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THE PLAN

e Hausdorff and packing dimensions
e Polynomial versus transcendental
e Dimension d = 2

e Dimension 1 < d < 2

e Dimension d =1

e Open problems.



Defn: Minkowski dimension. If K is a bounded set, let N (K, ¢€) be the

minimal number of cubes of diameter € needed to cover K.

Upper Minkowski dimension:

log N(K
Mdim(K') = lim sup g NK, ¢
e—0 log 1/e
Lower Minkowski dimension
log N(K
Mdim(K') = lim inf 08 N ’6).
e—0  logl/e

[f these agree, common value is Minkowski dimension, Mdim(K).
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Two disadvantages:

e Not defined for unbounded sets

e Countable sets can have dimension > 0.

{1, %, %, %, ... } needs /n balls of size 1/n balls to cover.
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The packing dimension fixes these problems:

Defn: packing dimension
(

O
Pdim(A) = inf { sup Mdim(A4,) : A C U Aj o,
j=>1 —
\ =1

where the infimum is over all countable covers of A.

By definition Pdim(Uy, Ay,) = sup,, Pdim(Ay,).



Defn: a-dimensional Hausdorff content

HE (K mf{z U; |1,

{U;} = cover of K, |E| = diameter of a set F.
Like Minkowski dimension, but allows covering sets of different sizes.

Defn: Hausdorff dimension dim(K) = inf{a : HZ (K) = 0}.
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Always true that Hdim < Pdim, but ”<” can sometimes hold.




For polynomials, Hdim(7) can take any value in (0, 2|.
Same for meromorphic functions (Bergweiler-Cui).
For transcendental entire functions, Hdim(7) € [1,2].

Today, I will only discuss entire functions:
e Sketch proof that Hdim > 1

e Discuss examplesford =2, 1 <d<2,d=1.



Thm (Baker): Hdim > 1 for transcendental entire functions.



Lemma: Non-trivial loops escape
e Suppose curve v in Fatou set surrounds a point of 7.
o If { "} bounded on =, also bounded on interior by max principle.
e Hence interior of v in Fatou set, a contradiction.

e S0 a point in 7y escapes. By normality all v escapes.



Lemma: Iterates of v have non-zero index around 0
e Suppose not.
e Then minimum principle applies and interior of v escapes.
e But v surrounds J and hence surrounds a pre-periodic point.
e Contradiction.

e = iterates of v surround every compact set.



Lemma: Multiply connected Fatou components are bounded:
e Suppose {2 is multiply connected and unbounded.
e Suppose v C () surrounds a Julia point.
e 7 escapes, index non-zero = v, = f"(7) intersects €2 for all large n.

o = v, C () for all n.



Lemma: Multiply connected Fatou components are bounded:
e Suppose {2 is multiply connected and unbounded.
e Suppose v C () surrounds a Julia point.
e 7 escapes, index non-zero = v, = f"(7) intersects €2 for all large n.
o = v, C () for all n.
e Schwarz lemma = hyperbolic distance from ;11 to 7y, is bounded.
e [mplies diam(7yy,11) < C - diam(~y).
e Implies that f grows polynomially. Contradiction.

e Hence multiply connected Fatou components are bounded.



Thm: J contains non-trivial continuum, so Hdim(J) > 1
e Suppose not. Then J is totally disconnected.
e = one multiply connected Fatou component.
e Such a component is bounded. Contradiction.

e Hence J contains a continuum.



So Hdim(J) € [1,2]. Next we will discuss examples of

e Hdim(J) =2
e | < Hdim(J) < 2

e Hdim(J) =1



Many transcendental functions have dim(J) = 2:
Thm (Misiurewicz): dim(J) = C for f(z) = e*.
Thm (McMullen): dim(J) = 2 and area(J) = 0 for f(z) = Ae”.

Thm (McMullen): area(J) > 0 for f(z) = A - cosh(z).



Singular set = closure of critical values and finite asymptotic values
= smallest set so that f is a covering map onto C \ S

Eremenko-Lyubich class = bounded singular set = B

Speiser class = finite singular set =S C B

A -exp(z), and X - cosh(z) are in Speiser class.

Defn: Escaping set I(f) = {z: f"(z) — oo}.

Fact: In general, J(f) = 0I(f). For f in EL-class, J(f) = I(f).



Definition of exp(z).
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Definition of cosh(z). cosh(—x + iy) = cosh(x + 1y)



Proof that area(J) > 0 for cosh:

A N

cosh
A

2T (n+im)

\/

Let S = 2x(n + im) + [0, 271)%.
cosh(S) approximately covers annulus A, of area ~ 227,

Annulus contains ~ 27 disjoint translates of S.



Proof that area(J) > 0 for cosh:

A A

A N

cosh
A

2T (n+im)

\/

Omit ~ |n| - el"l squares near y-axis, ~ el near 9A4,,.
Remaining squares cover 1 — O(|n| - e~} area of annulus.

> nspne” " < 0o = positive area escapes (so is in J.)



Order of growth:

loglog | f(2)),
log |z|

p(f) = limsup

2| =00

Baranski (2008) and Schubert (2007) proved that the Julia set of any
finite-order Eremenko-Lyubich function has Hausdorff dimension 2.



Transcendental examples with 1 < Hdim(7) < 2:

Gwyneth Stallard gave examples in EL-class: all 1 < d < 2.

Rippon-Stallard proved Pdim(J) = 2 in EL-class.

= Hdim # Pdim can occur.

Simon Albrecht and I gave sequence in Speiser class with Hdim — 1.

Open problem: do all values (1, 2] occur for the Speiser class?



Theorem (Stallard): There are Eremenko-Lyubich functions whose
Julia sets have Hausdorft dimension close to 1.

There is EL function with tract {z : | f(2)| > 1} ~ half-strip.
e Cauchy integrals
e Solve O-equation
e Use models theorem for ElL-class.
There is no Speiser function with this tract (even approximately).



Models theorem:

Suppose F' € El-class and S(F) C D = {|z| < 1}.

() = {|F| > 1} has simply connected components, called tracts

W =C\Q={|F| <1} is connected, simply connected



exp

F'is a covering map 2 — D* = {|z| > 1}, F = expor.
7 is conformal from each tract to H, = right half-plane

W = C\ Q is like the tree in the folding theorem.



A model is a pair (€2, 7) where
e {) = U, is a disjoint union of unbounded Jordan domains

e 7 is conformal from each €2; to H; (0o — 00).

Every Eremenko-Lyubich function F gives a model with Q2 = {|F'| > R}.

Does every model give an Eremenko-Lyubich function?



Theorem: Suppose (€2, 7) is a model and p > 0. Define
Qp) =7 {z+iy: x> p}) CQ.

Then there is a quasiregular g so that
(1) g = €™ on Q(p),
(2) |g] < e off Q.



The QR constant depends on p, but not on ().
There is a quasiconformal ¢ so that f = gop € B.
g is holomorphic except on €2(p) \ Q(p/2) (often has finite area).

Tracts of f correspond to components of €2. Very similar shapes.



exp

Idea of proof:
F' maps each tract (component of {2) to outside of disk.
Riemann map W to disk, follow by Blaschke product.
Choose Blaschke product so two maps almost match along OW = 0X).
Match exactly with QC deformation, then apply MRMT.



Assume we have g in ElL-class so that:
e g(0) =0 and |g(z)| < 1 outside S = half-strip.
o {|z| < 1} attracted to 0 (in Fatou set).

e Inside S, g(2) ~ exp(exp(z — K))



exp(z)

Inside S, g(2) =~ exp(exp(z — K))

This is conformal map of S to half-plane, followed by exp.



exp(z)

Fixed point g(0) = 0 attracts everything in complement of S

Thus the Julia set is inside S. More precisely,

j(g)CﬂX’na
Xn={z:1g"2)|>K,k=1,...,n}.



D(w,r)

exp(z)

To prove dim(J) < 1+ 9, it suffices to show: if K large enough, then
(1) Xj can be covered by disks {D;} so that » _; diam(Dj)1+5 < 00,
(2) if D hits J N {|z] > K}, then its preimages satisfy
Z diam(VVj)H(S < e - diam(D).
Wief~H(D)

If K is large, we may take ¢ > 0 as small as we wish.



exp(z)

This is what preimages of one disk look like.



D(w,r) O

expc O

O O O O O O o o o

Preimage of gold disk D = D(w,r) defined in two steps:
e stack of regions of diameter O(r/|w|) on line {x = log |w|}.
e region at height 27k in stack has single preimage U}, of diameter

OQM@@J+%WQ'

These estimates only use (log z)’ = 1/z.



exp(z)

If 0 > 0 is fixed and K is large enough, then

1

j%: (Ui (hu| EE: (log |w| + 27| k[)1+0
1

< ‘1| +0 1

140 |,w‘

1446

<<|——‘ <r
0 log



exp(z)

If 0 > 0 is fixed and K is large enough, then

1

Ek: (Ui (\w| Z (log |w| + 27| k[)1+0
1

< ‘1| +0 1

140 |,w‘

1446

< |—‘ <r
0 log

This proves dim(J (g)) < 1+ 6.
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To get 1 < d < 2 in Speiser class, we want to repeat same argument.
Find ¢ is Speiser class so that

e g(2) =~ exp(exp(z — K)) in half-strip

e |g| < 1 outside n half-strip



To get 1 < d < 2 in Speiser class, we want to repeat same argument.

Find ¢ is Speiser class so that
e g(2) =~ exp(exp(z — K)) in half-strip
e |g| < 1 outside n half-strip

Unfortunately, no such g exists (B. 2017).
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Instead, we use several strip-like tracts.

Then method of quasiconformal folding can be applied.
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e g(2) =~ exp(exp(w - z — K)) in each half-strip,
e |g| < 1 on sectors.
e Zero attracts central disk and all sectors.



A single R-component.

For QC-folding experts: vertical slits chosen to give 7 ~ 1 on segments
between strips and sectors.

Preimages of a disk follow the boundary:.

Estimates like before, but more intricate.



Transcendental Julia sets with dimension 1

Theorem: Hdim(J7) = Pdim(J) = 1 is possible. I gave example using
infinite products. Somewhat technical.

New, more geometric, proof by Burkart and Lazebnik (“folding-like”™).

Both proots based on similar geometry:.
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Approximate this by placing 2k zeros evenly around kth circle.
Approximate polynomial p near origin so there is some Julia set near origin.

Annuli escape, each corresponds to a different Fatou component.



The kth annulus looks rotationally invariant.
Other zeros are very, very close to 0 or oo.

[ts inner and outer boundaries should be nearly circular.



Fatou component has a boundary around each zero.

Must surround pre-image of component at zero.



These boundaries and inner boundary map to outer boundary:.



The kth annulus maps to (k + 1)st annulus.
The (k + 1)st annulus also has ring of boundary components.

These have a preimage in the kth annulus; a second ring.



There is an infinite sequence of rings converging to outer boundary.
Estimates show component boundary is countable union of C'! curves.

“Buried” points have small dimension = dim(J) = 1.



Open questions:

My example has finite spherical 1-measure, but infinite packing 1-measure.
= not subset of rectifiable curve on sphere.

Can a transcendental entire Julia set lie on such a curve?

True for meromorphic. Julia set of tan(z) is a line.

Are the boundary components better than C'?

Any Jordan curve is boundary of s.c. wandering domain — Boc Thaler.



Open questions: Black = known, Green = unknown

(\®)

Packing dim

[

1 Hausdorff dim 2

Which pairs (Hdim, Pdim) can occur for a transcendental entire function?
Burkart: any pair (s,s),1 < s < 2 can be approximated.

Can we have Hdim = 1, Pdim = 27

Does Hdim = Pdim hold for all polynomials?



Open questions:
Speiser class Julia sets take dimensions as close to 1 as desired.
Do they take all dimensions in (1, 2]7

Can the escaping set have dimension 17



Open questions:

Eremenko and Lyubich showed Speiser class functions QC equivalent to f
(ie., g =1 o fop)are a finite dimensional manifold M.

Think of dim(J(g)) as a function on M.
Often this is the constant 2 (e.g., finite order of growth).
Otherwise is it always non-constant?

Is the supremum over M ¢ always 27

Do Shishikura’s methods for Mandelbrot set apply?
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