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STRUCTURE THEOREMS FOR RIEMANN AND
TOPOLOGICAL SURFACES

VENANCIO ÁLVAREZ and JOSÉ M. RODRÍGUEZ

1. Introduction

The classification theorem of compact surfaces states that every topological
orientable compact surface is homeomorphic to a sphere or to a ‘torus’ of genus
g, with g = 1, 2, . . . (see for example [12]).

We say that the closure of a three-holed sphere (which is a bordered topological
compact surface whose border is the union of three pairwise disjoint simple closed
curves) is a Y-piece or a pair of pants. A Y-piece can be visualized as tubing with
the shape of the letter Y.

With this definition, the classification theorem of compact surfaces states that
every topological orientable compact surface except for the sphere and the torus
(of genus 1) can be obtained by gluing Y-pieces along their boundaries.

In this paper we obtain as a corollary of the main theorem the generalization of
this result to non-compact surfaces. We only need one simple definition.

We say that a closed subset of a topological surface is a cylinder if it is
homeomorphic to S1 × [0,∞), where S1 denotes the one-dimensional sphere.

Theorem 1.1. Every topological orientable surface except for the sphere, the
plane and the torus is the union (with pairwise disjoint interiors) of Y-pieces and
cylinders.

Remark 1.1. In this paper we only consider surfaces that are connected and
which have a topology with a countable basis.

We also have a similar result for bordered surfaces.
The main result is a geometric version of this theorem for complete surfaces

with constant negative curvature. In this case we have more information about the
basic blocks of the surface: we can decompose the surface in such a way that the
boundary of the blocks is the union of at most three simple closed geodesics. Since
the Riemannian structure is more restrictive than the topological one, we need an
additional piece to achieve the decomposition, the half-disk.

We state now the main result. We refer to the next section for definitions and
background.
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Theorem 1.2. Every hyperbolic Riemann surface except for D \ {0} is the
union (with pairwise disjoint interiors) of funnels, half-disks and a set G which
can be exhausted by geodesic domains. Furthermore, if the surface is not D or an
annulus, the set G appears always in the decomposition.

We will see in Proposition 3.2 that G is a union of generalized Y-pieces (see
Section 2) whose boundary is a union of simple closed geodesics.

If we exclude the case of the disk, it is not clear why we need half-disks in order
to decompose a surface. The necessity of half-disks is in fact the most surprising
and difficult part of the proof of this theorem.

Theorem 1.2 (and in particular its corollary (see Section 4)) is a useful result
in the study of Riemann surfaces. It plays an important role in the proof of the
following theorem of J. L. Fernández and M. V. Melián [9].

Theorem A. Let S be a hyperbolic surface. There are three possibilities.
(i) S has finite area. Then for every p ∈ S there is exactly a countable collection

of directions in E(p).
(ii) S is transient. Then for every p ∈ S, E(p) has full measure.
(iii) S is recurrent and of infinite area. Then E(p) has zero length but its

Hausdorff dimension is 1.

We call a surface transient (respectively recurrent) if Brownian motion of S
is transient (respectively recurrent). Also, we define E(p) as the set of unitary
directions v in the tangent plane of S at p such that the unit speed geodesic
emanating from p in the direction of v escapes to infinity.

In the applications of Theorem 1.2, it is a crucial fact that the boundaries of the
blocks are simple closed geodesics. There is a clear reason for this: it is very easy
to cut and paste surfaces along simple closed geodesics.

One may think that perhaps in the decomposition of Theorem 1.2 we do not
need half-disks. The example after the proof of Theorem 1.2 shows that we do need
them.

Remark 1.2. Theorem 1.1 is an easy consequence of the proof of Theorem 1.2
(see Section 4). There are unpublished proofs of Theorem 1.1 that do not use any
geometries (which involve the 2-dimensional Dehn lemma).

Remark 1.3. A result similar to Theorem 1.2 can be deduced from Nielsen’s
work on the convex cores of Fuchsian groups. However, the usual treatment of
Nielsen’s convex core only deals with surfaces whose fundamental group is finitely
generated (see for example [8], [17] or [5]). Our approach to the subject is based
on entirely different arguments.

The outline of the paper is as follows. Section 2 presents the definitions we need.
We prove some technical results in Section 3. Section 4 is dedicated to the proofs of
the theorems. Last, Section 5 describes some situations in which we can guarantee
the existence of half-disks in the decomposition.
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riemann and topological surfaces 155

Notation 1.1. We denote by �z and �z respectively the real and imaginary
part of the complex number z. By A ⊂ B we mean that the set A is strictly
contained in B. A simple curve is always a non-closed simple curve.

2. Definitions and results

We collect here some definitions relating to Riemann surfaces.
A hyperbolic Riemann surface S is a Riemann surface whose universal covering

space is the unit disk D = {z ∈ C : |z| < 1}, endowed with its Poincaré metric
(also called the hyperbolic metric), that is, the metric obtained by projecting the
Poincaré metric of the unit disk

ds =
2 |dz|

1 − |z|2 .

With this metric, S is a complete Riemannian manifold with constant curvature
−1. The only Riemann surfaces which are left out are the sphere, the plane,
the punctured plane and the tori. Note that every Riemann surface is con-
nected.

We remark that this definition of a hyperbolic Riemann surface is not universally
accepted, since sometimes the word hyperbolic refers to the existence of Green’s
function.

Let S be a hyperbolic Riemann surface with a puncture r (an isolated point in
the boundary of S in the case S ⊂ C); a puncture end in a hyperbolic Riemann
surface is also usually called cusp. A collar in S about r is a doubly connected
domain in S ‘bounded’ by r and a Jordan curve (called the boundary curve of the
collar) orthogonal to the pencil of geodesics emanating from r. It is well known that
the length of the boundary curve is equal to the area of the collar (see for example
[3]).

A collar in S about r of area α will be called an α-collar and it will be denoted by
C(r, α). A theorem of Shimizu [15] gives that for every puncture in any hyperbolic
Riemann surface, there exists an α-collar for every 0 < α � 1 (see also [11,
pp. 60–61]). We also have the following result (see for example [3]).

Lemma A. Let S be a hyperbolic Riemann surface with a puncture r. Then we
have

C(r, 1) ∩ γ = ∅,

for any simple closed geodesic γ in S.

We say that a curve is homotopic to a puncture r if it is freely homotopic to
∂C(r, α) for some (and then for every) 0 < α < 1.

We say that S is a bordered hyperbolic Riemann surface if it is a bordered
orientable Riemannian manifold of dimension 2 and its Riemannian metric has
constant negative curvature −1; S must also be a complete metric space.

A half-disk is a bordered hyperbolic Riemann surface which is topologically a
half-plane and the border of which is a non-closed simple geodesic. Every half-
disk is conformally equivalent to the subset {z ∈ D : �z � 0} of the hyperbolic
disk D.
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156 venancio álvarez and josé m. rodŕiguez

A funnel is a bordered hyperbolic Riemann surface which is topologically a
cylinder and the border of which is a simple closed geodesic. Given a positive number
a, there is a unique (up to conformal mapping) funnel such that its boundary curve
has length a. Every funnel is conformally equivalent, for some β > 1, to the subset
{z ∈ C : 1 � |z| < β} of the hyperbolic Riemann surface {z ∈ C : 1/β < |z| < β}.

Every doubly connected end of a hyperbolic Riemann surface is a puncture (if
there are homotopically non-trivial curves with arbitrary small length) or a funnel
(otherwise).

An open connected set is called a domain. A geodesic domain in a Riemann
surface S is a domain G ⊂ S (which is not simply or doubly connected) that has
finite area and is such that ∂G consists of finitely many simple closed geodesics. G
does not have to be relatively compact since it may contain finitely many cusps.
We can think of a puncture as a boundary geodesic of zero length. Recall that if
γ is a simple closed curve in S, then there is a unique simple closed geodesic of
minimal length in its free homotopy class, unless γ is homotopic to a point or to a
puncture; in these cases it is not possible to find such a geodesic because there are
curves in the homotopy class with arbitrary small length.

Geodesic domains play an important role in the study of the hyperbolic
isoperimetric inequality of a Riemann surface. We say that a Riemann surface S
satisfies a hyperbolic isoperimetric inequality if there is a positive constant h such
that

A(D) � hL(∂D) (2.1)

holds for every relatively compact domain D ⊂ S with smooth boundary, where
A(D) and L(∂D) denote, respectively, the hyperbolic area of D and the hyperbolic
length of ∂D in S. We denote by h(S) the infimum of the constants h verifying (2.1).
In [10, Lemma 1.2], it was proved that if S verifies (2.1) for geodesic domains, then
it satisfies a hyperbolic isoperimetric inequality. In fact, if hg(S) is the infimum of
the constants h such that the inequality (2.1) is true for any geodesic domain, then
we have

h(S) � hg(S) + 2 .

There are interesting relations of the hyperbolic isoperimetric inequality with
other conformal invariants of a Riemann surface (see for example [2; 6, p. 95; 7;
10; 13, p. 145; 16, p. 333]).

A Löbell Y-piece is a compact bordered hyperbolic Riemann surface which
is topologically a Y-piece and the boundary curves of which are simple closed
geodesics. Given three positive numbers a, b, c, there is a unique (up to conformal
mapping) Löbell Y-piece such that its boundary curves have lengths a, b, c (see for
example [14, p. 410]). They are a standard tool for constructing Riemann surfaces.
A clear description of these Y-pieces and their use is given in [4, Chapter 1; 6,
Chapter X.3].

A generalized Löbell Y-piece is a bordered or non-bordered hyperbolic Riemann
surface which is topologically a sphere without n open disks and m points, with
integers n,m � 0 and n + m = 3, so that the n boundary curves are simple closed
geodesics and the m deleted points are punctures. Observe that a generalized Löbell
Y-piece is topologically the union of a Y-piece and m cylinders, with 0 � m � 3
(see Figure 1).
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riemann and topological surfaces 157

Figure 1.

It is clear that the interior of every generalized Löbell Y-piece is a geodesic
domain. Furthermore, it is known that the closure of every geodesic domain is a
finite union (with pairwise disjoint interiors) of generalized Löbell Y-pieces (see
Proposition 3.2).

We say that the set A is exhausted by {An} if An ⊆ An+1 for every n and
A =

⋃
n An.

We say that a bordered topological surface S is simple if the border of S is a (finite
or infinite) union of pairwise disjoint simple closed curves. We have the following
result.

Theorem 2.1. Every simple bordered topological orientable surface except for
the bordered disk and the cylinder with two boundary curves is the union (with
pairwise disjoint interiors) of Y-pieces and cylinders.

We have a similar result for bordered hyperbolic Riemann surfaces. A bordered
hyperbolic Riemann surface S is simple if the border of S is a (finite or infinite)
union of pairwise disjoint simple closed geodesics. The closure of any geodesic
domain is a simple bordered hyperbolic Riemann surface.

Theorem 2.2. Every simple bordered hyperbolic Riemann surface is the union
(with pairwise disjoint interiors) of funnels, half-disks and a set V which can be
exhausted by the closures of geodesic domains.

Remark 2.1. The proof of Theorem 1.2 gives the following recipe for
constructing hyperbolic Riemman surfaces.

Join funnels and/or generalized Y-pieces by identifying simple closed geodesics
of equal length obtaining a surface without border S0. If S0 is complete, then it is a
hyperbolic Riemann surface. If S0 is not complete, then we can obtain a hyperbolic
Riemann surface S by gluing to the metric completion of S0 half-disks (half-disks
are the unique blocks we can add to S0 in order to obtain a hyperbolic Riemann
surface).

Theorem 1.2 states that this method allows one to construct any hyperbolic
Riemann surface except for D \ {0}.

3. Geodesics and geodesic domains

In this section we include some technical results about geodesics and geodesic
domains that we need in the proofs of the theorems.
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158 venancio álvarez and josé m. rodŕiguez

Lemma B [14, p. 405]. Let α and β be two disjoint simple closed curves not
freely homotopic in the hyperbolic Riemann surface S. If α0 and β0 are respectively
simple closed geodesics in the homotopy classes of α and β, then α0 and β0 are also
disjoint.

A similar result is true if α is a non-closed simple geodesic.

Lemma 3.1. Let S be a hyperbolic Riemann surface, γ1 be a non-closed simple
geodesic in S, σ be a simple closed curve in S and γ2 be a simple closed geodesic
freely homotopic to σ in S. If γ1 and σ are disjoint, then γ1 and γ2 are also
disjoint.

Proof. The proof follows the arguments in the proof of Lemma B. We include
the details for the sake of completeness.

Let us consider a universal covering map π : D −→ S. Without loss of generality,
we can assume that π applies the interval (−1, 1) onto γ1, that is, that γ̃1 = (−1, 1) is
a lifting of γ1. Let us consider liftings σ̃, γ̃2 of σ, γ2, respectively, that have the same
endpoints A,B ∈ ∂D.

We only need to check that γ̃1 ∩ γ̃2 = ∅. Assume that this is not the case.
Then γ̃1 and γ̃2 intersect at a single point in D, since otherwise they would be
equal, which is a contradiction. Consequently �A · �B < 0. This implies that
γ̃1 ∩ σ̃ 	= ∅, since σ̃ also has the same endpoints A,B ∈ ∂D, but this contradicts
π(γ̃1) ∩ π(σ̃) = γ1 ∩ σ = ∅. This finishes the proof of Lemma 3.1.

It is well known that if a simple closed curve σ is not homotopic to a point or to
a puncture in a hyperbolic Riemann surface S, then there is a unique simple closed
geodesic freely homotopic to σ in S. The following result is not surprising and it is
probably known. However we do not know any reference for it.

Proposition 3.1. Let S be a bordered hyperbolic Riemann surface such that
the border of S is a pairwise disjoint union of non-closed simple geodesics and/or
simple closed geodesics. If a simple closed curve σ is not homotopic to a point or to
a puncture in S, then there is a unique simple closed geodesic γ freely homotopic to
σ in S. Furthermore, γ is contained in the interior of S if σ is not freely homotopic
to a boundary geodesic in ∂S.

Proof. If σ is freely homotopic to a boundary geodesic in ∂S, the result is trivial.
Otherwise, without loss of generality, we can assume that σ is contained in the
interior of S, since if it is not the case, then we can take a simple closed curve
σ0 contained in the interior of S and freely homotopic to σ in S. Let us consider
the Schottky double S0 of S. Roughly speaking, S0 is the union of S and S∗, the
symmetric surface of S, identifying the symmetric points in ∂S and ∂S∗ (see [1,
p. 119] for details). We have σ is not homotopic to a point or to a puncture in S0;
then there is a unique simple closed geodesic γ freely homotopic to σ in S0. Lemmas
B and 3.1 give that γ does not intersect the border of S, since we are assuming
that σ is not freely homotopic to a boundary geodesic in ∂S. Consequently γ is
contained in the interior of S.
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riemann and topological surfaces 159

The following result is well known, although we do not know any reference for it.
We include the proof for the sake of completeness.

Proposition 3.2. The Riemann surface obtained by taking the closure of a
geodesic domain is a finite union (with pairwise disjoint interiors) of generalized
Löbell Y-pieces.

Remark 3.1. This Riemann surface can be bordered or not. The fact that a
compact Riemann surface is a finite union (with pairwise disjoint interiors) of Löbell
Y-pieces can be found in many books (see for example [4, p. 94]). The heart of the
proof of Proposition 3.2 is to associate, in an appropriate way, a compact Riemann
surface to each geodesic domain.

Proof of Proposition 3.2. Let G be a geodesic domain and let us denote by S
the closure of G. We have ∂S = ∂G is the union of pairwise disjoint simple closed
geodesics γ1, . . . , γk (we take k = 0 if ∂G = ∅). For each j = 1, . . . , k, let us consider
a Y-piece Yj with ∂Yj = σ1

j ∪ σ2
j ∪ σ3

j , L(σ1
j ) = L(γj) and L(σ2

j ) = L(σ3
j ). Let us

denote by Zj the bordered surface Yj with σ2
j and σ3

j identified; then ∂Zj = σ1
j .

Let us consider the non-bordered Riemann surface S1 :=
⋃

j Zj ∪ S obtained by
gluing (identifying) for each j = 1, . . . , k the curves γj and σ1

j . If r1, . . . , rm are the
punctures in S1, we consider

S2 := S1

∖ m⋃
i=1

C(ri, 1/3) .

Recall that Lemma A gives that every simple closed geodesic of S is contained in
S2. There is a homeomorphism f : S1 −→ S2. We can take as f the identity map
in S1 \

⋃m
i=1 C(ri, 1/2) and for each i = 1, . . . ,m any homeomorphism between

C(ri, 1/2) and C(ri, 1/2) \ C(ri, 1/3) which fixes ∂C(ri, 1/2).
If we consider now the Riemann surface S2 with its hyperbolic metric (for which

it is a complete metric space), let us take the simple closed geodesics η1, . . . , ηm in
S2 such that each ηi is homotopic to ri in S1 for i = 1, . . . ,m, and the funnels
Fi bounded by ηi. For each i = 1, . . . , m, let us consider a Y-piece Y i with
∂Y i = τ i

1 ∪ τ i
2 ∪ τ i

3, L(τ i
1) = L(ηi) and L(τ i

2) = L(τ i
3). Let us denote by Zi the

bordered surface Y i with τ i
2 and τ i

3 identified; we have ∂Zi = τ i
1. Let us consider

the hyperbolic compact Riemann surface S3 := (S2 \
⋃

i Fi) ∪ (
⋃

i Zi) obtained by
gluing for each i = 1, . . . ,m the curves ηi and τ i

1. If ηm+j is the simple closed
geodesic in S2 (or in S3) freely homotopic to γj for each j = 1, . . . , k, then it is
well known (see for example [4, p. 94]) that m + k � 3g − 3, where g is the genus
of S3, and that there exist simple closed geodesics ηm+k+1, . . . , η3g−3 such that
η1, . . . , ηm, ηm+1, . . . , ηm+k, ηm+k+1, . . . , η3g−3 decompose S3 into Löbell Y-pieces.

It is not difficult to see that we can ‘pullback’ this decomposition to S. The
punctures r1, . . . , rm correspond to the geodesics η1, . . . , ηm, and this shows the
necessity of considering generalized Löbell Y-pieces instead of Löbell Y-pieces.

4. Proof of the results

Let us start with the proof of Theorem 1.2.
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160 venancio álvarez and josé m. rodŕiguez

Theorem 1.2. Every hyperbolic Riemann surface except for D \ {0} is the
union (with pairwise disjoint interiors) of funnels, half-disks and a set G which
can be exhausted by geodesic domains. Furthermore, if the surface is not D or an
annulus, the set G appears always in the decomposition.

Proof. Let us consider such a surface S. If S is simply connected, then S = D,
which is a union of two half-disks. If S is doubly connected, then it is an annulus
(since S 	= D \ {0}), which is a union of two funnels.

If S is of connectivity greater than 2, then there is at least one geodesic domain.
In this case let us consider a fixed point p ∈ S and any positive number t, and let
us denote by B(t) the open ball in S with center p and radius t. The boundary of
B(t) is a finite union of pairwise disjoint simple closed curves η1, . . . , ηk except for
t ∈ A with A a numerable set. In the following we only consider values of t /∈ A.
For i = 1, . . . , k, we denote by γi the empty set if ηi is homotopic to a point or
to a puncture, and the simple closed geodesic freely homotopic to ηi otherwise.
Observe that γ1, . . . , γk are pairwise disjoint by Lemma B, since η1, . . . , ηk are
pairwise disjoint. We denote by G(t) the geodesic domain bounded by γ1, . . . , γk

‘corresponding’ to B(t). There is a positive t0 such that G(t) = ∅ if t < t0 and
G(t) 	= ∅ if t > t0. We also have G(t) ⊆ G(t′) if t � t′.

In the following we need some results which appear in the following lemmas.

Lemma 4.1. If there exists t1 > 0 such that γ is a simple closed geodesic
contained in ∂G(t) for every t � t1, then γ is the boundary of a funnel in S.

Proof. For t � t1, let us consider the simple closed curve ηt ⊆ ∂B(t) freely
homotopic to γ. If t2 := max{dist (p, z)/ z ∈ γ} and t > t3 := max{t1, t2}, then we
have γ ∩ ηt = ∅. Let us denote by Ft the doubly connected closed set bounded by
γ and ηt for t > t3 and F :=

⋃
t>t3

Ft. We have F is a doubly connected end in S
bounded by the simple closed geodesic γ; therefore F is a funnel in S.

Lemma 4.2. (a) If γ is a simple closed geodesic contained in B(t), then γ is
contained in the closure of G(t).

(b) If r is a puncture and ∂C(r, α) is contained in B(t) for some 0 < α < 1, then
C(r, 1) is contained in G(t).

Proof. Assume that γ is not contained in the closure of G(t).
If γ ∩G(t) = ∅, let us consider Ui the open subset of B(t) \ G(t) bounded by

ηi and γi if γi 	= ∅. We have γ ⊂ Uj for some j since the {Ui} are pairwise
disjoint. Since γ is not homotopically trivial we have Uj is doubly connected and
γ = γj ⊂ G(t). This is a contradiction to γ ∩ G(t) = ∅.

Therefore γ∩G(t) 	= ∅. Consequently, γ∩∂G(t) 	= ∅ since we are assuming that
γ is not contained in the closure of G(t). Then we have γ∩∂B(t) 	= ∅ by Lemma B.
This is a contradiction to γ ⊂ B(t).

We now prove the second statement of the lemma. There is a simple closed curve
ηi ⊆ ∂B(t) contained in C(r, α), since ∂C(r, α) ⊂ B(t). We also have that ηi is
homotopic to r. Then Lemma A gives that C(r, 1) is contained in G(t) since no
simple closed geodesic can intersect C(r, 1).

We now continue the proof of Theorem 1.2.
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riemann and topological surfaces 161

Assume that there is t1 such that G(t) = G(t1) for every t � t1. If ∂G(t1) = ∅,
then G(t1) = S and the proof is finished with G = G(t1). Otherwise, the boundary
of G(t1) is a finite union of simple closed geodesics γ1, . . . , γn. By Lemma 4.1, we
have each γi is the boundary of a funnel in S, and this finishes the proof in this
case taking also G = G(t1).

Assume now that there is an increasing sequence {tn} with limit ∞ such that
Gn := G(tn) verifies Gn ⊂ Gn+1. By Lemmas 4.1 and 4.2, we can assume without
loss of generality that ∂Gn ∩ ∂Gn+1 is the empty set or a union of simple closed
geodesics each of which is the boundary of a funnel in S.

Remark 4.1. If γn, γn+m (m,n ∈ Z+) are simple closed geodesics contained,
respectively, in ∂Gn, ∂Gn+m, and η is a curve connecting γn with γn+m, then the
closed curve β := η + γn+m − η + γn cannot be homotopically trivial, since in this
case γn+m would be freely homotopic to γn and this would imply γn+m = γn and
consequently m = 0. It can be homotopic to a puncture if m = 1. However, β
cannot be homotopic to a puncture if m � 2, since there is at least one ‘topological
obstacle’ between γn and γn+1.

Let us consider now the open set Hn obtained as the union of Gn and the funnels
bounded by a curve in ∂Gn. Observe that we always have Hn ⊂ Hn+1. Let us define
H :=

⋃
n Hn and dn := dist (p, ∂Hn). Observe that H is an open set. If dn → ∞ as

n → ∞, then S = H and we have finished the proof in this case with G =
⋃

n Gn.
If dn is bounded, then S \ H is a closed non-empty set.

We will finish the proof by showing that each connected component of S \ H
is a half-disk. First we will show that if q ∈ ∂H and U is any simply connected
neighbourhood of q, then q ∈ σ ⊆ ∂H where σ ∩ U is a geodesic arc.

If q ∈ ∂H, then there are qn ∈ γn converging to q with γn a simple closed geodesic
contained in ∂Hn. We want to see that the sequence of geodesics {γn} converges
to a geodesic arc σ in U . To see this it is enough to consider the lifting of U to the
universal covering space D; the statement in D is now trivial, since the {γn} are
pairwise disjoint.

We will see that σ ∩U is contained in ∂H. Let us consider any point q′ ∈ σ ∩U .
We have q′ /∈ ext H, since it is the limit of points in {Hn}. Then, in order to see
that σ∩U is contained in ∂H, it is enough to see that q′ /∈ H. Assume that q′ ∈ H;
then q′ belongs to a neighbourhood V ⊂ Hn0 for some n0. Consequently, V ⊂ Hn

for every n � n0, but V ∩ ∂Hn 	= ∅ for n � n1, since q′ is the limit of points in⋃
n ∂Hn, which is a contradiction.
We also have that if σ is a geodesic such that σ ∩ W ⊆ ∂H for some non-empty

open set W , then σ ⊆ ∂H (recall that σ∩U ⊆ ∂H for every simply connected open
set U with U ∩W 	= ∅). We will prove that such a geodesic σ is a non-closed simple
curve. Otherwise, we have σ is a simple closed geodesic or it autointersects non-
tangentially. If σ is a simple closed geodesic, then, by compactness, it is the limit
of simple closed geodesics γn ⊂ ∂Hn; then γn is freely homotopic to σ for n � n2,
which is a contradiction, since in each free homotopy class there is at most one
simple closed geodesic. If σ autointersects non-tangentially, then ∂Hn autointersects
for n � n3, which is another contradiction. This last argument also proves that if
σ1, σ2 ⊂ ∂H are geodesics with σ1 	= σ2, then they are simple and disjoint.
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162 venancio álvarez and josé m. rodŕiguez

Lemma 4.3. If σ is a non-closed simple geodesic contained in ∂H, q ∈ σ, and U
is a simply connected neighbourhood of q such that U \σ has exactly two connected
components U1 and U2, then there is i ∈ {1, 2} with Ui ∩ H = ∅.

Proof. Without loss of generality, we can assume that ∂Hn ∩ U1 	= ∅ if n � n1.
We now prove that U2 ∩H = ∅. Assume that this is not true; then there is a point
h ∈ H ∩ U2. In fact, there is n2 � n1 such that h ∈ Hn2 ∩ U2. This fact implies
that ∂Hn2 ∩U2 	= ∅, since otherwise σ ∩U would be contained in ∂Hn2 ; this is not
possible, since the boundary of Hn2 can only contain simple closed geodesics and
σ is non-closed.

Let us consider n3 � n2 + 2 and a compact curve η ⊂ U , starting in U2 and
finishing in U1, which connects a closed simple geodesic γn2 ⊂ ∂Hn2 with a simple
closed geodesic γn3 ⊂ ∂Hn3 . The closed curve β := η + γn3 − η + γn2 is not
homotopic to a point or to a puncture in S, since n3 � n2 + 2 (recall the remark
about β before). Then there is a simple closed geodesic α freely homotopic to β.
Furthermore, α ∩ σ 	= ∅, since β ∩ σ 	= ∅, γn2 , γn3 are not homotopic to a point,
and σ is a simple (infinite) geodesic. Lemma 4.2 gives that α ⊂ H, which is a
contradiction to α ∩ ∂H 	= ∅. This finishes the proof of Lemma 4.3.

In particular, we have S \H is the closure of its interior, and then each connected
component of S \ H is path-connected.

We have also seen that ∂H is a union of pairwise disjoint non-closed simple
geodesics. We now show that each connected component J of S \ H is a half-disk.
Firstly we prove that J is simply connected.

We know that each connected component J of S \H is the closure of its interior
and its boundary is the union of pairwise disjoint non-closed simple geodesics.
Assume that there is a simple closed curve δ ⊂ J which is not homotopic to a point
in J . If δ is homotopic to a puncture r, then C(r, α1) is contained in J for some
0 < α1 < 1. Lemma 4.2 gives that C(r, 1) ⊂ H and then C(r, α1) ⊆ J ∩H, which is
a contradiction. If δ is not homotopic to a puncture, then Proposition 3.1 gives that
there is a simple closed geodesic γ freely homotopic to δ in J , since J is a bordered
hyperbolic Riemann surface such that its border is a pairwise disjoint union of non-
closed simple geodesics. Lemma 4.2 gives that γ ⊂ H and then γ ⊆ J ∩ H, which
is a contradiction.

Therefore, in order to see that J is a half-disk, it is enough to see that its
boundary is a single non-closed simple geodesic. Assume that ∂J contains two non-
closed simple geodesics σ1, σ2. Let us consider q1 ∈ σ1, q2 ∈ σ2, simply connected
neighbourhoods q1 ∈ V1, q2 ∈ V2, simple closed geodesics γn1 ⊂ ∂Hn1 , γn2 ⊂ ∂Hn2

with γn1 ∩ V1 	= ∅, γn2 ∩ V2 	= ∅ and n1 � n2 + 2, and curves η1 ⊂ V1, η2 ⊂ V2

joining, respectively, γn1 with q1 and q2 with γn2 . Since J is path-connected, we
can take a curve η3 ⊂ J joining q1 with q2 and consider η := η1 + η3 + η2 and
β := η + γn2 − η + γn1 .

As in the proof of Lemma 4.3, we can see that there is a simple closed geodesic
α freely homotopic to β in S with α ∩ σ1 	= ∅ and α ∩ σ2 	= ∅. Then Lemma 4.2
gives α ⊂ H, which is a contradiction.

We choose the set G as H minus the funnels in S, that is, G =
⋃

n Gn.
Furthermore, we have obtained that if S is not D or an annulus, then we have
G =

⋃
t>0 G(t) 	= ∅.
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riemann and topological surfaces 163

The following particular case of Theorem 1.2 is used in [9].

Corollary 4.1. If a hyperbolic Riemann surface does not contain any half-
disk, then it can be exhausted by geodesic domains.

Proof. It is enough to remark that both D \ {0} and any funnel contain a half-
disk.

One may think that in the decomposition of Theorem 1.2 we perhaps do not need
half-disks. The following example shows that we need them.

Example 4.1. Let {xn}n�1 be any increasing sequence converging to 1, con-
tained in the interval (0, 1). Let us consider S := D \ X with X :=

⋃
n�1{xn} and

γn the simple closed geodesic in S which surrounds the points x1, . . . , xn, for n > 1.
The curve γn is the boundary of a geodesic domain Gn. It is not difficult to see that
{γn} ‘converges’ to a non-closed simple geodesic γ in S and that γ is the boundary
curve of a half-disk. If we consider other geodesic domains, then we also need a
half-disk, since a non-closed simple closed geodesic cannot intersect a half-disk.

Theorem 2.2. Every simple bordered hyperbolic Riemann surface is the union
(with pairwise disjoint interiors) of funnels, half-disks and a set V which can be
exhausted by the closures of geodesic domains.

Proof. Let us consider {γj} the pairwise disjoint simple closed geodesics in the
border of the simple bordered hyperbolic Riemann surface S. Observe that we can
construct a hyperbolic Riemann surface S0 (without border) by gluing to S a funnel
Fj in each γj , with L(∂Fj) = L(γj).

Since S0 cannot be D \ {0} (there are no simple closed geodesics in D \ {0}), by
Theorem 1.2 it is the union (with pairwise disjoint interiors) of funnels, half-disks
and a set G which can be exhausted by geodesic domains. We obtain the desired
result by deleting the funnels {Fj} in this union. When we delete the funnels, we
are also deleting the curves {γj}, the border of S; this is the reason why in this
situation we consider the set V = G, which is exhausted by the closures of geodesic
domains.

Theorem 1.1. Every topological orientable surface except for the sphere, the
plane and the torus is the union (with pairwise disjoint interiors) of Y-pieces and
cylinders.

Proof. It is well known that every topological surface S has a C∞ structure
compatible with its topological structure. The isothermal coordinates give to S
a conformal structure compatible with its C∞ structure; if, furthermore, S is
orientable, this conformal structure is also a structure of a Riemann surface.

Then S is conformally equivalent to the sphere, the complex plane C, C \ {0},
a torus or a hyperbolic Riemann surface. We do not consider the first, second and
fourth cases, since they are excluded in the statement of the theorem.

If S is conformally equivalent to C \ {0}, it is the union of the two cylinders
{z ∈ C : 0 < |z| � 1} and {z ∈ C : |z| � 1}. If S is conformally equivalent
to D \ {0}, it is the union of the two cylinders {z ∈ C : 0 < |z| � 1/2} and
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164 venancio álvarez and josé m. rodŕiguez

Figure 2.

{z ∈ C : 1/2 � |z| < 1}. If S is conformally equivalent to another hyperbolic
Riemann surface, we can apply Theorem 1.2.

Recall that a funnel is a cylinder, a Löbell Y-piece is a Y-piece, and a generalized
Löbell Y-piece is the union of a Y-piece with at most three cylinders. Proposition 3.2
now gives the result if we allow half-disks in the decomposition. In order to remove
the half-disks, we modify some Y-pieces as follows.

We use the construction and notations in the proof of Theorem 1.2. Consider a
non-closed simple geodesic σ ⊆ ∂H. Recall that H =

⋃
n Hn, and there exists a

sequence of simple closed geodesics γn ⊆ ∂Hn ‘converging’ to σ. Assume first that
S \ H is connected.

If q ∈ σ, define ηq as the geodesic perpendicular to σ in q, with ηq(0) = q and
‖η′

q(t)‖ = 1. For fixed p ∈ σ and any m ∈ N, let us consider σm = σ ∩BS(p,m).
Our arguments in the proof of Theorem 1.2 give that if σm

ε := {z ∈ H : z ∈ ηq(t)
with |t| < ε and q ∈ σm}, then γn ∩ σm

ε converges uniformly to σm for any ε > 0.
Since σm is relatively compact, we can choose εm > 0 such that σm

εm
is simply

connected. If bm = {z ∈ ∂σm
εm

: dS(z, σ) = εm}, choose recursively nm as a natural
number greater than nm−1 and such that γnm

∩ σm
εm

	= ∅, γnm
∩ bm = ∅, and

n0 = 0.
Define rm := nm+1 −nm − 1. Assume that rm = 0 for every m, that is, nm = m.

Define Am := σm
εm

∪ (BS(p,m)∩ (S \H)) and H̃m as the relatively compact domain
H̃m := Hm ∪Am. Observe that H̃m is homeomorphic to Hm, and then H̃m+1 \ H̃m

have a similar decomposition in Y-pieces and cylinders to Hm+1 \ Hm. It is clear
that S =

⋃
m H̃m, since S \H is connected. This finishes the proof in this case (see

Figure 2).
If we have rm > 0 for some m, we only need to choose Anm

, Anm+1, . . . , Anm+rm
,

Anm+1 in a similar way with the condition Aj ⊂ Aj+1 (see Figure 3).
Finally, if S \ H is not connected, we repeat this construction in each connected

component of S \ H.

Theorem 2.1. Every simple bordered topological orientable surface except for
the bordered disk and the cylinder with two boundary curves is the union (with
pairwise disjoint interiors) of Y-pieces and cylinders.

Proof. Let us consider such a surface S and the topological double S1 of S.
Roughly speaking, S1 is the union of S and S∗, the symmetric surface of S,
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riemann and topological surfaces 165

Figure 3.

identifying the symmetric points in ∂S and ∂S∗. As in the proof of Theorem 1.1
there is a structure of a Riemann surface for S1 compatible with its topological
structure. Furthermore, the holomorphic atlas of S1 can be taken as symmetric
with respect to ∂S.

Assume that S1 is not a hyperbolic surface, that is, S1 is the sphere, the plane,
the punctured plane or a torus. S1 cannot be the sphere or a torus since S is neither
the bordered disk nor the cylinder with two boundary curves. S1 is not the plane,
since the plane is not the double of a simple bordered topological orientable surface.
Then S1 is the punctured plane, which is the union of the two cylinders S and S∗.
Consequently, S is a cylinder and Theorem 2.1 holds in this case.

Assume now that S1 is a hyperbolic surface. The simple closed curves {γj} in
∂S are geodesics in the hyperbolic metric of S1, since the holomorphic atlas is
symmetric with respect to ∂S. We have S is a simple bordered hyperbolic Riemann
surface with the restriction of the hyperbolic metric of S1.

If we recall that a funnel is a cylinder, a Löbell Y-piece is a Y-piece, and a
generalized Löbell Y-piece is the union of a Y-piece with at most three cylinders,
then Theorem 2.2 and Proposition 3.2 give the result if we allow half-disks in the
decomposition. We can remove the half-disks as in the proof of Theorem 1.1.

5. Maximal half-disks

In this section we study and classify the different types of half-disk contained in
a Riemann surface S, and determine whether they appear in our decomposition.
First we see that half-disks are always contained in some of the basic pieces of our
decomposition.

Proposition 5.1. Let S be a hyperbolic Riemann surface not conformally
equivalent to D. Suppose that S is the union (with disjoint interiors) of a set G
exhausted by geodesic domains and a collection of pieces {Pα}α∈A, where Pα ⊂ S
is either a funnel or a half-disk. If P ⊂ S is a half-disk, then there exists an index
α ∈ A such that P ⊆ Pα.

Proof. First, we see that P cannot intersect any simple closed geodesic. The
boundary of P is a non-closed simple geodesic σ. P cannot contain a simple closed
geodesic, since it is a simply connected domain. Suppose that σ intersects a simple

 14697750, 2004, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/S0024610703004836 by Suny Stony B
rook U

niversity, W
iley O

nline L
ibrary on [09/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



166 venancio álvarez and josé m. rodŕiguez

closed geodesic γ. If the intersection of both curves is a single point, then they are
tangent, which is impossible. If they intersected in, at least, two points, then we
would have a simply connected domain D ⊂ P limited by an arc of σ and an arc
of γ, which is also impossible.

If P ∩ G 	= ∅, then P intersects a generalized Löbell Y-piece, and then contains
a simple closed geodesic or a puncture; therefore P is not simply connected, which
is a contradiction.

Therefore, there exists a set Pα such that Pα ∩ P 	= ∅. If Pα is a half-disk, then
P ⊆ Pα, because otherwise P would also intersect a simple closed geodesic (recall
that there are simple closed geodesics arbitrarily close to any point of ∂Pα, since S
is not conformally equivalent to D). If Pα is a funnel, then P ⊂ Pα, because funnels
are limited by a simple closed geodesic.

In any case, we conclude that P ⊆ Pα, and this finishes the proof of Pro-
position 5.1.

Next, we prove a corollary relating the maximal half-disks of a surface and the
half-disks appearing in decompositions.

Definition 5.1. We say that a half-disk P ⊂ S is canonical if there is a
decomposition of the surface S in a union (with disjoint interiors) of generalized
Löbell Y-pieces, funnels and half-disks, such that P is one of the half-disks in the
decomposition.

Definition 5.2. We say that a half-disk P ⊂ S is maximal if P ⊆ Q implies
P = Q for any half-disk Q ⊂ S.

Proposition 5.2. If S is a hyperbolic Riemann surface not conformally
equivalent to D or D \ {0}, then a half-disk P ⊂ S is canonical if and only if
it is maximal. Furthermore, any maximal half-disk appears in every decomposition
of S.

Proof. If P is canonical, each point p ∈ ∂P is the limit of points belonging to
a simple closed geodesic, so if Q is another half-disk with P ⊆ Q, and we assume
that P ⊂ Q, then Q intersects a simple closed geodesic, which is impossible, as in
the proof of Proposition 5.1. Therefore P = Q.

On the other hand, if P is a maximal half-disk, consider any decomposition of S.
Then, using Proposition 5.1, P is contained in a funnel F or in a canonical half-disk
Q. If it is contained in F , then P cannot be maximal, because given a half-disk in
a funnel, there is always another half-disk containing it strictly. Therefore P ⊆ Q,
and for the maximality of P , P = Q and P is canonical.

Remark 5.1. The Poincaré disk D does not contain maximal half-disks, and
every half-disk is canonical.

5.1. Plane domains

We finish this section by describing a situation in which half-disks arise. If S ⊂ Ĉ
is a hyperbolic plane domain, then we see that under certain circumstances, there
are half-disks near a continuum in ∂S.
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riemann and topological surfaces 167

Let us consider a hyperbolic plane domain S and a continuous C that is a
connected component of ∂S (in the topology of Ĉ). Without loss of generality,
we can assume that S ⊆ D and C = ∂D.

Consider the following subset of ∂D, A = ∂D \ D \ S. The set A is an open
subset in the relative topology of ∂D.

Proposition 5.3. If the arc B = (α, β) 	= ∂D is a connected component of A,
then there is a non-closed simple geodesic γ with endpoints in α and β such that γ
is the boundary of a canonical half-disk.

Proof. Given a point x ∈ B, there exists a closed neighbourhood Qx of x in D
such that Px := D ∩ Qx is a half-disk in the surface S. This half-disk Px cannot
be contained in a funnel because in that case A would ‘limit’ this funnel and so
the arc B would be ∂D. Using Proposition 5.1, we see that the set Px does not
intersect any generalized Löbell Y-piece, so there exists a canonical half-disk P with⋃

x∈B Px ⊆ P , since the set
⋃

x∈B Px is connected. Let γ = ∂P . By construction,
the points α and β are in the closure of P in D. Furthermore, α and β are the limit
points of γ, since otherwise we have that there are points of D \ S in P since B is
a connected component of A.

Remark 5.2. It is not always possible to find an arc B ⊂ A that is a connected
component of A. If A = ∂D and #(D \ S) � 2, then there is a funnel ‘limited’ by
∂D. The other possibility is that A = ∅.
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