
DIMENSIONS OF TRANSCENDENTAL JULIA SETS

Christopher Bishop, Stony Brook

Math 670, SBU, Thur Dec 7, 2023

www.math.sunysb.edu/~bishop/lectures



THE PLAN

• Hausdorff and packing dimensions

• Polynomial versus transcendental

• Dimension d = 2

• Dimension 1 < d < 2

• Dimension d = 1

• Open problems.



Defn: Minkowski dimension. If K is a bounded set, let N(K, ε) be the
minimal number of cubes of diameter ε needed to cover K.

Upper Minkowski dimension:

Mdim(K) = lim sup
ε→0

logN(K, ε)

log 1/ε
,

Lower Minkowski dimension

Mdim(K) = lim inf
ε→0

logN(K, ε)

log 1/ε
.

If these agree, common value is Minkowski dimension, Mdim(K).



Two disadvantages:

• Not defined for unbounded sets

• Countable sets can have dimension > 0.

{1, 1
2,

1
3,

1
4, . . . } needs

√
n balls of size 1/n balls to cover.



The packing dimension fixes these problems:

Defn: packing dimension

Pdim(A) = inf

sup
j≥1

Mdim(Aj) : A ⊂
∞⋃
j=1

Aj

 ,

where the infimum is over all countable covers of A.

By definition Pdim(∪nAn) = supnPdim(An).



Defn: α-dimensional Hausdorff content

Hα∞(K) = inf{
∑
i

|Ui|α},

{Ui} = cover of K, |E| = diameter of a set E.

Like Minkowski dimension, but allows covering sets of different sizes.

Defn: Hausdorff dimension dim(K) = inf{α : Hα∞(K) = 0}.

Always true that Hdim ≤ Pdim, but ”<” can sometimes hold.



For polynomials, Hdim(J ) can take any value in (0, 2].

Same for meromorphic functions (Bergweiler-Cui).

For transcendental entire functions, Hdim(J ) ∈ [1, 2].

Today, I will only discuss entire functions:
• Sketch proof that Hdim ≥ 1
• Discuss examples for d = 2, 1 < d < 2, d = 1.



Thm (Baker): Hdim ≥ 1 for transcendental entire functions.



Lemma: Non-trivial loops escape

• Suppose curve γ in Fatou set surrounds a point of J .

• If {fn} bounded on γ, also bounded on interior by max principle.

• Hence interior of γ in Fatou set, a contradiction.

• So a point in γ escapes. By normality all γ escapes.



Lemma: Iterates of γ have non-zero index around 0

• Suppose not.

• Then minimum principle applies and interior of γ escapes.

• But γ surrounds J and hence surrounds a pre-periodic point.

• Contradiction.

• ⇒ iterates of γ surround every compact set.



Lemma: Multiply connected Fatou components are bounded:

• Suppose Ω is multiply connected and unbounded.

• Suppose γ ⊂ Ω surrounds a Julia point.

• γ escapes, index non-zero ⇒ γn = fn(γ) intersects Ω for all large n.

• ⇒ γn ⊂ Ω for all n.

. . .



Lemma: Multiply connected Fatou components are bounded:

• Suppose Ω is multiply connected and unbounded.

• Suppose γ ⊂ Ω surrounds a Julia point.

• γ escapes, index non-zero ⇒ γn = fn(γ) intersects Ω for all large n.

• ⇒ γn ⊂ Ω for all n.

• Schwarz lemma ⇒ hyperbolic distance from γn+1 to γn is bounded.

• Implies diam(γn+1) ≤ C · diam(γn).

• Implies that f grows polynomially. Contradiction.

• Hence multiply connected Fatou components are bounded.



Thm: J contains non-trivial continuum, so Hdim(J ) ≥ 1

• Suppose not. Then J is totally disconnected.

• ⇒ one multiply connected Fatou component.

• Such a component is bounded. Contradiction.

• Hence J contains a continuum.



So Hdim(J ) ∈ [1, 2]. Next we will discuss examples of

• Hdim(J ) = 2

• 1 < Hdim(J ) < 2

• Hdim(J ) = 1



Many transcendental functions have dim(J ) = 2:

Thm (Misiurewicz): dim(J ) = C for f (z) = ez.

Thm (McMullen): dim(J ) = 2 and area(J ) = 0 for f (z) = λez.

Thm (McMullen): area(J ) > 0 for f (z) = λ · cosh(z).



Singular set = closure of critical values and finite asymptotic values

= smallest set so that f is a covering map onto C \ S

Eremenko-Lyubich class = bounded singular set = B

Speiser class = finite singular set = S ⊂ B

λ · exp(z), and λ · cosh(z) are in Speiser class.

Defn: Escaping set I(f ) = {z : fn(z)→∞}.

Fact: In general, J (f ) = ∂I(f ). For f in EL-class, J (f ) = I(f ).



exp

Definition of exp(z).



z(z+   )
1

2

1

exp

cosh

Definition of cosh(z). cosh(−x + iy) = cosh(x + iy)



Proof that area(J ) > 0 for cosh:

~n 

~ e
n

cosh

π2   (n+im)

Let S = 2π(n + im) + [0, 2π]2.

cosh(S) approximately covers annulus An of area ' 22|n|.

Annulus contains ' e2|n| disjoint translates of S.



Proof that area(J ) > 0 for cosh:

~n 

~ e
n

cosh

π2   (n+im)

Omit ' |n| · e|n| squares near y-axis, ' e|n| near ∂An.

Remaining squares cover 1−O(|n| · e−|n|) area of annulus.∑
n>0 ne

−n <∞ ⇒ positive area escapes (so is in J .)



Order of growth:

ρ(f ) = lim sup
|z|→∞

log log |f (z))|
log |z|

.

Barański (2008) and Schubert (2007) proved that the Julia set of any
finite-order Eremenko-Lyubich function has Hausdorff dimension 2.



Transcendental examples with 1 < Hdim(J ) < 2:

Gwyneth Stallard gave examples in EL-class: all 1 < d < 2.

Rippon-Stallard proved Pdim(J ) = 2 in EL-class.

⇒ Hdim 6= Pdim can occur.

Simon Albrecht and I gave sequence in Speiser class with Hdim→ 1.

Open problem: do all values (1, 2] occur for the Speiser class?



Theorem (Stallard): There are Eremenko-Lyubich functions whose
Julia sets have Hausdorff dimension close to 1.

There is EL function with tract {z : |f (z)| > 1} ≈ half-strip.
• Cauchy integrals
• Solve ∂-equation
• Use models theorem for EL-class.

There is no Speiser function with this tract (even approximately).



Models theorem:

Suppose F ∈ EL-class and S(F ) ⊂ D = {|z| < 1}.

Ω = {|F | > 1} has simply connected components, called tracts

W = C \ Ω = {|F | < 1} is connected, simply connected



exp

τ

F

x > 0

|z| > 1 

Ω

Ω

|F| > 1

Ω

F is a covering map Ω→ D∗ = {|z| > 1}, F = exp ◦τ .

τ is conformal from each tract to Hr = right half-plane

W = C \ Ω is like the tree in the folding theorem.



A model is a pair (Ω, τ ) where

• Ω = ∪Ωj is a disjoint union of unbounded Jordan domains

• τ is conformal from each Ωj to Hr (∞→∞).

Every Eremenko-Lyubich function F gives a model with Ω = {|F | > R}.

Does every model give an Eremenko-Lyubich function?



τ

ρ0

Theorem: Suppose (Ω, τ ) is a model and ρ > 0. Define

Ω(ρ) = τ−1({x + iy : x > ρ}) ⊂ Ω.

Then there is a quasiregular g so that
(1) g = eτ on Ω(ρ),
(2) |g| ≤ eρ off Ω.



τ

ρ0

The QR constant depends on ρ, but not on Ω.

There is a quasiconformal ϕ so that f = g ◦ ϕ ∈ B.

g is holomorphic except on Ω(ρ) \ Ω(ρ/2) (often has finite area).

Tracts of f correspond to components of Ω. Very similar shapes.



exp

τ

F

Idea of proof:

F maps each tract (component of Ω) to outside of disk.

Riemann map W to disk, follow by Blaschke product.

Choose Blaschke product so two maps almost match along ∂W = ∂Ω.

Match exactly with QC deformation, then apply MRMT.



1

K

Assume we have g in EL-class so that:

• g(0) = 0 and |g(z)| < 1 outside S = half-strip.

• {|z| < 1} attracted to 0 (in Fatou set).

• Inside S, g(z) ≈ exp(exp(z −K))



y= −π/2

π/2y=

x=K

D(w,r)

exp(z)
U Ω

exp(z−K)

Inside S, g(z) ≈ exp(exp(z −K))

This is conformal map of S to half-plane, followed by exp.



y= −π/2

π/2y=

x=K

D(w,r)

exp(z)
U Ω

exp(z−K)

Fixed point g(0) = 0 attracts everything in complement of S

Thus the Julia set is inside S. More precisely,

J (g) ⊂
⋂

Xn,

Xn = {z : |gk(z)| ≥ K, k = 1, . . . , n}.



y= −π/2

π/2y=

x=K

D(w,r)

exp(z)
U Ω

exp(z−K)

To prove dim(J ) ≤ 1 + δ, it suffices to show: if K large enough, then

(1) X1 can be covered by disks {Dj} so that
∑
j diam(Dj)

1+δ <∞,

(2) if D hits J ∩ {|z| > K}, then its preimages satisfy∑
Wj∈f−1(D)

diam(Wj)
1+δ ≤ ε · diam(D)1+δ.

If K is large, we may take ε > 0 as small as we wish.



y= −π/2

π/2y=
D(w,r)

x=K

exp(z)
U Ω

exp(z−K)

This is what preimages of one disk look like.



y= −π/2

π/2y=
D(w,r)

x=K

exp(z)
U Ω

exp(z−K)

Preimage of gold disk D = D(w, r) defined in two steps:
• stack of regions of diameter O(r/|w|) on line {x = log |w|}.
• region at height 2πk in stack has single preimage Uk of diameter

O

(
r

|w|(log |w| + 2π|k|)

)
.

These estimates only use (log z)′ = 1/z.



y= −π/2

π/2y=
D(w,r)

x=K

exp(z)
U Ω

exp(z−K)

If δ > 0 is fixed and K is large enough, then∑
k

diam(Uk)1+δ . (
r

|w|
)1+δ

∑
k

1

(log |w| + 2π|k|)1+δ

.
∣∣∣ r
w

∣∣∣1+δ 1

δ log1+δ |w|
�
∣∣∣ r
w

∣∣∣1+δ
� r1+δ



y= −π/2

π/2y=
D(w,r)

x=K

exp(z)
U Ω

exp(z−K)

If δ > 0 is fixed and K is large enough, then∑
k

diam(Uk)1+δ . (
r

|w|
)1+δ

∑
k

1

(log |w| + 2π|k|)1+δ

.
∣∣∣ r
w

∣∣∣1+δ 1

δ log1+δ |w|
�
∣∣∣ r
w

∣∣∣1+δ
� r1+δ

This proves dim(J (g)) ≤ 1 + δ.





To get 1 < d < 2 in Speiser class, we want to repeat same argument.

Find g is Speiser class so that

• g(z) ≈ exp(exp(z −K)) in half-strip

• |g| < 1 outside n half-strip



To get 1 < d < 2 in Speiser class, we want to repeat same argument.

Find g is Speiser class so that

• g(z) ≈ exp(exp(z −K)) in half-strip

• |g| < 1 outside n half-strip

Unfortunately, no such g exists (B. 2017).



Instead, we use several strip-like tracts.

Then method of quasiconformal folding can be applied.



• g(z) ≈ exp(exp(ω · z −K)) in each half-strip,
• |g| < 1 on sectors.
• Zero attracts central disk and all sectors.



A single R-component.

For QC-folding experts: vertical slits chosen to give τ ' 1 on segments
between strips and sectors.

Preimages of a disk follow the boundary.

Estimates like before, but more intricate.



Transcendental Julia sets with dimension 1

Theorem: Hdim(J ) = Pdim(J ) = 1 is possible. I gave example using
infinite products. Somewhat technical.

New, more geometric, proof by Burkart and Lazebnik (“folding-like”).

Both proofs based on similar geometry.



A

A

A

1

2

3

z z z4 8 16

Suppose we have annuli {rk < |z| < rk+1}.

maps z → Ck · z2k from Ak to Ak+1.



A

A

A

1

2

3

Approximate this by placing 2k zeros evenly around kth circle.

Approximate polynomial p near origin so there is some Julia set near origin.

Annuli escape, each corresponds to a different Fatou component.



A

A

A

1

2

3

The kth annulus looks rotationally invariant.

Other zeros are very, very close to 0 or ∞.

Its inner and outer boundaries should be nearly circular.



Fatou component has a boundary around each zero.

Must surround pre-image of component at zero.



These boundaries and inner boundary map to outer boundary.



The kth annulus maps to (k + 1)st annulus.

The (k + 1)st annulus also has ring of boundary components.

These have a preimage in the kth annulus; a second ring.



There is an infinite sequence of rings converging to outer boundary.

Estimates show component boundary is countable union of C1 curves.

“Buried” points have small dimension ⇒ dim(J ) = 1.



Open questions:

My example has finite spherical 1-measure, but infinite packing 1-measure.

⇒ not subset of rectifiable curve on sphere.

Can a transcendental entire Julia set lie on such a curve?

True for meromorphic. Julia set of tan(z) is a line.

Are the boundary components better than C1?

Any Jordan curve is boundary of s.c. wandering domain – Boc Thaler.



Open questions: Black = known, Green = unknown

1 2
1

2

Hausdorff  dim

P
ac

k
in

g
  
d
im

Which pairs (Hdim,Pdim) can occur for a transcendental entire function?

Burkart: any pair (s, s), 1 < s < 2 can be approximated.

Can we have Hdim = 1, Pdim = 2?

Does Hdim = Pdim hold for all polynomials?



Open questions:

Speiser class Julia sets take dimensions as close to 1 as desired.

Do they take all dimensions in (1, 2]?

Can the escaping set have dimension 1?



Open questions:

Eremenko and Lyubich showed Speiser class functions QC equivalent to f
(i.e., g = ψ ◦ f ◦ ϕ) are a finite dimensional manifold Mf .

Think of dim(J (g)) as a function on Mf .

Often this is the constant 2 (e.g., finite order of growth).

Otherwise is it always non-constant?

Is the supremum over Mf always 2?

Do Shishikura’s methods for Mandelbrot set apply?




