DIMENSIONS OF TRANSCENDENTAL JULIA SETS

Christopher Bishop, Stony Brook

Math 670, SBU, Thur Dec 7, 2023

www.math.sunysb.edu/~bishop/lectures

THE PLAN

- Hausdorff and packing dimensions
- Polynomial versus transcendental
- Dimension $d=2$
- Dimension $1<d<2$
- Dimension $d=1$
- Open problems.

Defn: Minkowski dimension. If K is a bounded set, let $N(K, \epsilon)$ be the minimal number of cubes of diameter ϵ needed to cover K.

Upper Minkowski dimension:

$$
\overline{\operatorname{Mdim}}(K)=\limsup _{\epsilon \rightarrow 0} \frac{\log N(K, \epsilon)}{\log 1 / \epsilon}
$$

Lower Minkowski dimension

$$
\underline{\operatorname{Mdim}}(K)=\liminf _{\epsilon \rightarrow 0} \frac{\log N(K, \epsilon)}{\log 1 / \epsilon}
$$

If these agree, common value is Minkowski dimension, $\overline{\operatorname{Mdim}}(K)$.

Two disadvantages:

- Not defined for unbounded sets
- Countable sets can have dimension >0.

$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ needs \sqrt{n} balls of size $1 / n$ balls to cover.

The packing dimension fixes these problems:

Defn: packing dimension

$$
\operatorname{Pdim}(A)=\inf \left\{\sup _{j \geq 1} \overline{\operatorname{Mdim}}\left(A_{j}\right): A \subset \bigcup_{j=1}^{\infty} A_{j}\right\}
$$

where the infimum is over all countable covers of A.

By definition $\operatorname{Pdim}\left(\cup_{n} A_{n}\right)=\sup _{n} \operatorname{Pdim}\left(A_{n}\right)$.

Defn: α-dimensional Hausdorff content

$$
\mathcal{H}_{\infty}^{\alpha}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{\alpha}\right\}
$$

$\left\{U_{i}\right\}=$ cover of $K,|E|=$ diameter of a set E.
Like Minkowski dimension, but allows covering sets of different sizes.
Defn: Hausdorff dimension $\operatorname{dim}(K)=\inf \left\{\alpha: \mathcal{H}_{\infty}^{\alpha}(K)=0\right\}$.

Always true that Hdim \leq Pdim, but " $<$ " can sometimes hold.

For polynomials, $\operatorname{Hdim}(\mathcal{J})$ can take any value in $(0,2]$.

Same for meromorphic functions (Bergweiler-Cui).

For transcendental entire functions, $\operatorname{Hdim}(\mathcal{J}) \in[1,2]$.

Today, I will only discuss entire functions:

- Sketch proof that Hdim ≥ 1
- Discuss examples for $d=2,1<d<2, d=1$.

Thm (Baker): Hdim ≥ 1 for transcendental entire functions.

Lemma: Non-trivial loops escape

- Suppose curve γ in Fatou set surrounds a point of \mathcal{J}.
- If $\left\{f^{n}\right\}$ bounded on γ, also bounded on interior by max principle.
- Hence interior of γ in Fatou set, a contradiction.
- So a point in γ escapes. By normality all γ escapes.

Lemma: Iterates of γ have non-zero index around 0

- Suppose not.
- Then minimum principle applies and interior of γ escapes.
- But γ surrounds \mathcal{J} and hence surrounds a pre-periodic point.
- Contradiction.
- \Rightarrow iterates of γ surround every compact set.

Lemma: Multiply connected Fatou components are bounded:

- Suppose Ω is multiply connected and unbounded.
- Suppose $\gamma \subset \Omega$ surrounds a Julia point.
- γ escapes, index non-zero $\Rightarrow \gamma_{n}=f^{n}(\gamma)$ intersects Ω for all large n.
- $\Rightarrow \gamma_{n} \subset \Omega$ for all n.

Lemma: Multiply connected Fatou components are bounded:

- Suppose Ω is multiply connected and unbounded.
- Suppose $\gamma \subset \Omega$ surrounds a Julia point.
- γ escapes, index non-zero $\Rightarrow \gamma_{n}=f^{n}(\gamma)$ intersects Ω for all large n.
- $\Rightarrow \gamma_{n} \subset \Omega$ for all n.
- Schwarz lemma \Rightarrow hyperbolic distance from γ_{n+1} to γ_{n} is bounded.
- $\operatorname{Implies} \operatorname{diam}\left(\gamma_{n+1}\right) \leq C \cdot \operatorname{diam}\left(\gamma_{n}\right)$.
- Implies that f grows polynomially. Contradiction.
- Hence multiply connected Fatou components are bounded.

Thm: \mathcal{J} contains non-trivial continuum, so $\operatorname{Hdim}(\mathcal{J}) \geq 1$

- Suppose not. Then \mathcal{J} is totally disconnected.
- \Rightarrow one multiply connected Fatou component.
- Such a component is bounded. Contradiction.
- Hence \mathcal{J} contains a continuum.

So $\operatorname{Hdim}(\mathcal{J}) \in[1,2]$. Next we will discuss examples of

- $\operatorname{Hdim}(\mathcal{J})=2$
- $1<\operatorname{Hdim}(\mathcal{J})<2$
- $\operatorname{Hdim}(\mathcal{J})=1$

Many transcendental functions have $\operatorname{dim}(\mathcal{J})=2$:

Thm (Misiurewicz): $\operatorname{dim}(\mathcal{J})=\mathbb{C}$ for $f(z)=e^{z}$.
Thm (McMullen): $\operatorname{dim}(\mathcal{J})=2$ and $\operatorname{area}(\mathcal{J})=0$ for $f(z)=\lambda e^{z}$.

Thm (McMullen): $\operatorname{area}(\mathcal{J})>0$ for $f(z)=\lambda \cdot \cosh (z)$.

Singular set $=$ closure of critical values and finite asymptotic values $=$ smallest set so that f is a covering map onto $\mathbb{C} \backslash S$

Eremenko-Lyubich class $=$ bounded singular set $=\mathcal{B}$
Speiser class $=$ finite singular set $=\mathcal{S} \subset \mathcal{B}$
$\lambda \cdot \exp (z)$, and $\lambda \cdot \cosh (z)$ are in Speiser class.

Defn: Escaping set $I(f)=\left\{z: f^{n}(z) \rightarrow \infty\right\}$.
Fact: In general, $\mathcal{J}(f)=\partial I(f)$. For f in EL-class, $\mathcal{J}(f)=\overline{I(f)}$.

Definition of $\exp (z)$.

Definition of $\cosh (z)$.
$\cosh (-x+i y)=\overline{\cosh (x+i y)}$

Proof that $\operatorname{area}(\mathcal{J})>0$ for cosh:

Let $S=2 \pi(n+i m)+[0,2 \pi]^{2}$.
$\cosh (S)$ approximately covers annulus A_{n} of area $\simeq 2^{2|n|}$.
Annulus contains $\simeq e^{2|n|}$ disjoint translates of S.

Proof that $\operatorname{area}(\mathcal{J})>0$ for cosh:

Omit $\simeq|n| \cdot e^{|n|}$ squares near y-axis, $\simeq e^{|n|}$ near ∂A_{n}.
Remaining squares cover $1-O\left(|n| \cdot e^{-|n|}\right)$ area of annulus.
$\sum_{n>0} n e^{-n}<\infty \Rightarrow$ positive area escapes (so is in \mathcal{J}.)

Order of growth:

$$
\rho(f)=\underset{|z| \rightarrow \infty}{\limsup } \frac{\log \log \mid f(z)) \mid}{\log |z|}
$$

Barański (2008) and Schubert (2007) proved that the Julia set of any finite-order Eremenko-Lyubich function has Hausdorff dimension 2.

Transcendental examples with $1<\operatorname{Hdim}(\mathcal{J})<2$:
Gwyneth Stallard gave examples in EL-class: all $1<d<2$.
Rippon-Stallard proved $\operatorname{Pdim}(\mathcal{J})=2$ in EL-class.
\Rightarrow Hdim \neq Pdim can occur.

Simon Albrecht and I gave sequence in Speiser class with Hdim $\rightarrow 1$.
Open problem: do all values $(1,2]$ occur for the Speiser class?

Theorem (Stallard): There are Eremenko-Lyubich functions whose Julia sets have Hausdorff dimension close to 1.

There is EL function with tract $\{z:|f(z)|>1\} \approx$ half-strip.

- Cauchy integrals
- Solve $\bar{\partial}$-equation
- Use models theorem for EL-class.

There is no Speiser function with this tract (even approximately).

Models theorem:

Suppose $F \in$ EL-class and $S(F) \subset \mathbb{D}=\{|z|<1\}$.
$\Omega=\{|F|>1\}$ has simply connected components, called tracts
$W=\mathbb{C} \backslash \bar{\Omega}=\{|F|<1\}$ is connected, simply connected

F is a covering map $\Omega \rightarrow \mathbb{D}^{*}=\{|z|>1\}, F=\exp \circ \tau$.
τ is conformal from each tract to $\mathbb{H}_{r}=$ right half-plane $W=\mathbb{C} \backslash \Omega$ is like the tree in the folding theorem.

A model is a pair (Ω, τ) where

- $\Omega=\cup \Omega_{j}$ is a disjoint union of unbounded Jordan domains
- τ is conformal from each Ω_{j} to $\mathbb{H}_{r}(\infty \rightarrow \infty)$.

Every Eremenko-Lyubich function F gives a model with $\Omega=\{|F|>R\}$.
Does every model give an Eremenko-Lyubich function?

Theorem: Suppose (Ω, τ) is a model and $\rho>0$. Define

$$
\Omega(\rho)=\tau^{-1}(\{x+i y: x>\rho\}) \subset \Omega .
$$

Then there is a quasiregular g so that
(1) $g=e^{\tau}$ on $\Omega(\rho)$,
(2) $|g| \leq e^{\rho}$ off Ω.

The QR constant depends on ρ, but not on Ω.
There is a quasiconformal φ so that $f=g \circ \varphi \in \mathcal{B}$.
g is holomorphic except on $\Omega(\rho) \backslash \Omega(\rho / 2)$ (often has finite area).
Tracts of f correspond to components of Ω. Very similar shapes.

Idea of proof:

F maps each tract (component of Ω) to outside of disk.
Riemann map W to disk, follow by Blaschke product.
Choose Blaschke product so two maps almost match along $\partial W=\partial \Omega$.
Match exactly with QC deformation, then apply MRMT.

Assume we have g in EL-class so that:

- $g(0)=0$ and $|g(z)|<1$ outside $S=$ half-strip.
- $\{|z|<1\}$ attracted to 0 (in Fatou set).
- Inside $S, g(z) \approx \exp (\exp (z-K))$

Inside $S, g(z) \approx \exp (\exp (z-K))$
This is conformal map of S to half-plane, followed by exp.

Fixed point $g(0)=0$ attracts everything in complement of S
Thus the Julia set is inside S. More precisely,

$$
\begin{gathered}
\mathcal{J}(g) \subset \bigcap X_{n} \\
X_{n}=\left\{z:\left|g^{k}(z)\right| \geq K, k=1, \ldots, n\right\} .
\end{gathered}
$$

To prove $\operatorname{dim}(\mathcal{J}) \leq 1+\delta$, it suffices to show: if K large enough, then (1) X_{1} can be covered by disks $\left\{D_{j}\right\}$ so that $\sum_{j} \operatorname{diam}\left(D_{j}\right)^{1+\delta}<\infty$,
(2) if D hits $\mathcal{J} \cap\{|z|>K\}$, then its preimages satisfy

$$
\sum_{W_{j} \in f^{-1}(D)} \operatorname{diam}\left(W_{j}\right)^{1+\delta} \leq \epsilon \cdot \operatorname{diam}(D)^{1+\delta}
$$

If K is large, we may take $\epsilon>0$ as small as we wish.

This is what preimages of one disk look like.

Preimage of gold disk $D=D(w, r)$ defined in two steps:

- stack of regions of diameter $O(r /|w|)$ on line $\{x=\log |w|\}$.
- region at height $2 \pi k$ in stack has single preimage U_{k} of diameter

$$
O\left(\frac{r}{|w|(\log |w|+2 \pi|k|)}\right) .
$$

These estimates only use $(\log z)^{\prime}=1 / z$.

If $\delta>0$ is fixed and K is large enough, then

$$
\begin{aligned}
& \sum_{k} \operatorname{diam}\left(U_{k}\right)^{1+\delta} \lesssim\left(\frac{r}{|w|}\right)^{1+\delta} \sum_{k} \frac{1}{(\log |w|+2 \pi|k|)^{1+\delta}} \\
& \lesssim\left|\frac{r}{w}\right|^{1+\delta} \frac{1}{\delta \log ^{1+\delta}|w|} \ll\left|\frac{r}{w}\right|^{1+\delta} \ll r^{1+\delta}
\end{aligned}
$$

If $\delta>0$ is fixed and K is large enough, then

$$
\begin{aligned}
& \sum_{k} \operatorname{diam}\left(U_{k}\right)^{1+\delta} \lesssim\left(\frac{r}{|w|}\right)^{1+\delta} \sum_{k} \frac{1}{(\log |w|+2 \pi|k|)^{1+\delta}} \\
& \lesssim\left|\frac{r}{w}\right|^{1+\delta} \frac{1}{\delta \log ^{1+\delta}|w|} \ll\left|\frac{r}{w}\right|^{1+\delta} \ll r^{1+\delta}
\end{aligned}
$$

This proves $\operatorname{dim}(\mathcal{J}(g)) \leq 1+\delta$.

To get $1<d<2$ in Speiser class, we want to repeat same argument.
Find g is Speiser class so that

- $g(z) \approx \exp (\exp (z-K))$ in half-strip
- $|g|<1$ outside n half-strip

To get $1<d<2$ in Speiser class, we want to repeat same argument.
Find g is Speiser class so that

- $g(z) \approx \exp (\exp (z-K))$ in half-strip
- $|g|<1$ outside n half-strip

Unfortunately, no such g exists (B. 2017).

Instead, we use several strip-like tracts.
Then method of quasiconformal folding can be applied.

- $g(z) \approx \exp (\exp (\omega \cdot z-K))$ in each half-strip,
- $|g|<1$ on sectors.
- Zero attracts central disk and all sectors.

A single R-component.
For QC-folding experts: vertical slits chosen to give $\tau \simeq 1$ on segments between strips and sectors.

Preimages of a disk follow the boundary.
Estimates like before, but more intricate.

Transcendental Julia sets with dimension 1

Theorem: $\operatorname{Hdim}(\mathcal{J})=\operatorname{Pdim}(\mathcal{J})=1$ is possible. I gave example using infinite products. Somewhat technical.

New, more geometric, proof by Burkart and Lazebnik ("folding-like").

Both proofs based on similar geometry.

Suppose we have annuli $\left\{r_{k}<|z|<r_{k+1}\right\}$.
maps $z \rightarrow C_{k} \cdot z^{2^{k}}$ from A_{k} to A_{k+1}.

Approximate this by placing 2^{k} zeros evenly around k th circle.
Approximate polynomial p near origin so there is some Julia set near origin.
Annuli escape, each corresponds to a different Fatou component.

The k th annulus looks rotationally invariant.
Other zeros are very, very close to 0 or ∞.
Its inner and outer boundaries should be nearly circular.

Fatou component has a boundary around each zero.
Must surround pre-image of component at zero.

These boundaries and inner boundary map to outer boundary.

The k th annulus maps to $(k+1)$ st annulus.
The $(k+1)$ st annulus also has ring of boundary components.
These have a preimage in the k th annulus; a second ring.

There is an infinite sequence of rings converging to outer boundary.
Estimates show component boundary is countable union of C^{1} curves.
"Buried" points have small dimension $\Rightarrow \operatorname{dim}(\mathcal{J})=1$.

Open questions:

My example has finite spherical 1-measure, but infinite packing 1-measure.
\Rightarrow not subset of rectifiable curve on sphere.
Can a transcendental entire Julia set lie on such a curve?
True for meromorphic. Julia set of $\tan (z)$ is a line.
Are the boundary components better than C^{1} ?
Any Jordan curve is boundary of s.c. wandering domain - Boc Thaler.

Open questions: Black $=$ known, Green $=$ unknown

Which pairs (Hdim, Pdim) can occur for a transcendental entire function?
Burkart: any pair $(s, s), 1<s<2$ can be approximated.
Can we have $\operatorname{Hdim}=1, \operatorname{Pdim}=2$?
Does Hdim $=$ Pdim hold for all polynomials?

Open questions:

Speiser class Julia sets take dimensions as close to 1 as desired.

Do they take all dimensions in $(1,2]$?

Can the escaping set have dimension 1 ?

Open questions:

Eremenko and Lyubich showed Speiser class functions QC equivalent to f (i.e., $g=\psi \circ f \circ \varphi$) are a finite dimensional manifold M_{f}.

Think of $\operatorname{dim}(\mathcal{J}(g))$ as a function on M_{f}.
Often this is the constant 2 (e.g., finite order of growth).
Otherwise is it always non-constant?
Is the supremum over M_{f} always 2 ?
Do Shishikura's methods for Mandelbrot set apply?

