DIMENSIONS OF TRANSCENDENTAL JULIA SETS Christopher Bishop, Stony Brook Math 670, SBU, Thur Dec 7, 2023 www.math.sunysb.edu/~bishop/lectures

THE PLAN

- Hausdorff and packing dimensions
- Polynomial versus transcendental
- Dimension d = 2
- Dimension 1 < d < 2
- Dimension d = 1
- Open problems.

Defn: Minkowski dimension. If K is a bounded set, let $N(K, \epsilon)$ be the minimal number of cubes of diameter ϵ needed to cover K.

Upper Minkowski dimension:

$$\overline{\mathrm{Mdim}}(K) = \limsup_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon},$$

Lower Minkowski dimension

$$\underline{\mathrm{Mdim}}(K) = \liminf_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon}$$

If these agree, common value is **Minkowski dimension**, $\overline{\text{Mdim}}(K)$.

Two disadvantages:

• Not defined for unbounded sets

• Countable sets can have dimension > 0.

 $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ needs \sqrt{n} balls of size 1/n balls to cover.

The packing dimension fixes these problems:

Defn: packing dimension

$$\operatorname{Pdim}(A) = \inf \left\{ \sup_{j \ge 1} \overline{\operatorname{Mdim}}(A_j) : A \subset \bigcup_{j=1}^{\infty} A_j \right\},\$$

where the infimum is over all countable covers of A.

By definition $\operatorname{Pdim}(\bigcup_n A_n) = \sup_n \operatorname{Pdim}(A_n).$

Defn: α -dimensional Hausdorff content $\mathcal{H}^{\alpha}_{\infty}(K) = \inf\{\sum_{i} |U_{i}|^{\alpha}\},\$

 $\{U_i\}$ = cover of K, |E| = diameter of a set E.

Like Minkowski dimension, but allows covering sets of different sizes.

Defn: Hausdorff dimension $\dim(K) = \inf\{\alpha : \mathcal{H}^{\alpha}_{\infty}(K) = 0\}.$

Always true that Hdim \leq Pdim, but "<" can sometimes hold.

For polynomials, $\operatorname{Hdim}(\mathcal{J})$ can take any value in (0, 2].

Same for meromorphic functions (Bergweiler-Cui).

For transcendental entire functions, $\operatorname{Hdim}(\mathcal{J}) \in [1, 2]$.

Today, I will only discuss entire functions:

- Sketch proof that $\operatorname{Hdim} \geq 1$
- Discuss examples for d = 2, 1 < d < 2, d = 1.

Thm (Baker): Hdim ≥ 1 for transcendental entire functions.

Lemma: Non-trivial loops escape

- Suppose curve γ in Fatou set surrounds a point of \mathcal{J} .
- If $\{f^n\}$ bounded on γ , also bounded on interior by max principle.
- Hence interior of γ in Fatou set, a contradiction.
- So a point in γ escapes. By normality all γ escapes.

Lemma: Iterates of γ have non-zero index around 0

- Suppose not.
- Then minimum principle applies and interior of γ escapes.
- But γ surrounds \mathcal{J} and hence surrounds a pre-periodic point.
- Contradiction.
- \Rightarrow iterates of γ surround every compact set.

Lemma: Multiply connected Fatou components are bounded:

- Suppose Ω is multiply connected and unbounded.
- Suppose $\gamma \subset \Omega$ surrounds a Julia point.
- γ escapes, index non-zero $\Rightarrow \gamma_n = f^n(\gamma)$ intersects Ω for all large n.
- $\Rightarrow \gamma_n \subset \Omega$ for all n.

. . .

Lemma: Multiply connected Fatou components are bounded:

- Suppose Ω is multiply connected and unbounded.
- Suppose $\gamma \subset \Omega$ surrounds a Julia point.
- γ escapes, index non-zero $\Rightarrow \gamma_n = f^n(\gamma)$ intersects Ω for all large n.
- $\Rightarrow \gamma_n \subset \Omega$ for all n.
- Schwarz lemma \Rightarrow hyperbolic distance from γ_{n+1} to γ_n is bounded.
- Implies diam $(\gamma_{n+1}) \leq C \cdot \operatorname{diam}(\gamma_n)$.
- Implies that f grows polynomially. Contradiction.
- Hence multiply connected Fatou components are bounded.

Thm: \mathcal{J} contains non-trivial continuum, so $\operatorname{Hdim}(\mathcal{J}) \geq 1$

- Suppose not. Then \mathcal{J} is totally disconnected.
- \Rightarrow one multiply connected Fatou component.
- Such a component is bounded. Contradiction.
- Hence \mathcal{J} contains a continuum.

So $\operatorname{Hdim}(\mathcal{J}) \in [1, 2]$. Next we will discuss examples of

- $\operatorname{Hdim}(\mathcal{J}) = 2$
- $1 < \operatorname{Hdim}(\mathcal{J}) < 2$
- $\operatorname{Hdim}(\mathcal{J}) = 1$

Many transcendental functions have $\dim(\mathcal{J}) = 2$:

Thm (Misiurewicz): dim $(\mathcal{J}) = \mathbb{C}$ for $f(z) = e^{z}$.

Thm (McMullen): dim $(\mathcal{J}) = 2$ and area $(\mathcal{J}) = 0$ for $f(z) = \lambda e^{z}$.

Thm (McMullen): $\operatorname{area}(\mathcal{J}) > 0$ for $f(z) = \lambda \cdot \cosh(z)$.

Singular set = closure of critical values and finite asymptotic values = smallest set so that f is a covering map onto $\mathbb{C} \setminus S$

Eremenko-Lyubich class = bounded singular set = \mathcal{B}

Speiser class = finite singular set = $S \subset B$

 $\lambda \cdot \exp(z)$, and $\lambda \cdot \cosh(z)$ are in Speiser class.

Defn: Escaping set $I(f) = \{z : f^n(z) \to \infty\}.$

Fact: In general, $\mathcal{J}(f) = \partial I(f)$. For f in EL-class, $\mathcal{J}(f) = I(f)$.

Definition of $\exp(z)$.

Definition of $\cosh(z)$.

$$\cosh(-x+iy) = \cosh(x+iy)$$

Proof that $\operatorname{area}(\mathcal{J}) > 0$ for cosh:

Let $S = 2\pi (n + im) + [0, 2\pi]^2$.

 $\cosh(S)$ approximately covers annulus A_n of area $\simeq 2^{2|n|}$. Annulus contains $\simeq e^{2|n|}$ disjoint translates of S. **Proof that** $\operatorname{area}(\mathcal{J}) > 0$ for cosh:

Omit $\simeq |n| \cdot e^{|n|}$ squares near *y*-axis, $\simeq e^{|n|}$ near ∂A_n . Remaining squares cover $1 - O(|n| \cdot e^{-|n|})$ area of annulus. $\sum_{n>0} ne^{-n} < \infty \Rightarrow$ positive area escapes (so is in \mathcal{J} .) Order of growth:

$$\rho(f) = \limsup_{|z| \to \infty} \frac{\log \log |f(z))|}{\log |z|}.$$

Barański (2008) and Schubert (2007) proved that the Julia set of any finite-order Eremenko-Lyubich function has Hausdorff dimension 2.

Transcendental examples with $1 < Hdim(\mathcal{J}) < 2$:

Gwyneth Stallard gave examples in EL-class: all 1 < d < 2. Rippon-Stallard proved $Pdim(\mathcal{J}) = 2$ in EL-class.

 \Rightarrow Hdim \neq Pdim can occur.

Simon Albrecht and I gave sequence in Speiser class with Hdim $\rightarrow 1$. **Open problem:** do all values (1, 2] occur for the Speiser class? **Theorem (Stallard):** There are Eremenko-Lyubich functions whose Julia sets have Hausdorff dimension close to 1.

There is EL function with tract $\{z : |f(z)| > 1\} \approx$ half-strip.

- Cauchy integrals
- Solve $\overline{\partial}$ -equation
- Use models theorem for EL-class.

There is no Speiser function with this tract (even approximately).

Models theorem:

Suppose $F \in \text{EL-class}$ and $S(F) \subset \mathbb{D} = \{ |z| < 1 \}.$

 $\Omega = \{|F| > 1\}$ has simply connected components, called **tracts** $W = \mathbb{C} \setminus \overline{\Omega} = \{|F| < 1\}$ is connected, simply connected

F is a covering map $\Omega \to \mathbb{D}^* = \{|z| > 1\}, F = \exp \circ \tau$. τ is conformal from each tract to \mathbb{H}_r = right half-plane $W = \mathbb{C} \setminus \Omega$ is like the tree in the folding theorem. A **model** is a pair (Ω, τ) where

• $\Omega = \bigcup \Omega_j$ is a disjoint union of unbounded Jordan domains

• τ is conformal from each Ω_j to $\mathbb{H}_r \ (\infty \to \infty)$.

Every Eremenko-Lyubich function F gives a model with $\Omega = \{|F| > R\}$. Does every model give an Eremenko-Lyubich function?

Theorem: Suppose (Ω, τ) is a model and $\rho > 0$. Define $\Omega(\rho) = \tau^{-1}(\{x + iy : x > \rho\}) \subset \Omega.$

Then there is a quasiregular g so that (1) $g = e^{\tau}$ on $\Omega(\rho)$, (2) $|g| \leq e^{\rho}$ off Ω .

The QR constant depends on ρ , but not on Ω .

There is a quasiconformal φ so that $f = g \circ \varphi \in \mathcal{B}$.

g is holomorphic except on $\Omega(\rho) \setminus \Omega(\rho/2)$ (often has finite area).

Tracts of f correspond to components of Ω . Very similar shapes.

Idea of proof:

F maps each tract (component of Ω) to outside of disk.

Riemann map W to disk, follow by Blaschke product.

Choose Blaschke product so two maps almost match along $\partial W = \partial \Omega$. Match exactly with QC deformation, then apply MRMT.

Assume we have g in EL-class so that:

- g(0) = 0 and |g(z)| < 1 outside S = half-strip.
- $\{|z| < 1\}$ attracted to 0 (in Fatou set).
- Inside $S, g(z) \approx \exp(\exp(z K))$

Inside $S, g(z) \approx \exp(\exp(z - K))$

This is conformal map of S to half-plane, followed by exp.

Fixed point g(0) = 0 attracts everything in complement of SThus the Julia set is inside S. More precisely,

$$\mathcal{J}(g) \subset \bigcap X_n,$$
$$X_n = \{ z : |g^k(z)| \ge K, k = 1, \dots, n \}.$$

To prove dim $(\mathcal{J}) \leq 1 + \delta$, it suffices to show: if K large enough, then (1) X_1 can be covered by disks $\{D_j\}$ so that $\sum_j \operatorname{diam}(D_j)^{1+\delta} < \infty$, (2) if D hits $\mathcal{J} \cap \{|z| > K\}$, then its preimages satisfy $\sum_{W_j \in f^{-1}(D)} \operatorname{diam}(W_j)^{1+\delta} \leq \epsilon \cdot \operatorname{diam}(D)^{1+\delta}$.

If K is large, we may take $\epsilon > 0$ as small as we wish.

This is what preimages of one disk look like.

Preimage of gold disk D = D(w, r) defined in two steps:

- stack of regions of diameter O(r/|w|) on line $\{x = \log |w|\}$.
- region at height $2\pi k$ in stack has single preimage U_k of diameter

$$O\left(\frac{r}{|w|(\log|w|+2\pi|k|)}\right).$$

These estimates only use $(\log z)' = 1/z$.

If $\delta > 0$ is fixed and K is large enough, then

$$\sum_{k} \operatorname{diam}(U_{k})^{1+\delta} \lesssim \left(\frac{r}{|w|}\right)^{1+\delta} \sum_{k} \frac{1}{(\log|w| + 2\pi|k|)^{1+\delta}}$$
$$\lesssim \left|\frac{r}{w}\right|^{1+\delta} \frac{1}{\delta \log^{1+\delta}|w|} \ll \left|\frac{r}{w}\right|^{1+\delta} \ll r^{1+\delta}$$

If $\delta > 0$ is fixed and K is large enough, then

$$\sum_{k} \operatorname{diam}(U_{k})^{1+\delta} \lesssim \left(\frac{r}{|w|}\right)^{1+\delta} \sum_{k} \frac{1}{(\log|w| + 2\pi|k|)^{1+\delta}}$$
$$\lesssim \left|\frac{r}{w}\right|^{1+\delta} \frac{1}{\delta \log^{1+\delta}|w|} \ll \left|\frac{r}{w}\right|^{1+\delta} \ll r^{1+\delta}$$

This proves $\dim(\mathcal{J}(g)) \leq 1 + \delta$.

To get 1 < d < 2 in Speiser class, we want to repeat same argument.

Find g is Speiser class so that

- $g(z) \approx \exp(\exp(z K))$ in half-strip
- |g| < 1 outside n half-strip

To get 1 < d < 2 in Speiser class, we want to repeat same argument. Find g is Speiser class so that

- $g(z) \approx \exp(\exp(z K))$ in half-strip
- |g| < 1 outside n half-strip

Unfortunately, no such g exists (B. 2017).

Instead, we use several strip-like tracts.

Then method of quasiconformal folding can be applied.

- $g(z) \approx \exp(\exp(\omega \cdot z K))$ in each half-strip,
- |g| < 1 on sectors.
- Zero attracts central disk and all sectors.

A single R-component.

For QC-folding experts: vertical slits chosen to give $\tau \simeq 1$ on segments between strips and sectors.

Preimages of a disk follow the boundary.

Estimates like before, but more intricate.

Transcendental Julia sets with dimension 1

Theorem: $\operatorname{Hdim}(\mathcal{J}) = \operatorname{Pdim}(\mathcal{J}) = 1$ is possible. I gave example using infinite products. Somewhat technical.

New, more geometric, proof by Burkart and Lazebnik ("folding-like").

Both proofs based on similar geometry.

Suppose we have annuli $\{r_k < |z| < r_{k+1}\}$.

maps $z \to C_k \cdot z^{2^k}$ from A_k to A_{k+1} .

Approximate this by placing 2^k zeros evenly around kth circle.

Approximate polynomial p near origin so there is some Julia set near origin.

Annuli escape, each corresponds to a different Fatou component.

The kth annulus looks rotationally invariant.

Other zeros are very, very close to 0 or ∞ .

Its inner and outer boundaries should be nearly circular.

Fatou component has a boundary around each zero.

Must surround pre-image of component at zero.

These boundaries and inner boundary map to outer boundary.

The kth annulus maps to (k+1)st annulus.

The (k + 1)st annulus also has ring of boundary components.

These have a preimage in the kth annulus; a second ring.

There is an infinite sequence of rings converging to outer boundary. Estimates show component boundary is countable union of C^1 curves. "Buried" points have small dimension $\Rightarrow \dim(\mathcal{J}) = 1$.

Open questions:

My example has finite spherical 1-measure, but infinite packing 1-measure. \Rightarrow not subset of rectifiable curve on sphere.

Can a transcendental entire Julia set lie on such a curve?

True for meromorphic. Julia set of tan(z) is a line.

Are the boundary components better than C^1 ?

Any Jordan curve is boundary of s.c. wandering domain – Boc Thaler.

Open questions: Black = known, Green = unknown

Which pairs (Hdim, Pdim) can occur for a transcendental entire function? Burkart: any pair (s, s), 1 < s < 2 can be approximated. Can we have Hdim = 1, Pdim = 2?

Does Hdim = Pdim hold for all polynomials?

Open questions:

Speiser class Julia sets take dimensions as close to 1 as desired.

Do they take all dimensions in (1, 2]?

Can the escaping set have dimension 1?

Open questions:

Eremenko and Lyubich showed Speiser class functions QC equivalent to f (i.e., $g = \psi \circ f \circ \varphi$) are a finite dimensional manifold M_f .

Think of dim $(\mathcal{J}(g))$ as a function on M_f .

Often this is the constant 2 (e.g., finite order of growth).

Otherwise is it always non-constant?

Is the supremum over M_f always 2?

Do Shishikura's methods for Mandelbrot set apply?

