
SCIENCE CHINA
Mathematics

October 2021 Vol. 64 No. 10: 2231–2248

https://doi.org/10.1007/s11425-019-1644-0

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 math.scichina.com link.springer.com

. ARTICLES .

Entire functions arising from trees

Weiwei Cui

Center for Mathematical Sciences, Lund University, Lund 22100, Sweden

Email: weiwei.cui@math.lth.se

Received November 13, 2019; accepted January 12, 2020; published online August 11, 2021

Abstract Given any infinite tree in the plane satisfying certain topological conditions, we construct an entire

function f with only two critical values ±1 and no asymptotic values such that f−1([−1, 1]) is ambiently
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1 Introduction and main results

An entire function is called a Shabat entire function if it has only two critical values and no finite

asymptotic values (Note that ∞ is always the asymptotic value of any entire function). In the case where

it is a polynomial, it is called a Shabat polynomial. Without loss of generality, we may assume that the

two critical values are ±1. For a Shabat entire function f , we define Tf := f−1([−1, 1]), which can be

considered as a graph embedded in C whose vertices are the preimages of ±1 and whose edges are the

preimages of (−1, 1). For example, the function z �→ sin(z) is a Shabat entire function. The following

observation for Shabat entire functions is clear.

Observation. Let f be a Shabat entire function. Then Tf is a tree. Moreover,

(1) if f is a polynomial, then Tf is a finite tree;

(2) if f is transcendental, then Tf is an infinite tree.

We say that two trees T1 and T2 are equivalent, if there is an orientation-preserving homeomorphism

ϕ : C → C such that ϕ(T1) = T2 with vertices and edges being mapped to vertices and edges, respectively.

In this sense, we also say that T1 is ambiently homeomorphic to T2. If T = Tf for some Shabat entire

function f , then T is called a true tree.

An inverse problem to the above observation asks for the realization of Shabat entire functions from

any given trees embedded in the plane, or equivalently, finding a true tree which is equivalent to the

given one. If such a true tree exists, we say that it is a true form of the given tree. If a tree is finite,

the inverse problem has a positive solution which is essentially due to Grothendieck (see, for example,

[18,30]). That is to say, each finite tree T has a true form. This is an important aspect of Grothendieck’s
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theory of dessins d’enfants. For other aspects of finite true trees, see [7]. However, in the case where a

tree is infinite, it is possible that no corresponding true tree exists (see Corollary 2.2 and the examples

in Section 5).

In this paper we shall explore some topological conditions on the tree that ensure the existence of

true forms. As discussed above, the existence of true forms is equivalent to the existence of certain

Shabat entire functions. Therefore, essentially we need to construct Shabat entire functions based on the

information given by the tree.

Our work is motivated by Bishop’s recent groundbreaking technique of quasiconformal folding [8].

More precisely, he proved that for any infinite tree T in the plane satisfying a certain bounded geometry

condition, there is always a Shabat entire function f such that Tf approximates T in the sense that Tf

is the quasiconformal image of a tree T ′ obtained by adding some branches to T . In general, Tf is not

equivalent to T , but Tf can be chosen to lie in a small neighborhood of T .

For some basic knowledge on graph theory, we refer to [10]. To state our conditions, we first introduce

some definitions.

Definition 1.1 (Semi- and bi-infinite paths). Let T be an infinite tree in the plane. A bi-infinite

path γ in T is a homogeneous tree in T of valence two. A semi-infinite path is a tree of local valence two

at every vertex except for one at which the local valence is one.

Definition 1.2 (Kernel). Let T be an infinite tree in the plane. A kernel of T , denoted by K(T ), is

defined as a semi-infinite path if T has only one complementary component in the plane, or as the union

of all bi-infinite paths in T otherwise.

Roughly speaking, the kernel of a tree is obtained by cutting off all finite branches attached to the tree

(see Figure 1). It is easy to see that a homogeneous tree coincides with its kernel. (A tree is homogeneous

if all its vertices have the same local valence.) The notion of kernel is well defined in the sense that if an

infinite tree T has finitely many (� 2) complementary components in the plane, then the kernel K(T ) is

unique. In the case where the tree has exactly one unbounded complementary component (which indeed

happens for some Shabat entire functions, such as z �→ cos
√
z), there is no bi-infinite path. In this

situation, we consider a path which connects any fixed finite vertex to ∞ without backtracking in the

tree instead (see Figure 2).

An infinite tree (or more generally a connected graph) can be viewed as a metric space. To be more

precise, a graph G is a pair (V,E), where V is a set of vertices and E is a set of pairs of elements in V

which are called edges. Then the length of a path is defined to be the number of edges, and the distance

of two vertices is the length of the shortest path connecting them. We call this metric the word metric of

the tree. Thus we can speak of the word distance on the tree. Moreover, endowed with this metric any

connected tree will be a geodesic metric space. In the following, we will use d(A,B) to denote the word

distance between two vertices or two subsets or a vertex and a set.

Now we can formulate our conditions as follows.

(a) (b)

Figure 1 (a) An infinite tree with more than one complementary component. (b) The kernel of the left-hand side tree
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(a) (b)

Figure 2 (a) An infinite tree with only one complementary component and (b) one of its kernels

Topological uniformness condition (TUC). Let T be an infinite tree in the plane, satisfying the

following conditions:

(T1) the local valence of the tree is uniformly bounded above;

(T2) T has finitely many complementary components in the plane;

(T3) d(v,K(T )) is uniformly bounded above, i.e., there exists M ∈ N such that d(v,K(T )) � M for all

vertices v of T .

Our main result can be stated as follows.

Theorem 1.3 (Entire functions from trees). Let T satisfy the topological uniformness condition.

Then T has a true form.

In other words, the above theorem says that there is a Shabat entire function f such that Tf is

equivalent to T . The next question one may ask is the uniqueness of the true form. This follows from

the fact that two entire functions with only two singular values which are topologically equivalent in the

sense of Eremenko and Lyubich [17] are in fact conformally equivalent [15, Proposition 2.3]. Thus we see

that the true form is unique up to affine maps in the plane.

We note that no condition in the TUC can be dropped. We will construct various examples to show

this in Section 5. These examples also indicate that one can slightly extend the condition we imposed

above.

Idea of proof. The proof of Theorem 1.3 is based on the criterion of the classical type problem from

the geometric theory of meromorphic functions (see Subsection 2.1). To each such tree T in the theorem,

one can construct a Speiser graph Γ. Then it is well known that there is a surface (X, p) spread over

the sphere of class S which corresponds to the Speiser graph Γ one to one. If the surface is parabolic,

then there is a Shabat entire function f whose Speiser graph is Γ. Moreover, it will be clear from the

proof that Tf will be equivalent to T . We will show that as long as the topological uniformness condition

is satisfied, the surface will be of parabolic type, which hence ensures the existence of a Shabat entire

function.

The rest of this article is organized as follows. Section 2 collects some notions and results required.

Then the proof of Theorem 1.3 is given in Section 3. In the following section, we give a new proof of

a result of Nevanlinna [26] and Elfving [14]. The last section is devoted to the construction of various

examples showing the sharpness of our theorem.

2 Preliminaries

2.1 The type problem

We give here a brief introduction to the type problem in the geometric function theory. For a detailed

description, we refer to [12,16].

According to the uniformization theorem, every open simply connected Riemann surface X is confor-

mally equivalent to either the complex plane C or the unit disk D. The Riemann surface is said to be

of parabolic or hyperbolic type, respectively. In other words, there exists a conformal map φ : X0 → X,

where X0 is C or D. The map φ is called the uniformizing map.

A surface spread over the sphere is an equivalence class [(X, p)], where X is an open, simply connected,

topological surface, and p : X → Ĉ a topologically holomorphic map, i.e., an open, continuous and discrete



2234 Cui W W Sci China Math October 2021 Vol. 64 No. 10

map. Here, (X1, p1) is equivalent to (X2, p2) if there exists a homeomorphism ψ : X1 → X2 such that

p1 = p2 ◦ ψ.
A theorem of Stöılow [32] says that any topologically holomorphic map is locally modeled by the power

map z �→ zk for some k ∈ N. Thus there is a unique Riemann surface structure on X which makes it a

Riemann surface. So there is a uniformizing map φ : X0 → X, and hence f := p ◦ φ is a meromorphic

function in C or D. The surface (X, p) is called the surface associated with f . For a given surface spread

over the sphere, the type problem is the determination of the conformal type of the surface.

Some classical results can be viewed as criteria of the type problem, for example, Picard’s theo-

rem, Ahlfors’ five islands theorem and others. In particular, we recall the following result due to

Nevanlinna [27], which can also serve as a criterion for the type problem. Recall that a point a ∈ Ĉ

is said to be a totally ramified value (of multiplicity m � 2) of a surface (X, p) spread over the sphere,

if all preimages of a under p are multiple (of multiplicity at least m). Take m = ∞ if a is omitted. The

following result is due to Nevanlinna.

Theorem 2.1. If a surface spread over the sphere has q totally ramified values of multiplicities mk for

1 � k � q, and
q∑

k=1

(
1− 1

mk

)
> 2, (2.1)

then the surface is hyperbolic. In particular, a parabolic surface has at most four totally ramified values.

We mentioned in the introduction that some trees do not have true forms. Indeed, the above theorem

of Nevanlinna can be used to construct such trees. We only mention the following example.

Corollary 2.2. Any homogeneous tree of valence greater than or equal to 3 does not have a true form.

Proof. Suppose that such a tree indeed gives a Shabat entire function f . Then ±1 will be two totally

ramified values of f (and another one is ∞). Every vertex of the tree is a preimage of one of ±1. Hence

for q = 3, m1 = m2 = 3 and m3 = ∞, the inequality in the above theorem is satisfied, which leads to a

contradiction since the surface corresponding to a transcendental entire function is always parabolic.

2.2 Speiser class

For a surface (X, p) spread over the sphere, the map p : X → Ĉ is modeled on the power map z �→ zk in

a neighborhood of each point x ∈ X for some k := k(z) ∈ N. If k � 2, then x is a critical point of p, and

p(x) is called a critical value of p. A point b ∈ Ĉ is called an asymptotic value of p if there exists a curve

γ : [0,∞) → X, such that γ(t) leaves every compact subset of X as t → ∞, and p(γ(t)) → b as t → ∞.

When we say a is a singular value, we always mean that it is a critical value or an asymptotic value.

A surface (X, p) spread over the sphere belongs to the Speiser class1), denoted by S, if p has only

finitely many singular values. In other words, the set of singular values of (X, p) is the smallest closed

subset Sing of Ĉ such that

p : X \ {p−1(Sing)} → Ĉ \ Sing
is a covering map. A surface in class S has a combinatorial representation in terms of a Speiser graph (also

called the line complex ). To give a definition of a Speiser graph, assume that (X, p) ∈ S has q singular

values a1, . . . , aq. Then one can choose an oriented Jordan curve L on Ĉ passing through a1, a2, . . . , aq
in the cyclic order. The curve L decomposes Ĉ into two components A and B such that A is to the

left-hand side of positive orientation of L. Then we choose two base points ◦ ∈ A and × ∈ B and connect

them by open Jordan arcs γj (j = 1, . . . , q) such that γj ∩ γk = ∅ for j 
= k and γj intersects the segment

(aj , aj+1) in L at exactly one point with indices modulo q. Then the Speiser graph Γ of the surface (X, p)

is defined to be the embedding of p−1(
⋃

j γj) into the plane C. For some figures of Speiser graphs, see

[19, Chapter 7, Section 4] and also the figures in Section 5.

1) We note here that the terminology Speiser class is also used in the other setting, where a function meromorphic in the

plane belongs to the Speiser class if the function has finitely many singular values. But here the setting is larger in the

sense that every Speiser class function gives a parabolic surface spread over the sphere, but a Speiser class surface need not

be parabolic.
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We consider Speiser graphs defined above as graphs in the sense that preimages of ◦ (marked as circles)

and preimages of × (marked as crosses) serve as vertices of the graph while the set of edges contains all

preimages of γj for all j. Therefore, Speiser graphs have the following properties: Each edge connects a

preimage of ◦ and a preimage of ×; around each vertex there are exactly q edges emanating from this

vertex. Moreover, the faces around a vertex have a certain cyclic order inherited from the orientation of L

(which can be seen by marking faces using aj). For a detailed description of graphic properties of Speiser

graphs we refer to [19, Chapter 7], in which one can find applications of Speiser graphs in the theory

of meromorphic functions. An important property is that, up to the choice of a base curve, there is a

one-to-one correspondence between surfaces in class S and equivalence classes of Speiser graphs. Here,

two Speiser graphs are equivalent if they are ambiently homeomorphic. For a detailed proof of this fact,

we refer to [19].

Remark 2.3. Transcendental entire functions in class S attract a lot of interest in transcendental

dynamics since the work of Eremenko and Lyubich [17], mainly due to the fact that these functions have

certain similarities to polynomials from a dynamical point of view.

2.3 Doyle-Merenkov criterion

There are many criteria to determine the conformal type of a surface in class S by using Speiser graphs

by Ahlfors, Nevanlinna, Ullrich, Wittich and others. For a detailed account, see [35]. Doyle [11] used a

modification of the Speiser graph to give a necessary and sufficient condition. This was generalized to a

larger setting by Merenkov [24] by using a geometric method.

We say that an infinite, locally finite, connected graph is parabolic/hyperbolic, if the simple random

walk on the graph is recurrent/transient. The Doyle-Merenkov criterion connects the type of a surface

and that of some extended Speiser graph which is defined as follows.

Let Λ denote a half-plane lattice with vertices at Z×N0, and Λn := Λ/nZ a half-cylinder lattice. Let Γ

be a Speiser graph. Then the extended Speiser graph Γn is defined as follows: In each unbounded face we

embed a half-plane lattice Λ by identifying the corresponding edges and vertices on the boundaries, and

in each face of Γ with 2k edges on the boundary for k � n, we embed the half-cylinder lattice Λ2k. The

graph Γn obtained in this way is called an extended Speiser graph of Γ. The graph obtained by adding a

half-plane lattice to each unbounded face and leaving all bounded faces unchanged is denoted by Γ∞. As

a matter of fact, Γ∞ = Γn for some n ∈ N if all bounded faces of Γ have an upper bound for the numbers

of edges on the boundaries.

Theorem 2.4 (Doyle-Merenkov criterion). Let n ∈ N be fixed. A surface spread over the sphere

(X, p) ∈ S is parabolic if and only if Γn is parabolic.

This criterion is easy to apply and has many applications, one of which is the construction of a parabolic

surface with negative mean excess (see [3]). This answers a question of Nevanlinna [27] in the negative.

2.4 Quasi-isometry

We shall use in the proof of Theorem 1.3 the notion of the quasi-isometry between two infinite, locally

finite graphs both endowed with the word metric.

Definition 2.5 (Quasi-isometry). Let (X1, d1) and (X2, d2) be two metric spaces. A map Φ : X1 → X2

is called a quasi-isometry, if it satisfies the following two conditions:

(1) for some ε > 0, the ε-neighborhood of the image of Φ in X2 covers X2;

(2) there are constants k � 1, C � 0 such that for all x1, x2 ∈ X1,

1

k
· d1(x1, x2)− C � d2(Φ(x1),Φ(x2)) � k · d1(x1, x2) + C.

It is easy to check that being quasi-isometric is an equivalence relation. The notion of quasi-isometry

was introduced by Gromov [20] and Kanai [21]. Many properties of metric spaces are preserved under

quasi-isometries. For example, the Gromov hyperbolicity of geodesic metric spaces is stable under quasi-

isometric maps. For us, a particularly important property of the quasi-isometry is that the type of
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an infinite, locally finite graph is stable under quasi-isometries. This is essentially due to Kanai [22,

Corollary 7].

Theorem 2.6 (Stability of the type). Let Γ1 and Γ2 be two connected, finite valence graphs

endowed with the word metric, which are quasi-isometric. Then Γ1 and Γ2 are simultaneously hyperbolic or

parabolic.

2.5 Combinatorial modulus

To determine the type of a graph, we shall use the notion of combinatorial modulus, which can be

viewed as a discrete version of the classical conformal modulus. The notion was used by Duffin [13] and

Cannon [9]. Here, we will follow the presentation in [24, Section 5].

A mass distribution for a graph Γ is a non-negative function on the set E of edges of Γ. A chain in Γ

is a sequence {ej}Nj=M with −∞ � M � N � ∞, where ej are edges and adjacent edges share a vertex.

Let C be a family of chains in Γ. A mass distribution m is admissible for the family C, if ∑m(ej) � 1

for each chain {ej} in C. Then the combinatorial modulus of the chain family C is defined as

mod C := inf

{∑
e∈E

m(e)2
}
,

where the infimum is taken over all admissible mass distributions. The reciprocal of the combinatorial

modulus is called the extremal length of C, denoted by λ(C). The combinatorial modulus has properties

similar to those of the conformal modulus (see [2, 31]).

A domain in a graph is a connected subset of the graph in the sense that every two vertices in the

domain can be connected by a chain whose edges belong to this domain. An annulus in a graph is a subset

of the set of edges whose complement in the graph has two disjoint domains. A sequence of annuli {An}
is nested if the annuli are pairwise disjoint, and An+1 separates An from ∞. We will use modA for an

annulus A to denote the combinatorial modulus of the family of chains connecting the two boundary

components of A. Here, the boundary of an annulus A in a graph Γ is the set of vertices that are not

in A and each of which can be connected to a vertex in A by one edge.

A locally finite graph Γ is hyperbolic or parabolic if and only if λ(Γv) is finite or infinite respectively

for some vertex v (and hence for every vertex) in Γ, where Γv denotes the family of chains connecting v

to infinity (see, for example, [31, Corollary 3.84]). Compare this with a similar result for the conformal

modulus (see, for example, [12, Theorem 1]).

For our applications, to determine parabolicity it is sufficient to use the following proposition.

Proposition 2.7. Let Γ be a connected finite valence graph. If there exists a sequence {An} of disjoint

nested annuli with
∞∑

n=1

1

modAn
= ∞,

then Γ is parabolic.

This result will be used later to prove the parabolicity of surfaces associated with trees satisfying the

TUC. As we cannot locate a proof of this result, we will include here a short proof.

Proof of Proposition 2.7. As noted above, to show that Γ is parabolic we can choose any vertex v and

show that λ(Γv) = ∞, where Γv denotes the family of chains connecting v to infinity. Here, we choose v

to be a vertex belonging to the inner complementary component of A1. Then

λ(Γv) �
∞∑

n=1

λ(An) =
∞∑

n=1

1

modAn
= ∞.

The first inequality above follows from the definition of the extremal length.
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3 TUC implies parabolicity

The proof of Theorem 1.3 is divided into two steps. First, we construct a Speiser graph Γ considered

as the dual graph of a triangulation of the plane induced from the given tree T . This is a standard

procedure. In the next step, we use the Doyle-Merenkov criterion to show that some extended Speiser

graph Γ∞ is of parabolic type, and thus the surface corresponding to Γ is parabolic. With this in hand

we will obtain a Shabat entire function.

3.1 Construction of a Speiser graph from the tree

Suppose that T is any given tree in the plane which satisfies the topological uniformness condition.

Then T can be colored in a bipartite pattern (by simply choosing one vertex as black and every vertex

which has word distance one as white, and then proceeding). Connect each side of an edge to infinity

by adding two curves at the two endpoints. This gives a triangulation of the sphere based on the given

tree (see Figure 3). Then we consider the dual graph of this triangulation, denoted by Γ (i.e., choose a

point in each triangle and then connect two points as long as the two triangles share a common edge). It

is easy to see that Γ is a Speiser graph. Thus there is a surface (X, p) spread over the sphere in class S
which corresponds to Γ.

Since we start with an infinite tree in the plane with finitely many complementary components, the

Speiser graph Γ will have finitely many unbounded faces, and every other face has a uniformly bounded

number of edges on its boundary.

For later purposes, we also consider the same process for the kernel K(T ) of T , and thus obtain

another Speiser graph Σ. The surface corresponding to Σ will be parabolic. Note that the kernel of

a tree satisfying the TUC also satisfies the TUC. If we knew Theorem 1.3 already, we could conclude

that the surface of the kernel is parabolic. Instead, we will prove this fact by using Goldberg’s theory

of almost periodic ends. More precisely, except for a finite portion in the corresponding Speiser graph

every component of the rest is a sine-end (which is a special case of periodic ends). Since there are only

finitely many such ends, the corresponding surface is parabolic (see [19, Chapter 7, Section 7]). Thus the

existence of Shabat entire functions is assured.

3.2 Determination of the type

Now we consider an extended Speiser graph by embedding a half-plane lattice in each unbounded face

of Γ to get an extended Speiser graph Γ∞, which is infinite and locally finite. We also denote by Γ∗
∞ the

dual graph of Γ∞.

Similarly, the Speiser graph Σ corresponding to the kernel K(T ) is used to obtain an extended Speiser

graph Σ∞ and its dual is denoted by Σ∗
∞.

Figure 3 A triangulation of the plane based on a given tree. Every triangle has one side of an edge on the tree as one

edge. The dual graph of this triangulation will be the Speiser graph associated with this tree
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As can be observed from the construction, Γ∗
∞ is nothing but topologically an extension of the tree T

by embedding a half-plane lattice in each complementary component; so is Σ∗
∞.

Proposition 3.1. Γ∗
∞ is quasi-isometric to Γ∞ and Σ∗

∞ is quasi-isometric to Σ∞.

Proof. All graphs here have finite valences. Then we define a map which sends a vertex v of Γ∗
∞ (resp.

Σ∗
∞) to any vertex on the boundary of the face of Γ∞ (resp. Σ∞) corresponding to v. Then it is easy to

check that this map is a quasi-isometry. For details, we refer to [25, Theorem C].

Theorem 3.2. Γ∗
∞ is quasi-isometric to Σ∗

∞.

Proof. To prove the theorem, we need to construct a quasi-isometry ϕ between Γ∗
∞ and Σ∗

∞, both

of which are endowed with the word metric. As we noted before, the graph Γ∗
∞ can be obtained by

embedding a half-plane lattice in each face of the tree T , while Σ∗
∞ is obtained by embedding a half-plane

lattice in each face of the kernel K(T ) of the tree T . Recall that K(T ) is obtained from T by cutting all

finite trees attached to some vertices.

The quasi-isometry will be constructed by gluing two maps: The first one is a quasi-isometry which

maps the tree T to its kernel K(T ) and the second one is essentially a quotient map on half-plane lattices.

To define the required maps, we call every vertex v on the kernel K(T ) a parent, and a vertex v′ on
T \K(T ) is said to be a child of v if v′ can be connected to v through a path without intersecting with the

kernel. See Figure 4 as an illustration. Therefore, by definition every child has exactly one parent since

the tree endowed with the word metric is a geodesic metric space, where two vertices can be connected

by a unique geodesic. Moreover, it follows from the topological uniformness condition that every parent

has at most finitely many children.

We will define a map ϕ : Γ∗
∞ → Σ∗

∞ by

ϕ(v) =

{
ϕ1(v), v ∈ T ,

ϕ2(v), v ∈ Γ∗
∞ \ T (3.1)

such that ϕ is a quasi-isometry. We start with the construction of the quasi-isometry ϕ1 : T → K(T ).

The map is defined locally. To be more precise, with v as a parent the map ϕ1 sends the union of v

and all its children to v. Then the topological uniformness condition implies that ϕ1 is actually a quasi-

isometry. The first condition in Definition 2.5 is easy to check. For the second one we choose two arbitrary

vertices v1 and v2 on T . By (T3) in the TUC there is a constant M not depending on v1 and v2 such

that dist(vj ,K(T )) � M for j = 1, 2. Moreover, suppose that the parents of vj are uj for j = 1, 2. Then

by our definition of ϕ1 we see that ϕ1(vj) = uj . Thus

d(ϕ1(v1), ϕ1(v2)) = d(u1, u2) � d(v1, v2). (3.2)

v1

v2

v3
v4

v5

v6
v7

v8

v9

v

Figure 4 An illustration of the notion of parents and children. Shown is a portion of the tree T around a vertex on the

kernel in which the arrowed line denotes part of the kernel K(T ). By definition, the vertex v is a parent, while all the other

vertices marked, namely v1, v2, . . . , v9 in the figure, are the children of v
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On the other hand we know that

d(v1, v2) = d(u1, u2) + d(v1,K(T )) + d(v2,K(T )) � d(u1, u2) + 2M.

Therefore, we see that

d(ϕ1(v1), ϕ1(v2)) = d(u1, u2) � d(v1, v2)− 2M. (3.3)

Combining the above two estimates (3.2) and (3.3) we immediately see that ϕ1 : T → K(T ) is a quasi-

isometry.

To get the map ϕ we still need to find a map ϕ2 which is defined on the remaining part of Γ∗
∞. For

this purpose, let u be a vertex on Γ∗
∞ \ T (which is equivalent to saying that u belongs to the embedded

half-plane lattice). Then there is exactly one vertex on T which minimizes the distance between u and T .

Thus as we defined before, this unique vertex has a unique parent v on K(T ). In this sense, we also say

that v is a parent of u. Denote by Tv the union of v and all its children on T . Moreover, suppose that

the distance between u and Tv is k := k(u) ∈ N. Note that for the parent v of u, in each component of

C \K(T ) there is exactly one vertex u′ in Σ∗
∞ \ K(T ) such that dist(u′, v) = dist(u′,K(T )) = k(u). Then

we define the map

ϕ2 : Γ∗
∞ \ T → Σ∗

∞ \ K(T ), ϕ2(u) = u′,

where u′ is the unique vertex corresponding to u as discussed above. Now we show that ϕ2 is a quasi-

isometry in each component of Γ∗
∞ \T . Notice that Γ∗

∞ \T is not connected but consists of finitely many

components due to (T2) in the TUC. We only need to check the second condition in Definition 2.5. Let u1

and u2 be two vertices in one component of Γ∗
∞ \T whose parents are v1 and v2, respectively. First, note

that

d(ϕ2(u1), ϕ2(u2)) � d(u1, u2), (3.4)

since basically the map ϕ2 is a shrinking of the half-plane lattice. From the other side, without loss of

generality we assume that k(u1) � k(u2). Since by the TUC, at each vj there are only finitely many

vertices on each component of T \K(T ) and the number is uniformly bounded above by some constant A

depending only on the TUC, now we have

d(u1, u2) � d(v1, v2) + 2A ·B + k(u1)− k(u2)

= d(v1, v2) + 2A ·B + d(ϕ2(u1), v1)− d(ϕ2(u2), v2)

� d(ϕ2(u1), ϕ2(u2)) + 2A ·B, (3.5)

where B is a constant which bounds the local valence of T . By (T1) this constant depends only on the

tree. Therefore, ϕ2 is a quasi-isometry on each component by (3.4) and (3.5).

Now it is left to show that the map ϕ defined in (3.1) is a quasi-isometry. Clearly it is only necessary

to check the case where two vertices are chosen in different components of Γ∗
∞ \ T . Let u1 and u2 be two

such vertices with parents v1 and v2, respectively. Then

d(u1, u2) � d(u1, Tv1) +M + d(v1, v2) + d(u2, Tv2) +M

= d(ϕ(u1), v1) + d(v1, v2) + d(ϕ(u2), v2) + 2M

= d(ϕ(u1), ϕ(u2)) + 2M. (3.6)

Moreover, it is easy to see that

d(ϕ(u1), ϕ(u2)) � d(u1, u2). (3.7)

Thus, by the above discussion the map ϕ is a quasi-isometry. For an illustration of the map ϕ, see

Figure 5.

To prove Theorem 1.3 we will show that Σ∗
∞ is of parabolic type. To this aim, we introduce a standard

model Σs for each Σ∗
∞. Let N be the number of complementary components of K(T ) in the plane. Denote

by Ts an infinite tree in the plane which satisfies:

(1) Ts has N complementary components in the plane;
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(a) (b)

Figure 5 The quasi-isometric map is defined by sending every vertex in T to its parent, and every vertex which is not

in T and has combinatorial distance k to the unique vertex which is not in K(T ) and has combinatorial distance k to the

kernel as shown in the figure. In the figure, all boxes, crosses and square vertices in (a) are sent to the box, cross and square

vertex in (b), respectively. All vertices on the tree but not on the kernel (marked as circles) are sent to their parents

(a) (b)

Figure 6 (a) The kernel K(T ) of a tree T and Σ∗∞. (b) The standard model Σs. The map is then defined as identifying

lines marked as deep dark dashed lines

(2) Ts has exactly one vertex of valence N and all the other vertices are of local valence two.

Then the standard model Σs is defined from Ts by embedding in each complementary component of Ts

a half-plane lattice, identifying the boundary vertices of Ts with the boundary vertices of the half-plane

lattice. See the right-hand side of Figure 6 in the case where N = 4, in which Ts is the graph marked as

solid lines.

Proposition 3.3. Σ∗
∞ is quasi-isometric to Σs.

Proof. We only sketch the idea of proof. First define a quasi-isometry between K(T ) and Ts, which

is, roughly speaking, sending all vertices with local valence greater than two and all vertices in between

to the only vertex in Ts with local valence greater than two. Then one needs to define a map from

Σ∗
∞ \ K(T ) to Σs \ Ts, which is similar to the map ϕ2 defined in the proof of Theorem 3.2 (see Figure 6

for an explanation). The details are left to the reader.

Theorem 3.4. Σs is parabolic.

Proof. We sketch a proof. Suppose that K(T ) has N complementary components in the plane.

According to Proposition 2.7, it is enough to find a sequence of disjoint annuli {An} in Σs such that∑ 1

modAn
= ∞. (3.8)
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Figure 7 The first annulus is A1 with inner and outer boundaries marked as dashed lines, while the second annulus is A2

with boundaries marked as solid lines. Both annuli have combinatorial width 1

To this aim, let An be a finite graph which has combinatorial width 1 in each component of Σs \ Ts (see

Figure 7). We consider a mass distribution on Σs which assigns mass one to every edge. It is easy to

check that this mass distribution is admissible for every chain. Then we can see that

modAn = O(n),

which implies (3.8). This completes the proof of the theorem.

Proof of Theorem 1.3. In some sense, our theorem says that the type of the surface is determined by

the kernel of the tree. It follows from the Doyle-Merenkov criterion that the surface (X, p) corresponding

to Γ is parabolic if and only if Γ∞ is parabolic. By Theorem 2.6 and Proposition 3.1 we see that Γ∞ is

parabolic if and only if Γ∗
∞ is parabolic. Proposition 3.3 and again Theorem 2.6 say that this holds if and

only if Σs is parabolic. Theorem 3.4 says that this is indeed the case. Thus Γ∞ is parabolic and hence

the surface (X, p) is parabolic. Therefore, we obtain an entire function f with two critical values ±1 and

no asymptotic values such that Tf is homeomorphic to the given tree T .

4 Nevanlinna’s theorem revisited

Using similar ideas to those in the proof of Theorem 1.3, we give here a topological and combinatorial

proof of a result due to Nevanlinna [26] and Elfving [14]. For this purpose we need the notion of a

logarithmic singularity. We follow the definition in [4].

Let (X, p) be a surface spread over the sphere in class S. Denote by A the set of singular values of p.

Then

p : X \ p−1(A) → Ĉ \A
is a covering map. Let b ∈ A be fixed and Dχ(b, r) be a spherical disk centered at b with radius r.

Consider a function U : r �→ U(r) which to each r > 0 assigns a component U(r) of p−1(Dχ(b, r)) in

such a way that r1 < r2 implies that U(r1) ⊂ U(r2). If
⋂

r>0 U(r) = ∅, then we say that r �→ U(r)

defines a singular point over b. A singular point over b is said to be logarithmic if for some r > 0 the map

p |U(r) : U(r) → Dχ(b, r) \ {b} is a universal covering.

Nevanlinna’s theorem is then stated as follows.

Theorem 4.1 (See [14, 26]). Let (X, p) be a surface spread over the sphere in the Speiser class with

finitely many logarithmic singularities (� 2) and finitely many critical points. Then the surface is

parabolic.
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(a) (b)

Figure 8 (a) Speiser graph with three logarithmic singularities and without critical points; the corresponding meromorphic

function has polynomial Schwarzian derivative. (b) Speiser graph with one critical point (corresponding to the face with

four edges on the boundary) and with four logarithmic singularities; the function is actually z �→ ez
2
. Both surfaces are

ramified over three values

The above form is due to Elfving [14]. Nevanlinna [26] proved his theorem without allowing critical

points. His proof uses Speiser graphs and some theory from complex differential equations (see also [27,

Chapter XI]). Right after the paper [26], Ahlfors [1] gave another proof, in which the connection with

quasiconformal mappings is implicitly mentioned. Recently, a purely analytic approach to the above

theorem is given by Langley [23] by using the Wiman-Valiron property of meromorphic functions with

logarithmic singularities [6]. Here, we supply a purely combinatorial proof, which also uses Speiser graphs,

but the theory of complex differential equations is not used.

Since surfaces satisfying the condition in the theorem are parabolic, there exist meromorphic functions

in the plane corresponding to these surfaces. The importance of these surfaces lies in the fact that the

corresponding meromorphic functions are extremal in the sense of Nevanlinna’s inverse problem (see [19,

Chapter 7] for explanations and more details, and also a proof of the above theorem).

Proof of Theorem 4.1. The proof will be similar to that of Theorem 1.3. The key observation is that

up to a large disk in the graph which contains all critical points, the Speiser graph is essentially a “tree”

(when “observed from far away”).

We assume that the surface (X, p) has q logarithmic singularities and m critical points (see Figure 8

for some examples with and without critical points).

We denote by Γ the corresponding Speiser graph corresponding to (X, p). By Theorem 2.4, to show

that (X, p) is parabolic we only need to embed a half-plane lattice in each unbounded face of Γ to obtain

an extended Speiser graph Γ∞ and show that Γ∞ is parabolic (noting that we can do so since there is

a uniform bound on the number of edges of faces). To achieve this, we need to do some surgery on the

Speiser graph Γ. We first replace each face with finitely many edges on the boundary by a single vertex.

Then if two vertices are connected by more than one edge, we replace all these edges by a single edge.

After these operations, what is left is actually a tree which coincides with its kernel, denoted by T . Now

in each unbounded face of T we, as before, embed a half-plane lattice. Then we get a graph, denoted

by Σ∞. It follows from the proof of Theorem 1.3 that Σ∞ is parabolic.

The rest of the proof proceeds as that of Theorem 1.3. Since there are only finitely many critical

points, it is easy to establish a quasi-isometry between Γ and T . Then we establish a quasi-isometry

between each component of Γ∞ \ Γ and the corresponding component of Σ∞ \ T . This is similar as

before. Then combining all these quasi-isometries we can define a quasi-isometry between Γ∞ and Σ∞.

The parabolicity of Σ∞ implies that Γ∞ is parabolic. Thus (X, p) is parabolic. The theorem follows.

5 Examples

This section is devoted to the construction of some examples concerning the items in the TUC. On the

one hand, we construct Shabat entire functions which show that every item in the TUC can be slightly

extended. On the other hand, we show that if any one of the items is dropped, there may not be Shabat

entire functions.
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5.1 Growing local valence

We consider trees with growing local valences. First, we show that there exist Shabat entire functions

such that the local valence of preimages of one critical value tends to infinity.

5.1.1 Parabolicity

There exist Shabat entire functions with unbounded local valences. Such functions can actually be

constructed by using the so-called MacLane-Vinberg method. Moreover, entire functions constructed in

this way belong to the Laguerre-Pólya class, denoted by LP, which consists of entire functions that are

locally uniform limits of real polynomials with only real zeros. Thus such entire functions have only real

zeros.

Let us consider the example in [5, Example 1.7], which was constructed by using the above MacLane-

Vinberg method and hence belongs to the Laguerre-Pólya class. More precisely, the function, denoted

by g, has two critical values 0 and 1 and no finite asymptotic values. It is easy to see that the map

f(z) := 2g(z) − 1 is an entire function with two critical values ±1 and no finite asymptotic values, and

hence is a Shabat entire function. By the properties of LP functions, the preimages of −1 are all real

(which correspond to all zeros of g) whose multiplicities tend to ∞ quite fast (see Figure 9).

We provide here another example. For this and also later purposes, we start with the Speiser graph

of the sine function, which is shown in Figure 10. Now on the upper and lower edges of face 2© we add

two vertices respectively such that the type of the vertices is arranged to be compatible and the newly

produced graph is still a Speiser graph (Actually this can be done as along as we add an even number of

vertices on the edge). We do a similar surgery to the face -2©. Then we continue this to all faces marked

as 2k©, where 2|k| vertices are added on the upper and lower edges of face 2k© respectively and then certain

additional edges are added to make the graph a Speiser graph (of local valence 3). Denote this Speiser

graph by Γ. We obtain the following graph, shown in Figure 11. Now we need to show that Γ corresponds

to a surface spread over the sphere of parabolic type. Note first that associated with Γ is a tree which

is locally finite, and satisfies the conditions (T2) and (T3) in the TUC but with a growing local valence

(i.e., (T1) is violated). We use a criterion due to Nevanlinna and Wittich [36, Chapter VII], which can

also be used to prove Nevanlinna’s theorem in the case where there are no critical points. Since every

vertex in the graph can be connected to ∞ with a path in C without intersecting with Γ, to use the

above mentioned criterion we only need to fix a vertex as generation 0. Then the generation 1 will be the

vertices that can be connected to the generation 0. Let Γn be the portion of Γ with vertices of generation

at most n. Then a vertex in Γn is in ∂Γn if it can be connected to infinity with a path in C without an

intersection with Γ. Denote by s(n) the number of vertices on ∂Γn. Nevanlinna-Wittich’s criterion is as

follows: The surface spread over the sphere corresponding to Γ is parabolic if
∑

1
s(n) = ∞. It is easy to

check that the graph in Figure 11 satisfies that s(n) = O(n) and hence the existence of a Shabat entire

function with a growing local valence follows.

Remark 5.1. Another method to show that the surface associated with the Speiser graph in Figure 11

is parabolic is by using Theorem 2.4: We consider the extended Speiser graph Γ4 and then find a sequence

of disjoint annuli of width 1 to show that Proposition 2.7 is satisfied. Details are omitted.

Figure 9 A rough sketch of the tree corresponding to the functions constructed in [5]. The local valence of critical points

(marked as circles) corresponding to the critical value −1 tends to infinity fast
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(a)

(b)

0

Figure 10 The Speiser graph of the sine function (a) and the associated tree (b). In the graph, we choose one face as a

starting face marked as 0© for our constructions afterwards. The faces to the right and to the left are marked as 1© and -1©,

respectively. We continue this marking as shown in the figure

(a)

(b)

0

Figure 11 A Speiser graph with a growing local valence (a) and its corresponding tree (b)

5.1.2 Hyperbolicity

In this part, we will construct a tree which satisfies the TUC except (T1). Our example here is based on

the surface given by Sutter [33] (see also [28]). The Speiser graph of this surface, denoted by Σ, is shown in

Figure 12. However, this surface does not meet our requirement since it has a logarithmic singularity over

some finite value. Nevertheless, we can modify this example for our aim. More precisely, we consider the

Speiser graph Γ shown in Figure 13, where two unbounded faces represent two logarithmic singularities

over infinity while faces with finitely many edges on the boundary correspond to critical points which are

preimages of critical values ±1. The corresponding tree is also shown in the figure.

We need to show that the surface corresponding to our Speiser graph is hyperbolic. For this aim,

we consider the extended Speiser graphs Σ3 and Γ3 of Σ and Γ, respectively. By Theorem 2.4 and

the hyperbolicity of the surface corresponding to Σ we know that Σ3 is hyperbolic. Moreover, to show

that the surface corresponding to Γ is hyperbolic, again by Theorem 2.4 it is enough to show that Γ3

is hyperbolic. Now by Theorem 2.6 we only need to show that Γ3 is quasi-isometric to Σ3. But this is

easy to establish and we omit the details. Moreover, we can arrange the markings of the Speiser graph

Γ such that the two unbounded faces represent two logarithmic singularities over ∞ while all finite faces

correspond to critical values ±1.

Figure 12 The Speiser graph used by Sutter [33] to construct a hyperbolic surface
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(a)

(b)

Figure 13 The Speiser graph (a) and the corresponding tree (b) that we use to construct a hyperbolic surface. There

exists a sequence of critical points (marked as disks in the tree) with multiplicities tending to infinity

5.2 Non-uniform distance from the kernel

5.2.1 Parabolicity

To show that there exists a tree which has a true form, we consider the example in [24, Subsection 3.3].

The example constructed there has exactly two critical values 0 and 1 and no finite asymptotic values.

Moreover, there is a sequence of vertices on the tree whose distance to the kernel tends to infinity. The

surface spread over the sphere corresponding to this tree is parabolic, and thus there exists a Shabat

entire function (by using affine maps which map 0 and 1 to −1 and 1, respectively). The vertices of this

tree do not have a uniform distance to the kernel.

Another example can be constructed as follows. We start again with the Speiser graph of the sine

function, as shown in Figure 10. The marking stays the same. As before, on the upper and lower edges

of the face 2k© we add 2|k| vertices, respectively. But this time we obtain a different Speiser graph by

connecting these newly added vertices in another way, which is shown in Figure 14. Denote this graph

by Γ.

The parabolicity of the surface corresponding to this Speiser graph follows from the Nevanlinna-Wittich

criterion as we did before. As a matter of fact, we can also use Theorem 2.4. This is due to the fact

that every face in the graph has a uniformly bounded number of edges on the boundary (� 8) except

for those faces with infinitely many edges on the boundary. Then one can consider the extended Speiser

graph Γ5, which is actually obtained by embedding in each unbounded face a half-plane lattice. To show

the parabolicity of Γ5 it is necessary to find a sequence of disjoint nested annuli and use Proposition 2.7.

We leave the details to the reader.

(a)

(b)

0

Figure 14 A Speiser graph (a) associated with a tree (b) with an unbounded distance to the kernel
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5.2.2 Hyperbolicity

As before, we start with the Speiser graph of the sine function (see Figure 10). On the upper edges of

faces 1© and -1© we add A1 vertices, respectively. On the upper edges of faces 2© and -2© we add A2

vertices, respectively. More generally, on the upper edge of face k© we add Ak vertices. Here, Ak ∈ N

and Ak → ∞ as k → ∞. Connecting these newly added vertices properly, we can get a Speiser graph

of valence 3. Denote by Γ the Speiser graph obtained. In Figure 15, it is shown that a Speiser graph is

constructed from the above surgery.

The Speiser graph Γ has two faces with infinitely many edges on the boundaries and all remaining

faces have a uniformly bounded number of edges on the boundaries (� 6). Therefore, we can consider

the extended Speiser graph Γ4, which is actually obtained by embedding a half-plane lattice in the two

unbounded faces. Now if Γ4 is hyperbolic, then by Theorem 2.4 there does not exist any entire function.

To show that Γ4 is hyperbolic, we shall use an isoperimetric inequality. Let V be a vertex set in a

graph G and ∂V the boundary of V consisting of vertices with neighbours outside of V . Let f be a

non-decreasing positive real function defined on N. We say that G satisfies an f -isoperimetric inequality

if there exists a constant c > 0 such that, for each finite vertex set V of G,

|∂V | > cf(|V |), (5.1)

where | · | denotes the cardinality. If the above inequality holds for all finite vertex sets V which contain a

fixed vertex (root) v and induce connected subgraphs in G, then G is said to satisfy a rooted, connected

f -isoperimetric inequality. A theorem by Thomassen [34, Theorem 3.4] says that each connected graph

with a uniformly bounded local valence satisfying a rooted, connected f -isoperimetric inequality for

f(k) = k1/2+ε and some ε > 0 is hyperbolic2). It is easy to see that, for the graph Γ4 if we let Ak tend

to ∞ fast, then the inequality (5.1) is satisfied for some ε > 0. Hence Γ4 is hyperbolic.

5.3 Infinitely many complementary components

As we discussed before, any homogeneous tree of valence no less than 3 does not give us any entire

function. On the contrary, to show that there exists a Shabat entire function from a tree with infinitely

many complementary components, one can use Bishop’s technique of quasiconformal folding. As a simple

example, we can consider the tree in [8, Figure 5], with which Bishop constructed a Shabat entire function

with rapid growth. In fact, it follows from the Denjoy-Carleman-Ahlfors theorem (see [19, Chapter 5,

Theorem 1.4]) that any Shabat entire function constructed from trees with infinitely many complementary

components must be of infinite order.

We will consider the tree obtained from the one in [8, Figure 5] after the application of the quasicon-

formal folding. It follows from this technique that this tree will satisfy our conditions (T1) and (T2) but

not (T3). The details are omitted.

Another more direct example of trees with infinitely many complementary components but satisfying

(T1) and (T2) is obtained by considering the function f(z) = cos(π cos(z)). A sketch of the corresponding

tree is shown in Figure 16.

(a)

(b)

0

Figure 15 A Speiser graph (a) associated with a tree (b) with a non-uniform distance to the kernel. The tree below is

just half of the one in Figure 14. The extended Speiser graph will be hyperbolic

2) Here, ε cannot be equal to 0, since the two-dimensional lattice is parabolic by the theorem of Pólya (see [31]) and in

this case ε = 0.
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Figure 16 A sketch of the tree Tf for f(z) = cos(π cos(z)). Here, dots are the preimages of −1 and circles are the

preimages of +1
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