈ F}.



By the Perron process, ω is harmonic in W \ U .

Regularity for the Dirichlet problem is a local question. We can define a
local barrier at each point of the boundary of rU and at each point of the
boundary of U0.

Thus the harmonic function ω extends to be continuous at each point of
∂U0 and each point of ∂rU so that ω(p) = 0 on ∂U0 and ω(p) = 1 on
∂rU

This implies ω is not constant and 0 < ω(p) < 1 for p ∈ W \ rU .



By the maximum principle we have that

v(p) ≤
(

max
∂rU

v

)
· ω(p)

for p ∈ W \ rU since v = 0 off a compact subset of W . So

max
∂U

v ≤
(

max
∂rU

v

)
max
∂U

ω(p) ≤
(

max
∂rU

v

)
(1− δ) (2)

for some δ > 0.

Note 1 − δ = max∂U ω. Since ω is continuous on the compact set ∂U it
attains a maximum and this is strictly less than 1 since 0 < ω < 1.



Recall inequalities (1) and (2):

max
∂rU

v(p) + log r ≤ max
∂U

v(p)

max
∂U

v ≤
(

max
∂rU

v

)
max
∂U

ω(p) ≤
(

max
∂rU

v

)
(1− δ)

Combining these gives

max
∂rU

v(p) ≤ log
1

r
+

(
max
∂rU

v

)
(1− δ)

or equivalently

δmax
∂rU

v ≤ log
1

r
for every admissible v and δ independent of v.

This implies that Case 2 does not hold and hence Green’s function exists.
�



Lemma 3. Suppose W is a Riemann surface with Green’s function.
Let W ∗ be a simply connected universal covering surface of W and
let π be the universal covering map. Then gW ∗ exists and satisfies

gW (π(p), π(p0)) =
∑

q:π(q)=π(p0)

gW ∗g(p, q).

The terms of the series are non-negative, so the supremum over all finite
sub-sums is either finite or +∞.



Proof:. Suppose q1, . . . qn are distinct points in W ∗ that all project to
p0. Let p∗0 be one of these points projecting to p0.

Suppose vj is admissible for the Perron family used to construct GW ∗
with pole at qj. So vj is zero off a compact set Kj of W ∗ and

lim sup
p→qj

(v(p) + log |z(π(p))|) <∞,

where z is a coordinate chart on W with z(p0) = 0.



Recall that gW (p, p0) + log |z(p)| extends to be finite and continuous at
p0, and hence

lim
p→q

gW (π(p), p0) + log |z(π(p))|

exists and is finite where π(qj) = p0.

Thus for ε > 0,  n∑
j=1

vj(p)

− (1 + ε)gW (π(p), p0)

extends to be subharmonic and equal to −∞ at qj for j = 1, . . . , n, and
less than or equal to 0 off ∪jKj.



By the maximum principle, this function is bounded above by 0. By
letting ε → 0 and taking the supremum over all such v we conclude that
gW ∗(p, qj) exists and

n∑
j=1

gW ∗(p, qj) ≤ gW (π(p), q).

Taking the supremum over all such finite sums (letting n↗∞) we have

S(p) ≡
∑

q:π(q)=p0

gW ∗(p, q) ≤ gW (π(p), p0).



This is half the desired equality. Next we prove the other direction.

Since S(p) + log |z(π(p))| is a supremum of finite sums of positive har-
monic functions, it is harmonic in a neighborhood of each qj by Harnack’s
Theorem.



Now take v in the Perron family used to construct gW (p, p0).

Let U∗ be a coordinate disk containing p∗0 such that z ◦ π is a coordinate
function mapping U∗ onto D.

We claim that
v(π(p))− (1 + ε)S(p) ≤ 0

for p ∈ U∗ and ε > 0.

Since S is invariant under the group of deck transfomations, it is well
defined on W . It has a logarithmic pole at p0 so

v(π(p))− (1 + ε)S(p)→ −∞
as p→ p0.



On the other hand v is zero off some compact set K of W . Thus v = 0
on ∂K and S > 0 on ∂K since S is a sum of Green’s functions that are
positive everywhere. Thus

v(π(p))− (1 + ε)S(p) ≤ 0

for p ∈ ∂H and ε > 0.

By the maximum princple

v(π(p))− (1 + ε)S(p) ≤ 0

everwhere on K \ {p0} and hence on U and U∗, as claimed.



Taking ε→ 0 gives
v(π(p)) ≤ S(p)

∈ U∗.

Finally, taking the supremum over all admissible v, we obtain

gW (π(p), p0) ≤ S(p)

which proves the lemma. �



We will use the following standard results without proof.

Riemann Mapping Theorem: Any proper, simply connected pla-
nar domain can be conformally mapped to D.

Monodromy Theorem: Suppose Ω is simply connected and suppose
f0 is defined and analytic in a neighborhood of b ∈ Ω. If f0 can be
analytically continued along all curves in Ω beginning at b, then there
is an analytic function f on Ω so that f = f0 in a neighborhood of b.



Theorem (Uniformization, Part I): If W is a simply connected
Riemann surface then the following are equivalent:

(1) gW (p, p0) exists for some p0 ∈ W .

(2) gW (p, p0) exists for all p0 ∈ W .

(3) There is a one-to-one analytic map ϕ from W onto D.

Moreover if gW exists, then

gW (p1, p0) = gW (p0, p1),

and gW (p, p0) = − log |ϕ(p)|, where ϕ(p0) = 0.



Proof: Suppose there is a one-to-one, onto analytic map ϕ : W → D
and let p0 ∈ W . By composing this map with a Möbius transformation,
we can assume that p0 maps to 0.

If v is admissible for gW and if ε > 0, then by definition,

v + (1 + ε) log |ϕ|
is subharmonic in W and equal to −∞ at p0. By the maximum principle,
since v = 0 off a compact set K ⊂ W ,

v + (1 + ε) log |ϕ| ≤ 0

on W .



Taking the supremum over all such v and letting ε → 0, shows that
gW (p, p0) <∞ and therefore the Green’s function exists for all p0. Triv-
ially, this implies it exists for some p0.

Now suppose we have existence for some pole p0. (8) holds. By Lemma 1
the first lemma,

Re(f (p)) = gW (p, p0) + log |z(p)|,
is harmonic in U , so there is an analytic function f defined on a coordinate
disk U containing p0 so that

Re(f (p)) = gW (p, p0) + log |z(p)|,
for p ∈ U .



Hence the function
ϕ(p) = exp(−f (p))

is analytic in U and satisfies

|ϕ(p)| = exp(gW (p, p0))

ϕ(p0) = 0.



On any coordinate disk Uα not containing p0, gW (p, p0) is the real part of
an analytic function. Thus by the monodromy theorem, there is a function
ϕ, analytic on W , such that

|ϕ(p)| = exp(−gW (p, p0)) < 1.

We claim that ϕ is one-to-one.



If ϕ(p) = ϕ(p0) = 0, then clearly p = p0. Let p1 ∈ W , with p1 6= p0.
Then since Green’s function is positive at p1, we have |ϕ(p1)| < 1 and
define

ϕ1
ϕ− ϕ(p1)

1− ϕ(p1)ϕ
is analytic on W with absolute value bounded by 1. If v ∈ Fp1 , then by
the maximum principle

v + (1 + ε) log |ϕ1| ≤ 0.

Taking the supremum over all such v and sending ε → 0, we see that
gW (p, p1) exists and that

gW (p, p1) + log |ϕ1| ≤ 0. (3)



Setting p = p0 above gives

gW (p0, p1) ≤ − log |ϕ1(p0)| = − log |ϕ(p1)| = gW (p1, p0).

Switching the roles of p0 and p1 gives the symmetry of Green’s function

gW (p0, p1) = gW (p1, p0).



Moreover equality holds in (3) at p = p0 so that

gW (p, p1) = − log |ϕ1(p)|
for all p ∈ W \ {p1}. Now if ϕ(p2) = ϕ(p1), then by the definition
ϕ1(p2) = 0 and thus gW (p2, p1) = ∞ and so p2 = p1. Therefore ϕ is
one-o-one, as claimed.



The image ϕ(W ) ⊂ D is simply connected, so if ϕ(W ) 6= D then by the
Riemann Mapping Theorem we can find a one-to-one analytic map ψ of
ϕ(W ) onto D with ψ(0) = 0. The map ψ ◦ϕ is then a one-to-one analytic
map of W onto D, with ψ ◦ ϕ(p0) = 0, proving the theorem. �



We have already seen the symmetry of Green’s function when it exists
on a simply connected Riemann surface. The proof above implies it is
symmetric on any surface that has a Green’s function.

Corollary: Suppose W is a Riemann surface for which Green’s function
exists, for some pole q ∈ W . Then gW (p, q) exists for all p 6= q ∈ W and
gW (p, q) = gW (q, p).



Not every Riemann surface has a Green’s function, but every such surface
has a dipole Green’s function that has two poles: one negative and one
positive.

Lemma 4. Suppose W is a Riemann surface and for j = 1, 2, suppose
that zj : Uj → D are coordinate functions with disjoint coordinate
disks, mapping p1, p2 to zero respectively.

Then there is a function G(p) ≡ G(p, p1, p2), that is harmonic in
W \ {p1, p|2} such that

(1) G + log |z1| extends to be harmonic in U1, and
(2) G− log |z2| extends to be harmonic in U2.



Proof of the Uniformization Theorem, Case 2
(assuming Lemma 4, dipole Green’s function exists:

By Part I, we may suppose that gW (p, p1) does not exist for all p, p1 ∈ W .

By the monodromy theorem and the lemma, there is a meromorphic func-
tion ϕ defined on W such that

|ϕ(p)| = exp(−G(p, p1, p2)).

ϕ has a simple zero at p1, a simple pole at p2 and no other zeros or poles.



We claim ϕ is one-to-one. Take p0 ∈ W \ {p1, p2}. Let ϕ1 be the
meromorphic function on W such that

|ϕ1(p)| = exp(−G(p, p0, p2)

and consider the function

H(p) =
ϕ(p)− ϕ(p0)

ϕ1(p)
.

Then H is analytic on W because its poles at p2 cancel and because ϕ1
has a simple zero at p0.



By the lemma and the analyticity of H , |H| is bounded on W .a But if v
is in the Perron family for gW (p, p1), and ε > 0, then by the maximum
principle

v(p) + (1 + ε) log |H(p)−H(p1)

2 supW |H|
| ≤ 0.

Since the Green’s function of W does not exist, sup v(p) =∞, and there-
fore

log |H(p)−H(p1)

2 supW |H|
| ≡ −∞

or

H(p) ≡ H(p1) =
−ϕ(p0)

ϕ1(p1)
6= 0,∞.



From the definition of H , if ϕ(p) is finite and not zero, then ϕ(p) 6=
ϕ(p0)since H is a non-zero constant.

If ϕ1(p) = 0 then p = p0 from the definition of ϕ1.

Finally, ϕ1 has a pole only at p2. But ϕ also has a pole at p2, and only at
p2, and thus ϕ(p2) 6= ϕ(p0).

Thus ϕ(p) = ϕ(p0) only if p = p0.

Since p0 is arbitrary, this proves that ϕ is one-to-one.



Therefore ϕ is a one-to-one analytic map from W to a simply connected
region ϕ(W ) ⊂ C∗. If the difference contains two or more points, then
by the Riemann mapping Theorem, there is a one-to-one analytic map of
this region, and hence of W , onto D.

Since we assumed that gW does not exist, this contradicts Part I of the
uniformization theorem. Thus ϕ(W ) is either the sphere or the sphere
minus one point.

If W is compact, so is the image, so it must be the sphere. If it is not
compact, the image must be the plane (after moving the the omitted point
to ∞ by a Möbius transformation.

This proves the uniformization theorem (except for Lemma 4). �



Proof of Lemma 4:

Suppose z0 is a coordinate function with coordinate chart U0 that is dis-
joint from U1 and U2. Let p0 be the point so that z0(p0) = 0. Set

tU0 = {p ∈ W : |z0(p)| < t}
and set

Wt = W \ tU0.

By Lemma 2 and Theorem 4, the Green’s function for Wt exists for all
p, p1 ∈ Wt with p 6= p1. Fix 0 < r < 1, and set

rU1 = {p ∈ W : |z1(p)| < r}.



By the maximum principle

gWt
(p, p1) ≤M1(t) ≡ max

q∈∂U1

gWt
(q, p1) (4)

for all p ∈ Wt \ rU1, because the same bound holds for all candidates in
the Perron family defining gWt

.

By (1)

M1(t) ≤ max ∂U1gWt
(p, p1) + log

1

r
. (5)

By (4), ut(p) ≡ M1(t) − gWt
(p, p1) is a positive harmonic function in

Wt \ rU1 and by (5) there exists q ∈ ∂U1 with ut(q) ≤ log 1/r.



Riemann surfaces are pathwise connected so that if K is a compact subset
of W1 \ rU1 containing {p2} ∪ ∂rU1, then by Harnack’s inequality there
is a constant C depending on K and r but not on t, so that for all p ∈ K
0 ≤ ut(p) ≤ C, and

|gWt
(p, p1)− gWt

(p2, p1)| = |ut(p2)− ut(p)| ≤ 2C.

Likewise, if K ′ is a compact subset of W1 \ {|z2| < r} containing {p1} ∪
∂rU2, there is a constant C so that

|gWt
(p, p2)− gWt

(p1, p2)| ≤ C

for all p ∈ K ′.



By the symmetry of Green’s function, gWt
(p1, p2) = gWt

(p2, p1) so the
function

Gt(p, p1, p2) ≡ gWt
(p, p1)− gWt

(p, p2)

= [gWt
(p, p1)− gWt

(p2, p1)]− [gWt
(p, p2)− gWt

(p1, p2)]

is harmonic in Wt \ {p1, p2} and is bounded by C for all p ∈ K ∩K ′, for
some finite C independent of t.



We may suppose, for instance, that K ∩K ′ contains ∂U1 ∪ ∂U2. If v is
in the Perron family for gWt

(p, p1), then since v = 0 off a compact subset
of Wt and since gWt

> 0, by the maximum principle

sup
Wt\U1

v(p)− gWt
(p, p2) ≤ max(0, sup

∂U1

v(p)− gWt
(p, p2))

≤ max(0, sup
∂U1

gWt
(p, p1)− gWt

(p, p2))

≤ C,

and taking the supremum over all such v yields

sup
Wt\U1

G(p, p1, p2) ≤ C.



Similarly,

sup
Wt\U2

G(p, p1, p2) = − sup
Wt\U2

−G(p, p1, p2) ≥ −C

and
|Gt(p, p1, p2)| ≤ C

for all p ∈ Wt \ {U1 ∪ U2}.



The function Gt + log |z1| extends to be harmonic in U1, so by the maxi-
mum principle, we have that

sup
U1

|Gt + log |z1|| = sup
∂U1

|Gt + log |z1|| = sup
∂U1

|Gt| ≤ C

and
sup
U2

|Gt + log |z2|| = sup
∂U2

|Gt + log |z2|| = sup
∂U2

|Gt| ≤ C



By normal families, there exists a sequence tn→ 0 so that Gtn converges
uniformly on compact subsets of W \{p0, p1, p2} to a function G(p, p1, p2)
satisfying the conclusions of the lemma. The function G(p, p1, p2) extends
to be harmonic at p0 because it is bounded in a punctured neighborhood
of p0. �

This completes the proof of the uniformization theorem.



Paul Koebe

https://mathshistory.st-andrews.ac.uk/Biographies/Koebe/


In terms of Brownian motion on W ,∫
E
g(x, y)dx

is the expected amount of time that a Brownian motion started at y will
spend in the set E (over all time).

Green’s function is finite iff Brownian motion is transient, i.e., it leaves
every compact set eventually.

A Fuchsian group is called divergence type if the quotient Riemann surface
has no Green’s function.



A Riemann surface is sometimes called parabolic if there is no Green’s
function and hyperbolic if there is one.

Confusing since “hyperbolic” also used to mean universal cover is the disk.
Must ask or deduce meaning from context.

Divergence/Convegence terminology is clearer.

Compact surfaces have no Green’s functions.

Some infinite surfaces have no Green’s function (cyclic cover of compact
surface)



The following are all equivalent to divergence type (no Green’s function):

(1) Brownian motion is recurrent.

(2) Geodesic flow on the unit tangent bundle of W is ergodic.

(3) Poincare series of covering group Γ diverges.

(4) Γ has the Mostow rigidity property (cojugating circle homeomor-
phisms are Möbius or singular).

(5) Γ has the Bowen’s property.

(6) Almost every geodesic ray is recurrent. Equivalently, the set of es-
caping geodesic rays from a point p ∈ W has zero (visual) measure.





Suppose Γ is a Fuchsian group acting on the hyperbolic disk or half-space.

A fundamental set is a set that contains exactly one point from each
orbit.

A fundamental domain is an open, connected set D so that there is
a fundamental set F with D ⊂ F ⊂ D and so that ∂D has zero area.



A fundamental domain D is called locally finite if every compact set
meets only finitely many images of D.











Theorem (Thm 9.2.7, Beardon) If D is a locally finite fundamental
region for a Fuchsian group Γ, then Γ is generated by the elements g ∈ Γ
so that g(D) ∩D 6= ∅.



If Γ is a Fuchsian group, then P is a convex fundamental polygon for Γ if
it is a convex, locally finite fundamental domain.

A side of P is a geodesic segment of positive length of the form g(D)∩D
for some g 6= Id.

A vertex of P is a single point of the form g(D) ∩ h(D) ∩ D for some
g 6= h, neither the identity.



Convex polygons exist:

For a point w the Dirichlet polygon D(w) consists of a all points strictly
closer to w than to any g(w), g ∈ Γ, g 6= Id.

This is an intersection of open half-planes, so is convex.



Poincaré’s Theorem (Thm 9.8.4 Beardon):

Suppose P is a hyperbolic polygon and Φ is a set of side-pairing transfor-
mations.

Assume that for each vertex x of P there are vertices x0 = x, x1, . . . , xn
of P and elements f0 = ID, . . . fn of Γ such that the sets fj(Nj) are non-
overlapping sets whose union is D(x, ε) and such that each fj+1 is of the
form fjgs for some s.

Also assume the ε above can be chosen independent of x.

For a polygon P with a side-pairing Φ satisfying these conditions Γ is
discrete and P is a fundamental polygon of Γ.



Theorem (Thm 10.1.2 Beardon): If Γ is a non-elementary Fuchsian
group, then TFAE:

(1) Γ is finitely generated.
(2) Γ has a finite sided, convex fundamental polygon.
(3) Every convex fundamental polygon of Γ is finite sided.

Not true for Kleinian groups acting on hyperbolic 3-space.

A Kleinian group is called geometrically finite if it has a finite sided fun-
damental polyhedron.



Y-pieces: A Y-piece is a bordered Riemann surface which is topologically
a sphere with three disks removed and in which each of the three boundary
components is a hyperbolic geodesic.

A generalized Y-piece is similarly defined, except that we also allow bound-
aries of length zero, i.e., instead of removing a disk we may remove a point.



A Y -piece can always be realized as a hyperbolic octagon with three side
pairings. Moreover, there is a line of symmetry which divides the octagon
into two isometric right hexagons. The alternate sides of these hexagons
are given by a1 = a/2, a2 = b/2 and a3 = c/3.

a

b c

a/2

b/2 c/2

A right hexagon is determined by three alternating sides, so a Y piece is
uniquely determined by its three side lengths.



Theorem: every compact Riemann surface is a finite union of Y-pieces.

Theorem: every finite area Riemann surface is a finite union of general-
ized Y-pieces (zero length boundaries allowed).



Theorem (Álvarez and Rogŕıguez, JLMS, 2004)

Every hyperbolic Riemann surface except for D \ {0} is the union (with
pairwise disjoint interiors) of funnels, half-disks and a set G which can be
exhausted by geodesic domains. Furthermore, if the surface is not D or an
annulus, the set G appears always in the decomposition.



Half-disks are sometimes needed, e.g., X = D \ {xn} where 0 < xn↗ 1.



Lemma 5. If Γ is a Fuchsian group and z ∈ D then∑
γ∈Γ

|γ′(z)|2 <∞.



Lemma 6. If Γ is a Fuchsian group and a ∈ D then

Qa(z) =
∑
γ∈Γ

(γ′(z))2

γ(z)− a

defines a meromorphic function on D such that

Qa(γ(z)) = Qa(z)/(γ′(z))2

for all γ ∈ Γ.



Lemma 7. If Γ is a Fuchsian group and a, b ∈ D then Qa(z)/Qb(z) is
a meromorphic, Γ-invariant function that has a simple pole at a and
a simple zero at b.

Corollary 8. For any compact Riemann surface X and p ∈ X there
is a meromorphic function with a simple zero at p.



Corollary 9. For any compact Riemann surface X and {p1, . . . , pn} ⊂
X there is a meromorphic function taking any given n values a1, . . . , an
at these points. In particular, there is are functions taking n distinct
values at these points.



Equilateral triangulations and Belyi functions

Let T be a closed equilateral triangle. Starting from either a finite even
number or a countably infinite number of copies of T , glue these trian-
gles together by identifying every edge with exactly one edge of another
triangle, in such a way that the identification map is the restriction of an
orientation-reversing symmetry of T .



Assume furthermore that the resulting space E is connected, and that any
vertex is identified with only finitely many other vertices. Then E is an
orientable topological surface, which is compact if and only if the number
of triangles we started with was finite.

We say that E is an equilateral surface.



Every equilateral surface comes equipped with a Riemann surface struc-
ture: On the interior of a face or of an edge, the complex structure is
inherited from T .

It is easy to see that each vertex is conformally a puncture, and therefore
the complex structure extends to all of E; indeed, local charts can be
defined by using appropriate power maps.



We say that a Riemann surface is equilaterally trianguable if it is confor-
mally equivalent to an equilateral surface;

There are only countably many ways to glue finitely many triangles to-
gether. So there are only countably many compact equilateral surfaces;
therefore most compact Riemann surfaces can not be equilaterally trian-
gulated.



Let T be a triangulation and let ∆ be the Euclidean equilateral triangle
inscribed in the unit circle, with a vertex at 1. For each topological triangle
T ∈ T , let φT denote a biholomoprhic isomorphism that takes T to
∆, mapping vertices to vertices. Observe that φT is unique up to post-
composition by a rotational symmetry of ∆.



Defn: The triangulation T is equilateral if, on every edge e with two
adjacent triangles T and T̃ , the maps φT and φT̃ agree up to a reflection
symmetry of ∆.

If such a triangulation exists, we say that X is equilaterally trianguable.



It is elementary to see that this agrees with the definition given before,
except that earlier we allowed allowed two triangles to intersect in more
than one edge.

Given such an equilateral triangulation, we can perform a barycentric
subdivision of all triangles, and get a triangulation of the same surface
with no triangle glued to itself or to multiple edges of a distinct triangle.



Lemma 10 (Equilateral triangulations and reflections). A triangulation
of X is equilateral if and only if the two triangles adjacent to a given
edge are related by reflection.

That is, suppose that the triangles T and T̃ are both adjacent to
an edge e. Then there exists an anti-holomorphic homeomorphism
ι : T → T̃ that fixes e pointwise and maps the third vertex of T to the
corresponding vertex of T̃ .



Proof:

Let e, T and T̃ be as in the statement, and let φT and φT̃ be as defined
above. Suppose that φT̃ |e = R ◦ φT |e, where R is a reflection symmetry
of ∆. Then

ι .
.= φ−1

T̃
◦R ◦ φT

is an anti-holomorphic bijection as in the statement of the observation.

Conversely, suppose ι is such a bijection. Then R .
.= φT̃ ◦ ι ◦ φ

−1
T is

an anti-holomorphic automorphism of the triangle ∆, mapping vertices to
vertices. Thus R is a reflection symmetry of ∆, as required. �



Definition 1. Let X be a (compact or non-compact) Riemann sur-
face. A meromorphic function f : X → C∗ is a Belyi function if f is a
branched covering whose branched points lie only over −1, 1 and ∞.



Proposition 11 (Triangulations and Belyi functions). A Riemann sur-
face X is equilaterally trianguable if and only if there is a Belyi func-
tion on X.



Proof. First suppose that f : X → C∗ is a Belyi function. Consider the
generalized triangulation of the sphere into two triangles corresponding to
the upper and lower half-plane, with vertices at 1, −1 and ∞. By the
Schwarz reflection principle and our previous remarks, this triangulation
is equilateral.

Since the critical values of f are at the vertices of the triangulation, we
may lift it to X , to obtain a generalized equilateral triangulation. As
discussed above, a barycentric subdivision leads to a triangulation in the
stricter sense, and the proof of the “if” direction is complete.



Now suppose that an equilateral triangulation of the surface X is given.
Let T be the corresponding collection of topological triangles, with con-
formal maps φT : T → ∆ for T ∈ T , as above. Let ψ : ∆ → D be the
conformal isomorphism that fixes 0 and 1, and consider the function

f : X → C∗; : z 7→ F3(ψ(φT (z))) (z ∈ T ),

where F3 is the degree 6 rational map

F3(z) :=
1

2
(z3 + z−3).



Let ρ denote rotation by 60◦ around 0, and let σ denote complex conju-
gation.

Observe that ψ commutes with both operations, and that F3◦ρ = F3◦σ =
F3 on ∂D. The group of symmetries of ∆ is generated by ρ and σ, and
thus f is indeed a well-defined holomorphic function on X .

Clearly f is a branched covering with no critical values outside of −1, 1
and ∞; so f is a Belyi function.



Defn: A smooth affine algebraic curve is

X = {(x, y) ∈ C2 : f (x, y) = 0}
where f is a polynomial such at each point p ∈ X either

∂f

∂x
(p) 6= 0 or

∂f

∂y
(p) 6= 0,

Implict function theorem covers X by charts where either x or y are the
maps to complexes.



For example, hyperelliptic curves

y2 = (x− a1) . . . (x− an).

Fermat curves:
xn + yn = 1



Defn: Complex projective space is

{(x, y, z) ∈ C3 : (x, y, z) 6= 0}
with (x, y, z) = (λx, λy, λz) for λ 6= 0.

Is a compact, 4-dimensional (real) manifold.



Defn: A smooth projective algebraic curve

X = {[x, y, z] ∈ P2(C) : f (x, y, z) = 0}
where f is a homogeneous polynomial and charts are x/z or y/z

Such curves are compact (closed subset of compact space).

Fermat curve: xn + yn + zn = 1.

Hyperelliptic curve: y2zn−2 =
∏n
j=1(x− ajz)



Defn: The Euler characteristic of a compact surface is χ = V − E + F
where V,E, F are the number of vertices, edges and faces of a triangula-
tion.

Is independent of the triangulation.

For sphere, χ = 2

For torus, χ = 0

For genus g surface, χ = 2− 2g



Riemann-Hurwitz formula: If f : X → Y is non-constant holomor-
phic map between Riemann surfaces, then

2g(X)− 2 = (deg f )(2g(Y )− 2) +
∑
p∈X

(multpf − 1)

deg(f ) is size of preimage of generic point (non-critical value).

For polynomial on sphere, this says (including ∞)

2(deg(f )− 1) = #(criticalpoints).



Suppose X is a Riemann surface.

a divisor = is a finite linear combination of points of the surface with
integer coefficients.

deg(D) = the sum of the coefficients occurring in D.

Every meromorphic function defines a divisor as set of zeros and poles.
Coefficient is a a zero of order a and −a at pole of order a.

Any such divisor is called a principle divisor.



Two divisors are linearly equivalent if difference is principle.

A divisor of a global meromorphic 1-form is called the canonical divisor,
denoted K.

Any two meromorphic 1-forms will yield linearly equivalent divisors, so
the canonical divisor is uniquely determined up to linear equivalence.



Riemann-Roch Thm For any divisor D on a Riemann surface X,

`(D)− `(K −D) = deg(D)− g + 1.

where

g is genus of surface X .

deg(D) = the sum of the coefficients occurring in D D.

`(D) is the dimension over C of the vector space of meromorphic func-
tions h on X , such that all the coefficients of (h) + D are non-negative.

This is the space of all meromorphic functions so that if the coefficient
in D at z is negative, then h has a zero of at least that multiplicity at z,
and if the coefficient in D is positive, then h can have a pole of at most
that order.



Theorem 12. There is an equivalence between the categories of com-
pact Riemann surfaces and smooth complex projective curves.

More informally, every compact Riemann surface is of the form {p(x, y) =
0} for some polynomial p, and every meromorphic function on X is the
restriction of a rational function R(x, y) to this variety.





Sketch of a Proof (following Jones and Wolfart, Section 1.2.5):

Projective algebraic curves are compact Riemann surfaces, so need only
prove converse.

Idea is to find a pair of meromorphic functions f and g on X that are al-
gebraically dependent, i.e., that p(f, g) ≡ 0 for some non-zero polynomial
p. Then show X is equivalent to p(x, y) = 0.

We do this in eleven steps 1, 2, . . . 11.



1. If X is any compact Riemann surface then there is a non-constant
meromorphic function f on X .

This follows from definition of Qa/Qb earlier (or Riemann-Roch theorem).

Recall that for any p ∈ X there is a meromorphic function having a simple
zero at p.



2. Let n = deg(f ).

Let g be any other meromorphic function on X .

Let F be the finite subset of the sphere consisting of∞, critical values of
f , and the images under f of the poles of g (= f (g−1)(∞)).

Then for each q ∈ X \ F , f−1(q) = {p1, . . . , pn} consists of n distinct
points.



Later we will want

(1) f and g to have non-overlapping critical points.

(2) g to have distinct values at f−1(q) for some complex q.



3. Since g is finite at these points we can define the elementary symmetric
functions

S1(q) =
∑
j

g(pj)

S2(q) =
∑
i<j

g(pi)g(pj)

...

Sn(q) =
∏
j

g(pj)

where
{pj} = f−1(q).

Locally these are sums and products of holomorphic inverses of f , and
independent of ordering of preimages. By construction, these are single-
valued analytic functions on the sphere minus F .



4. We claim each Sk is a rational function.

It is holomorphic except at the finite set F , so it is enough to check it is
finite or has poles at these points (no essential singularities).

But Sk(q) is sum and product of values in {g(pj)} and these limit on

f−1(q0) as q → q0. So Sk has a limit (possibly infinite) at each point of
F . Hence no essential singularity



Alternate proof from textbook.

Around each point q 6∈ F we can use z = q − q0 as a local coordinate (or
z = 1/q at ∞),

Each Sj, is represented near each q0 as a Laurent series in x1/k for some
finite k.

Since Sj is single-valued, only integer powers of z can appear in this series.

Since g is meromorphic, only finitely many negative powers can appear.

Thus each Sj is meromorphic on the Riemann sphere, hence rational.



5. For each j, the composition of

f : X → C∞

and
Sj : C∞→ C∞

defines
sj = Sj ◦ f : X → C∞

that is a meromorphic function on X which is a rational function of f .



6. There is a well-known relationship between the coefficients of a poly-
nomial and the symmetric functions of its roots: (−1)rSr is the coefficient
of tn−r in the polynomial

A(t) =

n∏
j=1

(t− g(pj))).

Thus
A(t) = tn − S1t

n−1 + · · · + (−1)nSn.

If p ∈ X \ f−1(F ), let q = f (p) 6∈ F .

Obviously p = pj ∈ f−1(q) for some j.



For any p ∈ X \ f−1(F ), plug g(p) into

A(t) =

n∏
j=1

(t− g(pj))).

A(g(p)) =

n∏
j=1

(g(p)− g(pj))) = 0.

since g(p) = g(pj) for some j.

We can write this as

a(g) = gn − s1g
n−1 + · · · + (−1)nsn = 0.

where coefficients depend on p, but not g. Note sk = Sk ◦ f as above.

Thus g satisfies a polynomial with coefficients that are rational functions
of f , except on a finite set. Hence it satisfies it on all of X .



(7) We claim the polynomial

a(t) = tn − s1t
n−1 + · · · + (−1)nsn.

is irreducible in C(f )[t].

Suppose that it factorises as a(t) = b(t)c(t) where b, c ∈ C(f )[t].

If a is reducible, we can choose b, c with strictly smaller degrees.



Meromorphic functions can be chosen to separate pairs of points (that is,
to have distinct values at any given pair of points), and hence, one can
show they separate any finite set of points (Corollary 9).

Choose some q0 and then choose the meromorphic function g above so it
takes distinct finite values at {p1, . . . , pn} = f−1(q0).



Near p1, g has a power series s(z) in local coordinates and either b(s(z)) ≡
0 or c(s(z)) ≡ 0. Assume the former.

By analytic continuation along paths connecting the pj, we see b(g) = 0
along these paths.

Thus b(g) = 0 at all the points {pj} = f−1(q). But at these points b
has the same coefficients (since these are polynomials in f and f takes the
value q at all these points).

Thus at the points {pj} the polynomial b = b(f, t) is independent of f .
and vanishes at the n distinct values {g(pj)}.

Hence the degreee of b (in t) is at least n = deg(a), so a is irreducible.



8. For p ∈ X , let z = f (p) and w = g(p). We have

a(w) = wn − s1w
n−1 + · · · + (−1)nsn

where each s1 is a rational function of z.

Multiplying be the LCM of the denominators, we get a polynomial and w
and z

P (z, w) = 0

P (f (p), g(p)) = 0

This gives an affine model for X , which can made projective by adding
powers of z to make it homogeneous.



9. We are not quite done, since models might not be smooth, i.e., both
partials might vanish at some point.

We would be done if we can choose g with distinct critical points from f .

Alternatively, we know that given z ∈ X there is a meromorphic function
g with a simple zero at z.

We can replace g by a finite set of meromorphic functions {gj} so that at
least one is un-ramified at each ramification point of f .

The resulting set of algebraic equations yields a nonsingular projective
model of X in PM (C) for M <∞.



10. This shows the equivalence between compact Riemann surfaces and
smooth complex projective algebraic curves.

We also need the equivalence of the morphisms in these categories.



More precisely, any holomorphic map f : X → Y between compact
Riemann surfaces gives a rational map on the corresponding algebraic
curves. This is easy if we consider X and Y as algebraic curves in PN (C)
and PM (C).

The graph of f is

Gf = {(p, f (p)) ∈ X × Y : p ∈ X}.

is an algebraic curve in PN (C)× PM (C).

Gf is isomorphic to X via the first coordinate projection. Then π2 ◦ π−1
1

is a rational map from X to Y .



11. The proof shows that every meromorphic g on X is a root of a
polynomial of degree at most n = deg(f ) with coefficients in C(f ).

The field of meromorphic functions on X can be identified with the quo-
tient of the polynomial ring C(f )[w] by the ideal generated by a(w), which
is a maximal ideal by the irreducibility of a(w).



If X is given by F (x, y) = 0, then p = (x, y) → x and p → y are
meromorphic functions.

Every rational function R(x, y) gives meromorphic function on X .

Field of meromorphic functions on X is C(x, y) (rational functions in x
and y) modulo the ideal generated by F .



There is an equivalence between:

• Compact Riemann surfaces

• Finite extensions of C(x) (function fields in one variable)

• Irreducible algebraic curves F (x, y) = 0.

There is a functor establishing isomorphism of categories.



How to tell if two surfaces are isomorphic, algebraically

Suppose X = {F (x, y) = 0} and Y = {G(x, y) = 0}.

Defining a holomorphic map f : X → Y is equivalent to giving a pair of
rational maps R1 = P1/Q1, and R2 = P2/Q2, so that

An1Q
m
2 G(R1, R2) = H · F

where n = degx(G), m = degy(F ), H = C[x, y]



f : X → Y is an isomorphism if there is an h so h ◦ f is identity. h is
given by rational functions W1 = U1/V1, W2 = U2/V2 so

V s1 V
t

2F (W1,W2) = T ·G.
Doing some algebra shows this occurs iff there are rational functions R1,
R2 so that

Qd1Q
k
2(U1(R1, R2)−XV1(R1, R2)) = H1F

Qd1Q
k
2(U2(R1, R2)− Y V1(R1, R2)) = H2F

X and Y are isomorphic iff there are polynomials Fj, Qj, Uj, Vj, Hj, H
and T so that three equalities above hold.



Belyi’s Theorem: A compact Riemann surface S is defined over Q
if and only if it supports a Belyi function,i.e., a meromorphic function
with at most three critical values.



Belyi’s Theorem: A compact Riemann surface S is defined over Q
if and only if it supports a Belyi function,i.e., a meromorphic function
with at most three critical values.

Q = algebraic closure of rational

Defined over Q means S can be represented at P (w, z) = 0 where all
coefficients are in Q.

Since P has finitely many terms, this happens iff all coefficients are in a
single finite extension of Q



Belyi function ⇒ Defined over Q

Known to Grothendieck.

Only briefly sketched in Belyi’s original paper.

Detailed proof published 25 years later.

We will outline this direction later.



G.V. Belyi

https://en.wikipedia.org/wiki/G._V._Belyi


Alexander Grothendieck

https://mathshistory.st-andrews.ac.uk/Biographies/Grothendieck/


Other direction is easier: Defined over Q ⇒ Belyi function.

Basic idea:

1. if S is compact and defined over Q then there is a meromorphic f with
finitely many critical values, all algebraic integers.

2.Post-compose f with a rational map so all critical values are rational.

3. Post-compose with other rational maps to collapse finite set of rational
critical values into a smaller set of rational critical values.

4. Continue until only three left.





We follow book of Girondo and González-Diez, Section 3.1.

Suppose f is meromorphic on S with only rational critical values (or∞).

By composing with a Möbius transformation can assume all critical values
are {0, 1,∞, λ1, . . . , λn} and λ1 ∈ (0, 1).



Suppose λ1 = m/(m + n), m,n > 0 integers. Define

Pm,n(x) =
(m + 1)m+n

Mmnn
xm(1− x)n.

This has critical values only at 0, 1, ∞ and λ1 = m/(m + n) and maps

0→ 0, , 1→ 0, ∞→∞, λ→ 1

Therefore Pm,n◦f has critical values 0, 1,∞ and the at most n−1 images
of λ2, . . . , λn.

Continue until only 0, 1,∞ remain.



Thus if suffices to prove there is a meromorphic function with only rational
critical values.



Suppose S is given by a polynomial

F (x, y) = p0(x)yn + ... + pn(x)

were all coefficients are in Q.

Consider the map (x, y)→ x. This is a meromorphic function on S.

We claim its critical values are algebraic. Need some results from algebra.



K = Q, K[x] = polynomials, K(x) = rational functions.

Weak Bezout’s Theorem (Th, 1.84 in GG-D): If F (z, y) and
G(x, y) are relatively prime, then {F = 0} ∩ {G = 0} is finite set, with
both coordinates in K.

Proof: We may regard F,G as elements of K(x)[y] (polynomials in y
with coefficients that are rational functions of x).

Since F,G are co-prime in K[x, y] they are also coprime in K(x)[y]. Thus
there are A,B ∈ C(x) so that

1 = AF + BG



Clearing denominators, we get q = (qA)F + (qB)G

If f,G have infinitely many common roots, these are all roots of the non-
zero polynomial q, a contradiction.

If p = (x, y) is a common root, then q(x) = 0, so x ∈ K since K is
algebraically closed.

Fixing such an x, gives y as root of F (x, y) = 0, a polynomial with
coefficients in K, so y ∈ K. �



Theorem (Thm 1.86 in GG-D): Let

F (x, y) = p0(x)yn + · · · + pn(x).

be an irreducible polynomial. The branch points of (x, y) → x lie in the
finite set S \ {F (x, y) = 0, Fy(x, y) 6= 0, p0(x) 6= 0}.



Theorem (Thm 1.86 in GG-D): Let

F (x, y) = p0(x)yn + · · · + pn(x).

be an irreducible polynomial. The branch points of (x, y) → x lie in the
finite set S \ {F (x, y) = 0, Fy(x, y) 6= 0, p0(x) 6= 0}.

Proof: At other points, implicit function theorem says x is 1-to-1

Since F is irreducible, F and Fy are coprime (otherwise common factor
divides F ). Hence {F = 0} ∩ {Fy = 0} is finite and these points have
coordinates in Q by weak Bezout theorem. �

This proves our critical values are algebraic.



If critical values are all rational, we are done.

Otherwise let B0 = {µ1, . . . , µs} be critical values.

Let m1(t) be the minimal polynomial of the finite branch values, i.e., the
lowest degree monic polynomial vanishing at all these points.

Equivalently, m1 is the product of the minimal polynomials of all these
algebraic numbers µj, avoiding repetition of factors.



Let m′1 be dervative of m1.

Let {β1, . . . , βd} be roots of m′1.

Let p(t) the corresponding minimal polynomial.

By definition deg(p) ≤ deg(m′1) < deg(m1).



General fact (chain rule): the critical values of g ◦ f are contained
in the critical values of g and the g-images of the critical values of f .

By definition of m1, it maps all finite critical values of (x, y)→ x to 0.

So (x, y) → m1(x) has critical values 0,∞ and critical values of m1,
denoted {β1, . . . , βd}

If this set, denoted B2, is in Q ∪ {∞} we are done.

Otherwise, let m2 be the minimal polynomial of the critical points of m1,
i.e., of of {m1(β1), . . . ,m2(βd)}. The dimension of the field extension gen-
erated by these points is at most the dimension generated by {β1, . . . , βd}.



Thus
deg(m2) ≤ deg(p) ≤ deg(m′1) < deg(m1).

we continue this way until all the finite critical values are in Q. This must
happen since the degree of the minimal polynomial of the non-rational
value decreases by one at each step, so eventually becomes linear. �



The other direction (Belyi function implies algebraic):

Let Gal(C) denote all automorphisms of C.

Any such automorphism acts on polynomials by acting on the coefficients.

Polynomials define surfaces and morphisms between them, so automor-
phism gives action on compact surfaces and meromorphic functions.

The action on a pair (S, f ) preserves the genus of S, the degree of f and
applies the automorphism to the critical values.



Theorem (Criterion 3.29 of GG-D): A compact Riemann surface
S is defined over Q iff the orbit of S under Gal(C) is finite.

One direction is easy (if S = {(x, y) : P (x, y) = 0} is algebraic then the
orbit is finite.

The harder direction easily implies the converse of Belyi’s theorem.



Converse of Belyi’s theorem, given criterion:

f is a Belyi function on S and σ ∈ Gal(C), then fσ is a Belyi function on
Sσ of the same degree n.

Thus both S and Sσ are obtained by gluing together 2n equilateral trian-
gles. There are only a finite number of distinct ways to to this.

By the criterion above, S is defined over Q. �



Idea of proof of Criterion:

A finite set {π1, . . . , πd} is algebraically independent over a field k if

p(x1, . . . , xd)→ p(π1, . . . , πd)

is 1-1 from k[x1, . . . , xd] into C.

A specialization of (π1, . . . πd) is a choice of a complex d-tuple (q1, . . . qd).
The map πj → qj defines a k-algebra s homomorphism

s : Q(π1, . . . , πd)→ C.

This distance of a specialization is maxj |πj − qj|.

We will be interested in cases when distance is small and s maps into Q.



A field extension is pure transcendental if it is generated by a set of alge-
braically independent elements.

General finitely generated extension is Q(π1, . . . , πd;u) where u is alge-
braic over Q(π1, . . . , πd).



Suppose X = {F (x, y) = 0}.

We want to take extension K of Q generated by coefficients of F .

If this is inside Q, X is algebraic, as desired.

Otherwise, we replace transcendental generators by nearby algebraic num-
bers (a specialization). Use finiteness of orbit to show X is isomorphic to
some Y = {G(x, y) = 0} with algebraic coefficients.



Let mu be minimal polynomial of u over Q(π1, . . . , πd).

Let ms
u be image of mu under specialization s.

Lemma 3.31 of GG-D: A specialization of Q(π1, . . . , πd) can be
extended to Q(π1, . . . , πd;u) iff u is mapped to a root of ms

u.



Lemma 3.32 of GG-D: Let {u1, . . . , un} be roots of mu (minimal
poly for u). For any δ > 0 there is an ε > 0, so that if the distance of
the specialization is < ε then each root of mu is approximated within
δ by a root of ms

u.

Sketch: coefficients of mu are polynomial combinations of field genera-
tors, and ms

u coefficients are same combinations of nearby elements. So
ms
u ≈ mu in coefficients. This implies roots also approximate. �



Let X = {F (x, y) = 0} and let K1 = Q(π1, . . . , πd; v) be field generated
by coefficients of F .

Let mv be minimal polynomial of v over Q(π1, . . . , πd).

For any automorphism σ of C K2 = Q(σ(π1), . . . , σ(πd), σ(v)) is field
generated by coefficients of Fσ.



Now consider automorphisms σ such that

Σ2 = {π1, . . . , πd, σ(π1), . . . , σ(πd), }
algebraically independent elements.

There are infinitely many such automorphisms σ. Since there are only
finitely many possible surfaces Xσ, some coincide, i.e., Xβ is isometric to
Xτ for some β 6= τ .

Then X is isometric to Xσ for σ = τ−1 ◦ β.

Recall this isometry is equivalent to certain polynomials existing.



Enlarge Σ2 by adding coefficients of the polynomials Pj, Qj, Uj, Vj, T ,
Hj, H that express the isometry X ' Xσ.

We get larger field
K3 = Q(π1, . . . , πn;u)

with n ≥ 2d,, and u algebraic over Q(π1, . . . , πn).



Specialize the coordinates > d with elements of Q(
√
−1) with small dis-

tance (enough to apply Lemma 3.32 of GG-D above about approximating
roots).

Let s to the associated homomorphism.



Recall Q(π1, . . . , πn;u) is ring of rational linear combinations of genera-
tors.

Q[π1, . . . , πn;u] is field of fractions of these i.e.,

z =
A(π1, . . . , πn, u)

B(π1, . . . , πn, u)
.

Let Q[π1, . . . , πn;u]s be sub-ring of field where image of denominator is
non-zero under s.



In other words z = A/B is in Q[π1, . . . , πn;u]s if

s(B) = B(π1, . . . , πd, qd+1, . . . , qn, us) 6= 0.

Then s extends to a homomorphism of Q[π1, . . . , πn;u]s into C.

Thus s extends to a homomorphism

Q[π1, . . . , πn;u]s(x, y)→ C(x, y)).



Here is the main point.

If the elements qj are chosen sufficiently close to πj, then all the el-
ements of the finite set consisting of the coefficients of the polynomi-
als Pj, Qj, Uj, Vj, T,Hj, H along with the element v ∈ K1 all lie in
Q[π1, . . . , πn;u]s.

(A fixed non-zero element maps to a non-zero element if the distance of
the specialization is small enough. We only need this for finitely many
elements.)



We can therefore apply specialization to our polynomials that verify X is
isometric to Xσ, i.e.,

Qn1Q
m
2 G(R1, R2) = H · F

becomes
(Qn1 )s(Qm2 )sGs(Rs1, R

s
2) = Hs · F s

The latter defines a morphism XF s to X(Fσ)s.

Doing the same for the other relations defines an isomorphism between
XF s and X(Fσ)s.



Now, by construction, the coefficients of the polynomial (Fσ)s are in field
generated by elements of Q(

√
−1) plus an element s(σ(v)) that is algebraic

over this field.

Thus (Fσ)s is algebraic.

Since XF s and X(Fσ)s are isomorphic, and the latter is algebraic, XF s is
also algebraic.

We are done if F = F s.



Specialization leaves π1, . . . , πd fixed, so it suffices to show s(v) = v.

Note that ms
v = mv(v), again since πj don’t change.

By taking the distance of the specialization small enough, s(v) a root of
mv as close to v as we wish, hence equals v.

This proves a Riemann surface with finite orbit is algebraic.

Completes proof of Belyi’s theorem.



Argument using specialization to prove Belyi’s theorem also shows that
Belyi functions are defined over Q.

See Proposition 3.34 of Girondo and González-Diez.


